相似三角形的判定 性质 经典例题分析067

合集下载

相似三角形的判定及性质 课件

相似三角形的判定及性质  课件
l,使截得的三角形与原三角形相似,这样的直线有
条.
错解:如图,过点 D 作 DE1∥BC,此时∠AE1D=∠B,∠A=∠A,所以△ABC
∽△AE1D;过点 D 作 DE2∥AB,此时∠CE2D=∠B,∠C=∠C,所以△ABC∽
△DE2C.
答案:2
错因分析:本题为探索性题目,由于对应元素不确定,因而存在多种情况,
形相似,因此共有 4 条直线符合要求.
答案:4
思路分析:由于这两个三角形都是直角三角形,且已知条件是线段间的
关系,故考虑证明对应边成比例,即只需证明


=

即可.

证明:在正方形 ABCD 中,


∵Q 是 CD 的中点,∴ =2.




∵ =3,∴ =4.


又 BC=2DQ,∴ =2.
在△ADQ 和△QCP 中,
两角对应相等,两
个三角形相似
两边对应成比例
且夹角相等Hale Waihona Puke 两个三角形相似作用
判定
两个

角形
相似
判定
两个
三角

相似


如果一条直线截三角形的两边(或两边的延
长线)所得的对应线段成比例,那么这条直线
平行于三角形的第三边
判定
定理
3
对于任意两个三角形,如果一个三角形的三
条边和另一个三角形的三条边对应成比例,
那么这两个三角形相似


=

=2,∠C=∠D=90°,

∴△ADQ∽△QCP.
探究三 证明两直线平行
常利用引理来证明两直线平行,其关键是证明其对应线段成比例,这样

相似三角形的性质及判定方法

相似三角形的性质及判定方法

相似三角形的性质及判定方法相似三角形是指具有相同形状但可能不同大小的两个或多个三角形。

在几何学中,相似三角形具有一些特定的性质和判定方法。

本文将探讨相似三角形的性质以及如何判定两个三角形是否相似。

一、相似三角形的性质1. 对应角相等性质:如果两个三角形的对应角相等,那么它们是相似的。

具体而言,如果两个三角形的对应角分别相等,则它们是相似的。

记为AA相似性质。

2. 对应边的比例性质:如果两个三角形的两对对应边的比例相等,那么它们是相似的。

具体而言,如果两个三角形的对应边所对应的长度比例相等,则它们是相似的。

记为SSS相似性质。

3. 角和对边的比例性质:如果两个三角形的对应角相等且对应边的长度比例相等,那么它们是相似的。

具体而言,如果两个三角形的对应角相等且对应边的长度比例相等,则它们是相似的。

记为SAS相似性质。

二、相似三角形的判定方法1. AA判定法:如果两个三角形的两个角分别相等,则它们一定是相似的。

即,如果两个三角形的两个角分别相等,则它们的第三个角也必然相等,从而满足AA相似性质。

2. SSS判定法:如果两个三角形的三对对应边的长度比例相等,则它们一定是相似的。

即,如果两个三角形的三对对应边的长度比例相等,则它们满足SSS相似性质。

3. SAS判定法:如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们一定是相似的。

即,如果两个三角形的一个对应角相等,且对应边的长度比例相等,则它们满足SAS相似性质。

三、实例分析为了更好地理解相似三角形的判定方法,我们来看一个实例。

已知三角形ABC和三角形DEF,已知∠A=∠D,∠B=∠E,且AB/DE = BC/EF = CA/FD,我们需要判定这两个三角形是否相似。

根据给定条件可知,∠A=∠D,∠B=∠E,且BC/EF = CA/FD。

根据SAS判定法,如果对应角相等且对应边的长度比例相等,则两个三角形相似。

由此得出结论,三角形ABC和三角形DEF是相似的。

相似三角形的判定与性质

相似三角形的判定与性质

相似三角形的判定与性质一、知识回顾1、相似三角形的判定:(1)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

(2)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。

(3)如果两个三角形的两组对应边的比相等,且相应的夹角相等,那么这两个三角形相似(4)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

2、相似三角形的性质(1)对应边的比相等,对应角相等。

(2)相似三角形的周长比等于相似比。

(3)相似三角形的面积比等于相似比的平方。

(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比。

二、典型例题例 1:如图,已知直线 AB: y=4/3 x+b 交 x 轴于点 A( -3 , 0),交 y 轴于点 B,过点 B 作BC⊥AB 交 x 轴于点 C.(1)试证明:△ ABC∽△ AOB;( 2)求△ ABC 的周长.例 2:如图,一次函数y=kx+b 的图象经过点A( -1 ,0)和点( 1,4)交 y 轴于点 B.( 1)求一次函数解析式和 B 点坐标.( 2)过 B 点的另一直线 1 与直线 AB垂直,且交X轴正半轴于点P,求点 P 的坐标.(3)点 M( 0,a)为 y 轴正半轴上的动点,点N( b,O)为 X 轴正半轴上的动点,当直线MN⊥直线 AB时,求 a: b 的值.例 3:( 2000·陕西)如图,在矩形ABCD 中, EF 是 BD 的垂直平分线,已知 BD=20, EF=15,求矩形 ABCD 的周长.例 4:( 2010·攀枝花)如图所示,在△ ABC 中, BC > AC ,点 D 在 BC 上,且 DC=AC ,∠ ACB 的平分线 CF 交 AD 于点 F .点 E 是 AB 的中点,连接 EF .( 1)求证: EF ∥BC ;( 2)若△ ABD 的面积是 6,求四边形 BDFE 的面积.例题(1) 两个相似三角形的面积比为 s 1 : s 2 ,与它们对应高之比h 1 : h 2 之间的关系为 _______(2) 如图,已知 D E ∥ BC , CD 和 BE 相交于 O ,若 SABC:SCOB9 :16 ,则 AD:DB=_________AABADD ’DEODEEFFGA A ’CC ’OCB B ’BCDBC(2)题图(3) 题图(4) 题图(5) 题图(3)如图,已知 AB ∥CD,BO:OC=1:4, 点 E、 F 分别是 OC, OD的中点,则 EF:AB 的值为(4) 如图,已知DE∥FG∥ BC,且 AD:FD:FB=1:2:3, 则S ABC: S四边形DFGE: S四边形FBCG()A.1:9:36B.1:4:9C.1:8:27D.1:8:36(5)如图,把正方形 ABCD 沿着对角线 AC 的方向移动到正方形 A’B ’C’D ’的位置,它们的重叠部分的面积是原正方形面积的一半,若AC= 2 ,则正方形移动的距离 AA ’是(6) 梯形 ABCD中, AD∥BC,( AD<BC), AC、 BD交于点 O,若S OAB6S ABCD,则△AOD与△BOC的周长25之比为 __________ 。

相似三角形的判定与性质知识梳理及例题分析

相似三角形的判定与性质知识梳理及例题分析

相似三角形的判定与性质知识梳理及例题分析1.相似三角形的概念:在和中,如果,,,,我们就说和相似,记作∽,就是它们的相似比(注意:要把表示对应顶点的字母写在对应的位置上).思考:在中,点是边的中点,,交于点,与有什么关系?猜想:与相似. 证明:在与中,∴,.过点作,交于点在中,,,∴.又,∴∴,∴∽(对应角相等,对应边的比相等的两三角形相似),相似比为.改变点在上的位置,可以进一步猜想以上两个三角形依然相似.2.相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.小结:判定三角形相似的方法:(1)相似三角形的定义;(2)由平行线得相似.思考:对比三角形全等判定的简单方法(),看是否也有简便的方法?已知:在和中,.求证:∽.证明:在线段(或它的延长线)上截取,过点作,交于点,根据前面的结论可得∽.∴又,∴∴同理:∴≌∴∽相似三角形的判定定理:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.可简单说成:三边对应成比例,两三角形相似.思考:若,,与是否相似呢?相似三角形的判定定理:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似可简单说成:两边对应成比例且夹角相等,两三角形相似.进一步引申:若,,与是否相似呢?不一定问:全等中的边边角不能用,那么边边角也不能证相似,反例同全等.例1.根据下列条件,判断与是否相似,并说明理由:(1),,;,,.(2),,;,,.解:(1),∴又∴∽问:这两个相似三角形的相似比是多少?(答:是)(2),,∴与的三组对应边的比不等,它们不相似.问:要使两三角形相似,不改变的长,的长应当改为多少?(答:) 例2.要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形的一边长为2,怎样选料可使这两个三角形相似?注:此题没说2与哪条边是对应边,所以要进行分类讨论.可以是:,3;或,;或,.注:当两三角形相似而边不确定时,要注意分类讨论.相似三角形的判定定理:如果一个三角形的两个角与另一个三角形的两个角对应相等的,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.3.三角形相似的判定的应用例3.如图,弦和弦相交于内一点,求证:.证明:连接,.在∴∽∴.例4.已知:如图,在中,于点.(1)求证:∽∽;(2)求证:;;(此结论称之为射影定理)(3)若,求.(4)若,求.分析:(1)利用两角相等证相似;(2)把相似三角形的相似比的比例式改为乘积式即可;(3)利用射影定理和勾股定理直接求;(4)利用上面的定理和方程求.进一步引申:在中,于点,这个条件可以放在圆当中,是直径,是圆上任意一点,于点,则可得到双垂直图形.例.已知:∽,分别是两个三角形的角平分线.求证:.4.相似三角形的性质(1)相似三角形的对应角相等,对应边的比相等,都等于相似比.(2)相似三角形对应高的比,对应角的平分线的比,对应中线的比都等于相似比.(3)相似三角形周长的比等于相似比;相似多边形周长的比等于相似比.证明:如果∽,相似比为,那么.因此,,.从而,.同理可得相似多边形对应周长的比也等于相似比.如图,已知:∽,相似比为.分别作出与的高和和都是直角三角形,并且,∽相似多边形面积的比等于相似比的平方.对于两个相似多边形,可以把他们分成若干个相似三角形证明.例5.如图,在和中,,,,的周长是24,面积是48,求的周长和面积.解:在和中,,又∽,相似比为.的周长为,的面积是.例6.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.分析:此题第1问:利用两边的比相等,夹角相等证相似.即,第2问:设∵是的比例中项,∴是的比例中项即∴解得又∵第3问:∵,,即当时,两圆内切;当时,两圆内含;当时,两圆相交.例7.如图,已知中,,,,,点在上,(与点不重合),点在上.(1)当的面积与四边形的面积相等时,求的长.(2)当的周长与四边形的周长相等时,求的长.(3)在上是否存在点,使得为等腰直角三角形?要不存在,请说明理由;若存在,请求出的长.解:(1),∽(2)∵的周长与四边形的周长相等∽(3)在线段上存在点,使得为等腰直角三角形.过作于,则,设交于若,则.∵∽若,同理可求.若,∽∴在线段上存在点,使得为等腰直角三角形,此时,或.三、总结归纳:1、相似三角形的判定:(1)相似三角形的定义;(2)平行得相似;(3)三边的比相等;(4)两边的比相等,夹角相等;(5)两角对应相等.三角形相似判定的方法较多,要根据已知条件适当选择.23、相似三角形的常见图形及其变换:4、证明四条线段成比例的常用方法:(1)线段成比例的定义(2)三角形相似的预备定理(3)利用相似三角形的性质(4)利用中间比等量代换(5)利用面积关系证明题常用方法归纳:(1)通过“横找”“竖看”寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相似的,则可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(2)若没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上),则需要进行“转移”(或“替换”),常用的“替换”方法有这样的三种:等线段代换、等比代换、等积代换.(3)若上述方法还不能奏效的话,可以考虑添加辅助线(通常是添加平行线)构成比例.以上步骤可以不断的重复使用,直到被证结论证出为止.。

相似三角形(解析版)

相似三角形(解析版)

4.3相似三角形一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形. 要点:(1) 相似图形就是指形状相同,但大小不一定相同的图形; (2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两 个图形全等;二、相似三角形 在和中,如果我们就说与相似,记作∽.k 就是它们的相似比,“∽”读作“相似于”一、单选题 1.若ABC A B C ''',40A ∠=︒,110B ∠=︒,则'C ∠的度数为( )A .30°B .40°C .70°D .110°【解答】A【提示】若ABC A B C '''∽△△,则说明点A 的对应点为点'A ,点B 的对应点B ',点C 的对应点为点C ',且对应角相等.【详解】因为ABC A B C '''∽△△,所以'C C ∠=∠.因为40A ∠=︒,110B ∠=︒,所以30C ∠=︒,所以'30C ∠=︒故选A.【点睛】考核知识点:相似比.熟记相似三角形性质:对应角相等,是关键. 2.若ABCA B C '''',3BC =,'' 1.8B C =,则A B C '''与ABC 的相似比为( )A .5∶3B .32∶C .23∶D .35∶ 【解答】D【提示】根据相似三角形的对应角相等、对应边成比例可得:A B C '''与ABC 的相似比为1.83B C BC =''. 【详解】因为ABC A B C '''∽△△,3BC =,'' 1.8B C =,所以A B C '''与ABC 的相似比为1.8335B C BC ''==. 故选D.【点睛】考核知识点:相似比.熟记相似三角形性质是关键. 3.如图,已知ADEACB ,若AB=10,AC=8,AD=4,则AE 的长是( )A .4B .3.2C .20D .5【解答】D【提示】根据相似三角形对应边成比例直接建立等式求解即可. 【详解】由相似三角形的性质可得:AD AEAC AB=, 则·41058AD AB AE AC ⨯===, 故选:D .【点睛】本题考查相似三角形的性质,熟记相似三角形对应边成比例是解题关键.4.如果ABC DEF ∆∆∽,A 、B 分别对应D 、E ,且:1:2AB DE =,那么下列等式一定成立的是( ) A .:1:2BC DE =B .ABC ∆的面积:DEF ∆的面积1:2=C .A ∠的度数:D ∠的度数1:2= D .ABC ∆的周长:DEF ∆的周长1:2= 【解答】D【提示】相似三角形对应边的比等于相似比,面积之比等于相似比的平方,对应角相等.【详解】根据相似三角形性质可得:A :BC 和DE 不是对应边,故错;B :面积比应该是1:4,故错;C:对应角相等,故错;D :周长比等于相似比,故正确. 故选:D【点睛】考核知识点:相似三角形性质.理解基本性质是关键.5.如图所示,△ACB ∽△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )A .20°B .30°C .35°D .40° 【解答】B【提示】根据相似三角形性质求出∠ACB=∠A′CB′,都减去∠A′CB 即可. 【详解】解:∵△ACB ∽△A′CB′,∴∠ACB=∠A′CB′,∴∠ACB-∠A′CB=∠A′CB′-∠A′CB , ∴∠ACA′=∠BCB′, ∵∠BCB′=30°, ∴∠ACA′=30°, 故选:B .【点睛】本题考查了相似三角形性质,掌握相似三角形的对应角相等是解题的关键.6.如图,在△ABC 中,∠A =75°,AB =6,AC =8,将△ABC 沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A .B .C .D .【解答】D【提示】根据相似三角形的判定定理对各选项进行逐一判定即可.【详解】A 、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; B 、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误; C 、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误. D 、两三角形的对应边不成比例,故两三角形不相似,故本选项正确; 故选D .【点睛】本题考查了相似三角形的判定,熟练掌握相似三角形的判定定理是解题的关键.7.在△ABC 中,已知AB =5,BC =4,AC =8.若△ABC ∽△A1B1C1,△A1B1C1的最长边的长为16,则其他两边的长分别为( )A .A1B1=8,B1C1=10B .A1B1=10,B1C1=8C .A1B1=5,B1C1=8D .A1B1=10,B1C1=4【解答】B【详解】分析:根据相似三角形对应边的比相等解答即可.详解:∵两个三角形中最长边和最长边是对应边,△ABC ∽△A1B1C1,∴111111AB BC ACA B B C AC == ,∴111154816A B B C ==,∴A1B1=10,B1C1=8. 故选B .点睛:本题主要考查学生对两个三角形相似的性质的理解及运用.掌握相似三角形的性质是解题的关键.8.若ABC DEF △△,且ABC 与DEF 的相似比为m ,DEF 与ABC 的相似比为n ,则(.): A .m n = B .0m n += C .1⋅=m n D .1m n ⋅=-【解答】C【提示】根据题意,可判定ABC 与DEF 的相似比为m ,则DEF 与ABC 的相似比为其倒数,所以两者积为1.【详解】解:∵ABC 与DEF 的相似比为m , ∴DEF 与ABC 的相似比为1m ,即1n m=, ∴1⋅=m n 故答案为C.【点睛】此题主要考查相似三角形相似比的性质,熟练掌握,即可解题.9.△ABC ∽△A′B′C′,已知AB =5,A′B′=6,△ABC 面积为10,那么另一个三角形的面积为( ) A .15B .14.4C .12D .10.8【解答】B【提示】利用相似三角形的性质得出两三角形的面积比,进而求出即可. 【详解】解:∵△ABC ∽△A′B′C′,AB =5,A′B′=6, ∴A'B'C'2536ABC S S =, ∵△ABC 面积为10, ∴解得:S △A′B′C′=14.4. 故选B .【点睛】本题考查相似三角形的性质,利用相似比与面积比的关系得出是解题关键.10.如图,在△ABC 中,AB=AC ,∠A=36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△EBD 相似的三角形是( )A .ABCB .ADEC .DABD .BDC 【解答】C【提示】由于∠A=36°,AB=AC ,易求∠ABC=∠C=72°,而BD 是角平分线,易求∠ABD=∠CBD=36°,又DE ∥BC ,那么有∠EDB=∠CBD=36°,即∠A=∠BDE ,∠ABD=∠DBE ,从而可证△ABD ∽△DBE . 【详解】∵∠A=36°,AB=AC , ∴∠ABC=∠C=72°, 又∵BD 是∠ABC 的平分线, ∴∠ABD=∠CBD=36°, ∵DE ∥BC ,∴∠EDB=∠CBD=36°,即∠A=∠BDE ,∠ABD=∠DBE , ∴△ABD ∽△DBE , 故选C .【点睛】本题考查了相似三角形的判定、等腰三角形的性质、三角形内角和定理.解题的关键是求出相关角的度数.二、填空题11.已知111ABC A B C △△,相似比为23,111222A B C A B C △△,相似比为54,则222ABC A B C △△,其相似比为________. 【解答】56【提示】根据相似三角形的性质可得1123AB A B =,112254A B A B =,故可得2256AB A B =. 【详解】因为111ABC A B C ∽△△,相似比为23,所以1123AB A B =,因为111222A B C A B C ∽△△,相似比为54,所以112254A B A B =,所以2256AB A B =,即所求相似比为56. 故答案为56【点睛】考核知识点:相似三角形的性质.根据相似三角形性质和比例性质求解是关键.12.ΔABC 与△DEF 中,65A ∠=︒,42B ∠=︒,65D ∠=︒,73F ∠=︒,3AB =,5AC =,6BC =,6DE =,10DF =,12EF =,则△DEF 与△ABC________【解答】相似【提示】根据相似三角形的判定方法解答即可. 【详解】∵65A ∠=︒,42B ∠=︒, ∴∠C=180°-65°-42°=73°. ∵65D ∠=︒,73F ∠=︒, ∴∠A=∠D, ∠C=∠F, ∴△DEF 与△ABC 相似. 故答案为相似.【点睛】本题考查了相似三角形的判定方法,相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例的两个三角形相似.13.已知ABC 的三边分别是4,5,6,则与它相似'''A B C 的最长边为12,则'''A B C 的周长是________. 【解答】30【提示】由于A B C '''的最大边为12,所以边长12对应的边只能是ABC 中边长为6的边,进而再由对应边成比例即可求解.【详解】∵△ABC ∽△A′B′C′,且其最大边为12,所以边长12对应的边只能是△ABC 中边长为6的边,∴△′B′C′的另两边的长为8,10, 故△′B′C′的周长为8+10+12=30. 故答案为:30.【点睛】考查相似三角形的性质,掌握相似三角形的周长比等于相似比是解决问题的关键. 14.若ABC DEF ∽,50B ∠=,70C ∠=,则D ∠的度数为________. 【解答】60【提示】根据三角形的内角和定理求出∠A ,再根据相似三角形的对应角相等可得∠D=∠A . 【详解】∵50B ∠=,70C ∠=∴180180507060,A B C ∠=-∠-∠=--= ∵△ABC ∽△DEF , ∴60.D A ∠=∠=故答案为60.【点睛】考查相似三角形的性质,掌握相似三角形对应角相等是解题的关键.15.如图,在△ ABC 中, DE ∥ BC , AD =3cm , BD =2cm ,则△ ADE 与△ ABC 相似比是_____;若 DE =4cm ,则 BC =________.【解答】 3:5203cm ; 【详解】∵AD=3cm ,BD=2cm , ∴AB=AD+DB=5cm. ∵DE ∥BC ,∴△ADE ∽△ABC ,且相似比为:35AD AB =; ∴35DE AD BC AB ==,即435BC =, ∴BC=203. 故答案为(1)35;(2)203.点睛:本题解题的要点是根据“平行于三角形一边的直线截另外两边(或两边的延长线),所得新三角形与原三角形相似”由DE ∥BC 得到△ADE ∽△ABC ,这样利用相似三角形的性质即可求得所求量了.16.在ABC 中,5AB AC ==,6BC =,点E 、F 分别在AB 、BC 边上,将BEF 沿直线EF 翻折后,点B 落在对边AC 的点为'B ,若'B FC 与ABC 相似,那么BF =________.【解答】3或3011【提示】由于对应边不确定,所以本题应分两种情况进行讨论:①△ABC ∽△B ' FC;②△ABC ∽△F B 'C.【详解】①当△ABC ∽△B 'FC 时:根据△ABC 是等腰三角形,则△B 'FC 也是等腰三角形, 则B 'FC=∠C=∠B,设BF=x,则CF=6-x, B 'F=B 'C=x,根据△ABC ∽△B 'FC ,得到:B F CFAB BC'=,得到656x x -=,解得x=3011;②当△ABC ∽△F B 'C 则FC=B 'F=BF,则x=6-x,解得x=3. 因而BF=3或3011. 【点睛】本题考查了相似三角形的性质,对应边的比相等,注意到分两种情况进行讨论是解决本题的关键.17.如图,已知ADE ABC ∽,相似比为2:3,则:BC DE 的值为________.【解答】3:2【提示】由于△ADE ∽△ABC ,且已知了它们的相似比,因此两三角形的对应边的比等于相似比.由此可求出BC 、DE 的比例关系.【详解】∵△ADE ∽△ABC ,且相似比为2:3, ∴BC :DE=3:2, 故答案为3:2.【点睛】本题考查对相似三角形性质的理解. (1)相似三角形面积的比等于相似比的平方;(2)相似三角形周长的比等于相似比; (3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.18.如图,在△ABC 中,AB=AC ,点D 在边BC 上,连接AD ,将线段AD 绕点A 逆时针旋转到AE ,使得∠DAE=∠BAC ,连接DE 交AC 于F ,请写出图中一对相似的三角形:________(只要写出一对即可).【解答】△ABD ∽△AEF(或△ABD ∽△DCF 或△DCF ∽△AEF 或△ADE ∽△ABC) 【详解】分析:先根据等腰三角形的性质,由AB=AC 得∠B=∠C ,再利用旋转的性质得∠ADE=∠E=∠B=∠C ,且∠BAD=∠CAE ,于是根据有两组角对应相等的两个三角形相似可判断△ABD ∽AEF . 详解:∵AB=AC , ∴∠B=∠C ,∵线段AD 绕点A 逆时针旋转到AE ,使得∠DAE=∠BAC ,∴∠ADE=∠E=∠B=∠C,∴∠BAD=∠CAE,∴△ABD∽AEF.故答案为△ABD∽AEF.点睛:本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.三、解答题19.根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由(1)AB=12,BC=15,AC=24,A′B′=25,B′C′=40,C′A′=20(2)AB=3,BC=4,AC=5,A′B′=12,B′C′=16,C′A′=20【解答】(1)见解析;(2)见解析.【提示】(1)通过计算得出两个三角形三边成比例,即可得出结论.(2)通过计算得出两个三角形三边成比例,即可得出结论.【详解】解:(1)∵AB123BC153AC243C'A'205A'B'255B'C'405 ======,,,∴△ABC∽△C′A′B′(2)∵AB31BC41AC51 A'B'124B'C'164A'C'204 ======,,∴△ABC∽△A′B′C′.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法,通过计算得出三边成比例是解题的关键.20.如图,在△ABC中,D、E两点分别在AC、AB两边上,∠ABC=∠ADE,AB=7,AD=3,AE=2.7,求AC的长.【解答】6.3.【详解】试题分析:已知∠ABC=∠ADE,∠A=∠A,则可推出△ABC∽△ADE,根据相似三角形的相似比即可求得AC的长.试题解析:在△ABC和△ADE中,∵∠ABC=∠ADE,∠A=∠A∴△ABC∽△ADE.∴AB ACAD AE=,即AB AE7 2.7AC 6.3AD3⋅⨯===.考点:相似三角形的判定和性质.21.如图,在正方形网格上有△ABC 和△DEF .(1)这两个三角形相似吗?为什么? (2)请直接写出∠A 的度数 ;(3)在上边的网格内再画一个三角形,使它与△ABC 相似,并求出其相似比. 【解答】(1)相似,理由见解析;(2)45º;(3)见解析【提示】(1)根据勾股定理列式求出AB 、AC 、BC 、DE 、DF 、EF 的长度,然后根据三边对应成比例,两三角形相似解答;(2)取AC 的中点O ,连接BO ,根据网格结构可以判断∠ABO=90°,△ABO 是等腰直角三角形,即可得解;(3)把△ABC 三边扩大2倍,然后利用网格结构作出即可. 【详解】(1)AB=22152=+, AC=22026=21+, BC=5, DE=1,DF=22152=+, EF=22222=2+, ∵5AB AC BCDE EF DF===, ∴△ABC ∽△DEF ;(2)如图,取AC 的中点O ,连接BO , 则△ABO 是等腰直角三角形, ∴∠A=45°;(3)如图,△A′B′C′与△ABC 相似,它们的相似比是2.【点睛】本题考查了利用相似变换作图,熟练掌握相似三角形的判定与性质,网格结构的特点是解题的关键.22.已知:如图AB//CD//EF ,AC 、BD 相交于点O ,E 在AC 上,F 在BD 上,且AE:EC=2:3,BD=10.(1)求BF 的长;(2)当AB=12,CD=8时,求EF 的长.【解答】(1)4 (2)4【提示】(1)根据平行线分线段成比例定理得出BF :FD 的值,从而得出BF 与FD 的数量关系,再再结合BF+DF=BD=10求出BF 的值.(2)先证明~,~OEF OAB OEF OCD 从而得出两组关于EF 的比例式,再根据和比的性质对比例式进行变形得出23AB EF AE CD EF EC -==+,代入AB 和CD 的值即可求出EF. 【详解】解:(1)∵AB//CD//EFAE BF EC DF∴= :2:3AE EC =23BF DF ∴= 23DF BF ∴= 10BD = 10DF BD BF BF ∴=-=-2(10)3BF BF ∴-=4BF ∴=(2)AB CD EF ‖‖~,~OEF OAB OEF OCD ∴,AB OA CD OC EF OE EF OE ∴== ,AB EF OA OE CD EF OC OE EF OE EF OE--++∴== ,AB EF AE CD EF EC EF OE EF OE-+==23AB EF AE CD EF EC -∴==+ 3()2()AB EF CD EF ∴-=+12,8AB CD ==3(12)2(8)EF EF ∴-=+4EF ∴=【点睛】本题考查平行线分线段成比例,相似三角形的性质与判定,比例的性质.(1)中能根据平行线分线段成比例得出BF 与FD 的数量关系是解决此问的关键;(2)中的难度在于能根据和比的性质将比例式进行变形,建立EF 有关的比例式和AE:EC 之间的等量关系.23.如图,直线EF 分别交ABC 的边AB ,AC 于点F ,E ,交BC 的延长线于点D ,已知BF BA BC BD ⋅=⋅.求证:AE CE DE EF ⋅=⋅.【解答】见解析【提示】由对应线段成比例且夹角相等可证ABC DBF ∽△△,根据两组对应角相等即证AEF DEC ∽△△,由相似三角形对应线段成比例的性质可得结论.【详解】证:BF BA BC BD ⋅=⋅,∴AB BC BD BF =, 又ABC DBF ∠=∠,∴ABC DBF ∽△△,∴A D ∠=∠.又AEF DEC ∠=∠,∴AEF DEC ∽△△,∴AE EF DE EC=,即AE CE DE EF ⋅=⋅. 【点睛】本题考查了相似三角形的性质和判定,综合利用其判定和性质进行证明是解题的关键. 24.如图,在△ABC 中,AB =AC ,点D ,E 分别在BC ,AB 上,且∠BDE =∠CAD.求证:△ADE ∽△ABD.【解答】证明见解析.【详解】试题分析:由等腰三角形的性质得出∠B=∠C,由三角形的外角性质和已知条件得出∠ADE=∠C,因此∠B=∠ADE,再由公共角∠DAE=∠BAD,即可得出△ADE∽△ABD.试题解析:∵AB=AC,∴∠B=∠C.∵∠ADB=∠C+∠CAD=∠BDE+∠ADE,∠BDE=∠CAD,∴∠ADE=∠C,∠B=∠ADE.∵∠DAE=∠BAD,∴△ADE∽△ABD.25.点D、E分别是△ABC两边AB、BC所在直线上的点,∠BDE+∠ACB=180°,DE=AC,AD =2BD.(1) 如图1,当点D、E分别在AB、CB的延长线上时,求证:BE=BD(2) 如图2,当点D、E分别在AB、BC边上时,BE与BD存在怎样的数量关系?请写出你的结论,并证明【解答】(1)证明见解析;(2)BE=3BD【提示】(1)在BD上找一点M,连接EM,使EM=ED,如图1.证明EMB ACB≅可得EB=AB,利用AD=2BD,AB=AD-BD即可得结论;(2)在AB上找一点M,连接EM,使EM=ED,如图2.证明EBM ABC可得BE EMAB AC=由AD=2BD,可得AB=AD+BD=3BD代入,即可得结论.【详解】(1)在BD上找一点M,连接EM,使EM=ED,如图1.则∠BDE=∠EMD.∵∠BDE+∠ACB=180°,∴∠EMB=∠ACB.∵DE=AC,∴EM=AC在△EMB 和△ACB 中,EBM ABC EMB ACB EM AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()EMB ACB AAS ∴≅∴EB=AB∵AD=2BD ,∴AB=AD-BD=BD.∴BE=BD ;(2) BE=3BD ,理由如下:在AB 上找一点M ,连接EM ,使EM=ED ,如图 2.则∠MDE=∠EMD.∵DE=AC,∴EM=AC.∵∠BDE+∠ACB=180, ∠EDM+∠BDE=180,∴∠EMD=∠ACB∵∠EBM=∠ABC,EBMABC ∴ BE EM AB AC∴= ∵AD=2BD,∴AB=AD+BD=3BD3BE AC BD AC∴=. ∴BE=3BD【点睛】本题考查了三角形全等的判定及性质以及相似三角形的判定及性质,掌握三角形全等的判定方法及相似三角形的判定及性质是解题的关键.。

相似三角形的性质及应用(解析版)

相似三角形的性质及应用(解析版)

4.5相似三角形的性质及应用一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点:要特别注意“对应”两个字,在应用时,要注意找准对应线段. 3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则21122=1122ABCA B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点:相似三角形的性质是通过比例线段的性质推证出来的. 二、三角形的重心三角形三条中线的交点叫做三角形的重心,三角形的重心分每一条中线成1:2的两条线段.OEFDABC即12OD OE OF OA OB OC === . 要点:H OEFDAB C过点E 作EH ∥BC 交AD 于H ,根据三角形的中位线平行于第三边并且等于第三边的一半可得CD=2EH ,从而得到BD=2EH ,再根据△BDO 和△EHO 相似,利用相似三角形对应边成比例列出比例式计算即可得证1=2OE HE OB BD ,同理其他比例也可以得到. 三、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点:测量旗杆的高度的几种方法:平面镜测量法 影子测量法 手臂测量法 标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。

1.如甲图所示,通常可先测量图中的线段DC 、BD 、CE 的距离(长度),根据相似三角形的性质,求出AB 的长.2.如乙图所示,可先测AC 、DC 及DE 的长,再根据相似三角形的性质计算AB 的长.要点:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置); 4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角. 一、单选题1.两三角形的相似比是2:3,则其对应角的角平分线之比是( ) A .2:3 B .2:3 C .4:9 D .8:27 【解答】B【提示】根据相似三角形对应角平分线的比等于相似比解答即可. 【详解】解:∵两三角形的相似比是2:3, ∴相似三角形对应角平分线的比是2:3,故选:B .【点睛】本题考查了相似三角形的性质,主要利用了相似三角形对应角平分线的比,对应高的比,对应中线的比都等于相似比的性质.2.已知ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2,若BC 边上的中线长为1,则EF 边上的中线长是( ) A .2 B .2 C .3D .4【解答】A【提示】由ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2可知:相似比为1:2,则对应中线的比为1:2,即可求出答案.【详解】∵ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2 ∴相似比为1:2 ∴其对应中线的比为1:2 ∵BC 边上的中线长为1 ∴EF 边上的中线长是2 故选:A【点睛】本题主要考查了相似三角形的相似比的相关知识点,熟练掌握相似三角形面积比、相似比、对应边的高线、中线的比的关系是解题的关键,属于基础知识题.3.如图点D 、E 分别在△ABC 的两边BA 、CA 的延长线上,下列条件能判定ED ∥BC 的是( ).A .AD DEAB BC =; B .AD AE AC AB =;C .AD AB DE BC ⋅=⋅; D .AD AC AB AE ⋅=⋅. 【解答】D【提示】根据选项选出能推出ADE ABC ∆∆∽,推出D B ∠=∠或E C ∠=∠的即可判断. 【详解】解:A 、∵AD DEAB BC =,EAD BAC ∠=∠,不符合两边对应成比例及夹角相等的相似三角形判定定理. 无法判断ADE ∆与ABC ∆相似,即不能推出//DE BC ,故本选项错误;B 、AD AE AC AB =EAD BAC ∠=∠, ADE ACB ∴∆∆∽,E B ∴∠=∠,D C ∠=∠,即不能推出//DE BC ,故本选项错误;C 、由AD AB DE BC ⋅=⋅可知AB DEBC AD =,不能推出DAE BAC ∆∆∽,即不能推出D B ∠=∠,即不能推出两直线平行,故本选项错误;D 、∵AD AC AB AE ⋅=⋅,AD AEAB AC ∴=,EAD BAC ∠=∠, DAE BAC ∴∆∆∽,D B ∴∠=∠,//DE BC ∴,故本选项正确;故选:D .【点睛】本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似. 4.已知ABC 与DEF 相似,且A D ∠=∠,那么下列结论中,一定成立的是( ) A .B E ∠=∠ B .AB ACDE DF =C .相似比为AB DED .相似比为BCEF【解答】D【提示】根据相似三角形的性质对不同的对应角和对应边进行分类讨论.【详解】解:∵B 可以与E 对应,也可以与F 对应,∴∠B=∠E 或∠B=∠F ,A 不一定成立; 同上,AB 可以与DE 对应,也可以与DF 对应,∴AB AC DE DF =或AB ACDF DE =,B 不一定成立;同上,AB 可以与DE 对应,也可以与DF 对应,∴相似比可能是AB DE ,也可能是ABDF ,C 不一定成立;∵∠A=∠D ,即∠A 与∠D 是对应角,∴它们的对边一定是对应比,即BC 与EF 是对应比,∴相似比为BCEF ,∴D 一定成立, 故选D .【点睛】本题考查相似三角形的性质,注意相似三角形的性质是针对对应角和对应边而言的. 5.如图,小明站在 C 处看甲、乙两楼楼顶上的点 A 和点 E .C ,E ,A 三点在同一直线上,B ,C 相距 20 米,D ,C 相距 40 米,乙楼的高 BE 为 15 米,小明的身高忽略不计,则甲楼的高 AD 为 ( )A .40 米B .20 米C .15 米D .30 米【解答】D【提示】证明ADC EBC ∽△△,利用相似三角形的性质解答即可. 【详解】解:由题意可知:90ADC ∠=︒,90EBC ∠=︒,C ∠是公共角,∴ADC EBC ∽△△, ∴AD DCEB BC =, ∵20m BC =,40m DC =,15m BE =, ∴40=15=30m 20DC AD EB BC =⨯⨯.故选:D【点睛】本题考查相似三角形的判定及性质,解题的关键是熟练掌握相似三角形的判定及性质. 6.如图,在Rt △ABC 中,90ACB ∠=,CD AB ⊥垂足为D ,那么下列结论错误的是( )A .22AC BD BC AD ⋅=⋅B .22BC BD CD AB ⋅=⋅C .AD BC AC CD ⋅=⋅ D .CD BC AC BD ⋅=⋅ 【解答】B【提示】根据直角三角形的性质与相似三角形的判定可知△ADC ∽△CDB ∽△ACB ,利用相似三角形的对应线段成比例即可求解. 【详解】∵∠ACB=90°,CD ⊥AB , ∴△ADC ∽△CDB ∽△ACB ∴AC2=AD·AB ,BC2=BD·AB ,故22AC BD BC AD ⋅=⋅,A 正确,B 错误;∵△ADC ∽△CDB∴AD AC CDCD BC BD == ∴AD BC AC CD ⋅=⋅,CD BC AC BD ⋅=⋅,C,D 选项正确; 故选B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质及相似三角形的判定.7.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1【解答】C【提示】首先证明AG :AB=CH :BC=1:3,推出GH ∥AC ,推出△BGH ∽△BAC ,可得223924ADC BAC BGHBGHS S BA SSBG ()()====,13ADG ADCSS=,由此即可解决问题.【详解】∵四边形ABCD 是平行四边形 ∴AD=BC ,DC=AB , ∵AC=CA , ∴△ADC ≌△CBA , ∴S △ADC=S △ABC ,∵AE=CF=14AC ,AG ∥CD ,CH ∥AD ,∴AG :DC=AE :CE=1:3,CH :AD=CF :AF=1:3, ∴AG :AB=CH :BC=1:3, ∴GH ∥AC , ∴△BGH ∽△BAC , ∴223924ADC BAC BGHBGHS S BA S SBG ()()====,∵13ADG ADCS S=,∴913434ADG BGHS S=⨯=.故选C .【点睛】本题考查平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.8.如图,在正方形ABCD 中,ABP 是等边三角形,AP 、BP 的延长线分别交边CD 于点E 、F ,联结AC 、CP 、AC 与BF 相交于点H ,下列结论中错误的是( )A .AE=2DEB .CFP APHC .CFP APCD .2CP PH PB =⋅【解答】C【提示】A.利用直角三角形30度角的性质即可解决问题. B.根据两角相等两个三角形相似即可判断.C.通过计算证明∠DPB≠∠DPF ,即可判断.D.利用相似三角形的性质即可证明. 【详解】解:∵四边形ABCD 是正方形, ∴∠D=∠DAB=90°, ∵△ABP 是等边三角形, ∴∠PAB=∠PBA=∠APB=60°, ∴∠DAE=30°, ∴AE=2DE ,故A 正确; ∵AB ∥CD ,∴∠CFP=∠ABP=∠APH=60°,∵∠PHA=∠PBA+∠BAH=60°+45°=105°, 又∵BC=BP ,∠PBC=30°, ∴∠BPC=∠BCP=75°, ∴∠CPF=105°,∴∠PHA=∠CPF ,又易得∠APB=∠CFP=60°, ∴△CFP ∽△APH ,故B 正确; ∵∠CPB=60°+75°=135°≠∠DPF , ∴△PFC 与△PCA 不相似,故C 错误; ∵∠PCH=∠PCB-∠BCH=75°-45°=30°, ∴∠PCH=∠PBC , ∵∠CPH=∠BPC , ∴△PCH ∽△PBC ,∴PC PHPB PC =,∴PC2=PH•PB ,故D 正确, 故选:C .【点睛】本题考查相似三角形的判定和性质,等边三角形的性质,正方形的性质,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图所示,D 、E 分别是ABC ∆的边AB 、BC 上的点,且//DE AC ,AE 、CD 相交于点O .若45::2DOE COA S S ∆∆=,则BDES ∆与CDE S ∆的比是( )A .1:2B .1: 3C .2:3D .2:5 【解答】C【提示】利用相似三角形的性质解决问题即可. 【详解】解:∵//DE AC , ∴DEO CAO ∆∆∽, ∵45::2DOE COA S S ∆∆=,∴2425DE AC ⎛⎫=⎪⎝⎭,∴25DE AC =, ∵//DE AC , ∴25BE DE BC AC ==, ∴23BE EC =,∴BDES ∆与CDE S ∆的比2:3=,故选:C .【点睛】本题主要考查的是相似三角形的性质和判定,熟练掌握相似三角形的性质和判定定理是解题的关键.10.如图,正方形ABCD 和正方形CGFE 的顶点,,C D E 在同一条直线上,顶点, ,B C G 在同一条直线上.O 是EG 的中点,EGC ∠的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH 交EC 于点N .则BCCG 的值为( )A .31-B .3C .21-D .2【解答】C【详解】∵四边形ABCD 和四边形CGFE 是正方形,,,BC DC CE CG BCE DCG ∴==∠=∠.在BCE和DCG △中,,,(),,BC DC BCE DCG BCE DCG SAS BEC BGH CE CG =⎧⎪∠=∠∴∴∠=∠⎨⎪=⎩≌.90BGH CDG ∠+∠=︒,,90CDG HDE BEC HDE ∠=∠∴∠+∠=︒.GH BE ∴⊥.GH 平分,EGC BGH EGH ∠∴∠=∠.()BGH EGH ASA ∴≌.BH EH ∴=.又O 是EG 的中点,//HO BG ∴.D C DHN G ∴∽△△.DN HN DC CG ∴=.设HN a =,正方形ECGF 的边长是2b ,则2BC a =,22,,22b a aCD a NC b a b -==∴=,即2220a ab b +-=,解得(12)a b =-+或(12)a b =--(舍去),则221,212a BCb CG =-∴=-.二、填空题11.若两个相似三角形的面积比是9:25,则对应边上的中线的比为 _________. 【解答】3:5【提示】根据相似三角形的性质:相似三角形对应边上的中线之比等于相似比即可得出答案. 【详解】∵两个相似三角形的面积比是9:25 ∴两个相似三角形的相似比是3:5 ∴对应边上的中线的比为3:5 故答案为:3:5.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键. 12.如图,△ABC ∽△CBD ,AB=9,BD=25,则BC=______.【解答】15【提示】根据相似三角形的性质列出比例式,代入计算即可求解. 【详解】解:∵△ABC ∽△CBD ,∴AB CBCB BD =,即2BC AB BD =⨯, AB=9,BD=25,2292522515BC AB BD ∴=⨯=⨯==,15BC =∴, 故答案为:15【点睛】本题考查了相似三角形的性质,根据相似三角形的性质列出比例式是解题的关键. 13.一个三角形三边长度之比为2:5:6,另一个与它相似的三角形最长边为24,则三角形的最短边为_________. 【解答】8【提示】首先设与它相似的三角形的最短边的长为x ,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【详解】解:设与它相似的三角形的最短边的长为x ,则 2624x =,∴8x =;∴三角形的最短边为8. 故答案为:8.【点睛】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形的对应边成比例定理的应用.14.如图,在矩形ABCD 中,E 是BC 的中点,连接AE ,过点E 作EF AE ⊥交DC 于点F .若4AB =,6BC =,则DF 的长为______.【解答】74【提示】结合矩形的性质证明BAECEF ∆∆可求得CF 的长,再利用DF CD DF =-可求解.【详解】解:四边形ABCD 为矩形,90B C ∴∠=∠=︒,4CD AB ==,90BAE AEB ∴∠+∠=︒,EF AE⊥,90AEF∴∠=︒,90AEB CEF∴∠+∠=︒,BAE CEF∴∠=∠,BAE CEF∴∆∆,::AB CE BE CF∴=,E是BC的中点,6BC=,3BE CE∴==,4AB=,4:33:CF∴=,解得94CF=,97444DF CD DF∴=-=-=.故选:7 4.【点睛】本题主要考查矩形的性质,相似三角形的判定与性质,证明BAE CEF∆∆是解题的关键.15.用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压_____cm.【解答】32【提示】首先根据题意画出图形,然后根据△APM∽△BPN有AP AMBP BN=,然后再利用动力臂AP与阻力臂BP之比为4:1和8BN≥即可求出AM的最小值.【详解】解:如图:AM、BN都与水平线垂直,即AM∥BN;∴△APM∽△BPN;∴APBP=AMBN,∵杠杆的动力臂AP与阻力臂BP之比为4:1,∴AMBN=41,即AM=4BN;∴当BN≥8cm时,AM≥32cm;故要使这块石头滚动,至少要将杠杆的端点A 向下压32cm . 故答案为:32.【点睛】本题主要考查相似三角形的判定及性质的应用,掌握相似三角形的判定及性质是解题的关键. 16.如图,已知,20,60AB BC ACBAD DAE AD DE AE ︒︒==∠=∠=,则DAC ∠的度数为_________.【解答】40°【提示】由AB BC ACAD DE AE ==可判定△ABC ∽△ADE ,得到∠BAC=∠DAE ,再根据20BAD ︒∠=,60DAE ︒∠=,可得出∠DAC 的度数.【详解】解:∵AB BC ACAD DE AE ==, ∴~ABC ADE , ∴60BAC DAE ︒∠=∠=, 又∵20BAD ︒∠=, ∴40DAC ︒∠=. 故答案为:40°.【点睛】本题考查了相似三角形的判定和性质,解题的关键是能根据AB BC ACAD DE AE ==判定出△ABC ∽△ADE.17.如图,已知在ABC 中,90C ∠=︒,10AB =,1cot 2B =,正方形DEFG 的顶点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长为_____.【解答】207【提示】作CM ⊥AB 于M ,交GF 于N ,由勾股定理可得出AB ,由面积法求出CM ,证明△CGF ∽△CAB ,再根据对应边成比例,即可得出答案. 【详解】作CM ⊥AB 于M ,交GF 于N ,如图所示: ∵Rt △ABC 中,∠C =90°,AB =10,1cot B 2=,∴设BC =k ,则AC =2k ,AB2=AC2+BC2,即:102=(2k )2+k2,解得:k =25, ∴BC =25,AC =45, ∴CM =AC BC AB ⋅=452510⨯=4,∵正方形DEFG 内接于△ABC , ∴GF =EF =MN ,GF ∥AB , ∴△CGF ∽△CAB ,∴CN GF =CM AB ,即4EF EF410-=, 解得:EF =207;故答案为:207.【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键.18.如图,在ABC 中,90ACB ∠=︒,AC BC =,点E 是边AC 上一点,以BE 为斜边往BC 侧作等腰Rt BEF △,连接,CF AF ,若6AB =,四边形ABFC 的面积为12,则AE =_________,AF =_________.【解答】 234【提示】如图,过点E 作EH AB ⊥于H ,过点F 作FQ AC ⊥,交AC 的延长线于Q ,由面积和差关系可求3BCF S ∆=,通过证明ABE CBF ∆∆∽,可得2()ABE BCF S AB S BC∆∆=,可求2EH =,由勾股定理可求AE ,BE ,EF 的长,通过证明BEH EFQ ∆∆∽,可得2BE EH BH EF QF EQ ===,可求22EQ =,2QF =,由勾股定理可求解.【详解】解:如图,过点E 作EH AB ⊥于H ,过点F 作FQ AC ⊥,交AC 的延长线于Q ,90ACB ∠=︒,AC BC =,2AB BC ∴,=6AB ,32AC BC ∴==四边形ABFC 的面积为12,12ABC BCF S S ∆∆∴+=, 3BCF S ∆∴=,等腰Rt BEF ∆,2BE BF ∴,45EBF∠=︒,=45ABC ∠︒,ABE CBF ∴∠=∠,2AB BE BC FB == ABE CBF ∴∆∆∽,∴2()ABE BCF S AB S BC ∆∆=, 326ABE S ∆∴=⨯=,∴162AB EH ⨯=,2EH ∴=,45CAB ∠=︒,EH AB ⊥,45CAB AEH ∴∠=∠=︒,2AH EH ∴==,222AE EH ==,4BH ∴=,2CE =,2221825BE CE BC ∴=+=+=,10EF ∴=,180AEH BEH FEB QEF ∠+∠+∠+∠=︒, 90BEH FEQ ∴∠+∠=︒,且90BEH EBH ∠+∠=︒EBH QEF ∴∠=∠,且90Q BHE ∠=∠=︒,BEH EFQ ∴∆∆∽, ∴2BE EH BHEF QF EQ ===, 22EQ ∴=,2QF =, 42AQ ∴=,2232234AF AQ QF ∴=+=+=,故答案为:22,34.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,利用相似三角形的性质求出EH 的长是本题的关键.三、解答题19.如图,在ABP 中,C ,D 分别是,AP BP 上的点.若4,5,6,3CD CP DP AC BD =====.(1)求证:ABP DCP ∽△△; (2)求AB 的长. 【解答】(1)见解析(2)AB=8【提示】(1)△ABP与△DCP有公共角,分别计算PDPC与APBP的值,得到PD PCPA PB=,根据相似三角形的判定定理得出结论;(2)运用相似三角形的性质计算即可.(1)证明:∵CD=CP=4,DP=5,AC=6,BD=3,∴AP=AC+CP=6+4=10,BP=BD+DP=3+5=8,∴54PDPC=,10584APBP==,∴PD APPC BP=,即PD PCPA PB=,∵∠DPC=∠APB,∴△ABP∽△DCP;(2)解:∵△ABP∽△DCP,∴AB PBCD PC=,即844AB=,∴AB=8.【点睛】本题考查了相似三角形的判定与性质,属于基础题.解决问题的关键是掌握:有两边对应成比例且夹角相等的两个三角形相似.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.【解答】(1)见解析(2)1:3【提示】(1)根据矩形的性质得到AD∥BC,然后根据相似三角形的判断方法可判断△AEF∽△CBF;(2)设AB=x,则BC=2x,利用矩形的性质得到AD=BC=2x,∠BAD=∠ABC=90°,接着证明△ABE∽△BCA,利用相似比得到AE=12x,则DE=32x,从而可计算出AE:DE.(1)解:证明:∵四边形ABCD为矩形,∴AD∥BC,∴△AEF∽△CBF;(2)设AB=x,则BC=2x,∵四边形ABCD为矩形,∴AD=BC=2x,∠BAD=∠ABC=90°,∵BE⊥AC,∴∠AFB=90°,∵∠ABF+∠BAF=90°,∠BAC+∠ACB=90°,∴∠ABF=∠ACB,∵∠BAE=∠ABC,∠ABE=∠BCA,∴△ABE∽△BCA,∴AE ABAB BC=,即2AE xx x=,∴AE=12x,∴DE=AD-AE=32x,∴AE:DE=13:22x x=1:3.【点睛】本题考查了三角形相似的判定与性质,应注意利用图形中已有的公共角、公共边等条件,同时利用相似三角形的性质进行几何计算.也考查了矩形的性质.21.如图,为了测量平静的河面的宽度EP,在离河岸D点3.2米远的B点,立一根长为1.6米的标杆AB,在河对岸的岸边有一根长为4.5米的电线杆MF,电线杆的顶端M在河里的倒影为点N,即PM PN=,两岸均高出水平面0.75米,即0.75DE FP==米,经测量此时A、D、N三点在同一直线上,并且点M、F、P、N N共线,点B、D、F共线,若AB、DE、MF均垂直与河面EP,求河宽EP是多少米?【解答】河宽为12米【提示】连接DF ,根据题意可得出四边形DEPF 为矩形,由ADB NDF ∽△△可求得DF ,便可解决问题.【详解】解:如图,连接DF ,∵点B 、D 、F 共线,DE 、MF 均垂直与河面EP ,且0.75DE FP ==, 4.5MF =, ∴四边形DEPF 为矩形, ∴DF EP =,∴ 4.50.75 5.25PN FM FP =+=+=, ∴ 5.250.756FN PN FP =+=+=, ∵AB 、DE 、MF 均垂直与河面EP , ∴90ABD NFD ∠=∠=︒, ∵ADB NDF ∠=∠, ∴ADB NDF ∽△△; ∴AB NFBD DF =, ∵ 1.6AB =, 3.2BD =, ∴1.663.2DF =,∴12DF =, ∴12EP =(米). 答:河宽EP 是12米.【点睛】本题主要考查了相似三角形的性质与判定,矩形的判定和性质等知识.关键是构造和证明三角形相似.22.如图,已知AD ,BC 相交于点E ,且△AEB ∽△DEC ,CD =2AB ,延长DC 到点G ,使CG =12CD ,连接AG .(1)求证:四边形ABCG 是平行四边形;(2)若∠GAD =90°,AE =2,CG =3,求AG 的长. 【解答】(1)证明见解析; (2)35AG =【提示】(1)根据相似三角形的性质可得AB ∥CD ,再由CD =2AB ,CG =12CD ,可得AB =CG ,即可证明;(2)由平行四边形的性质可得AG ∥BC ,可得∠AEB =90°,再由CG =3可得AB =3,利用勾股定理可得BE ,再由相似三角形的性质可得CE ,从而得出BC ,即可求解. (1)证明:∵△AEB ∽△DEC , ∴∠B =∠BCD , ∴AB ∥CD , 即AB ∥CG ,∵CD =2AB ,CG =12CD ,∴AB =CG ,∴四边形ABCG 是平行四边形; (2)解:∵四边形ABCG 是平行四边形,AE =2,CG =3, ∴AG ∥BC ,AG =BC ,AB =CG =3, ∵∠GAD =90°, ∴∠AEB =90°,在Rt △ABE 中,由勾股定理可得:BE 22AB AE -即BE =22325-=,∵△AEB ∽△DEC , ∴12BE AB CE CD ==, ∴CE =25,∴BC =BE+CE =35, ∴AG =BC =35.【点睛】本题考查相似三角形的性质,勾股定理,平行四边形的判定与性质,解题的关键是熟练掌握相似三角形的性质,勾股定理的运用,平行四边形的判定与性质.23.如图,在△ABC 中,AD 是角平分线,点E 是边AC 上一点,且满足ADE B ∠=∠.(1)证明:ADB AED ∆∆;(2)若3AE =,5AD =,求AB 的长. 【解答】(1)见解析(2)253【提示】(1)证出∠BAD=∠EAD .根据相似三角形的判定可得出结论; (2)由相似三角形的性质可得出AD ABAE AD =,则可得出答案. (1)∵AD 是∠BAC 的角平分线, ∴∠BAD=∠EAD . ∵∠ADE=∠B , ∴△ADB ∽△AED . (2)∵△ADB ∽△AED , ∴AD ABAE AD =,∵AE=3,AD=5, ∴535AB =, ∴253AB =. 【点睛】本题考查了相似三角形的判定与性质以及三角形内角和定理,熟练掌握相似三角形的判定定理和性质定理是解题的关键.24.已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F .求证:2CF GF EF =⋅.【解答】见解析【提示】根据平行四边形的性质得到AD BC ∥,AB CD ∥,得到△DFG ∽△BFC ,△DFC ∽△BFE ,根据相似三角形的性质列出比例式,计算即可. 【详解】证明:∵四边形ABCD 是平行四边形, ∴AD BC ∥,AB CD ∥,∴△DFG ∽△BFC ,△DFC ∽△BFE ∴GF DF CF BF =,CF DFEF BF =, ∴GF CFCF EF =, 即2CF GF EF =⋅.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.如图,已知cm,cm,23,36,117AD a AC b BC AC B D ===∠∠=︒=︒,ABC DAC △∽△.(1)求AB 的长;(2)求DC 的长; (3)求BAD ∠的度数.【解答】(1)32cm a ;(2)2cm3b ;(3)153︒【提示】(1)由ABC DAC △∽△,可得:,AB BCAD AC =再代入数据可得答案;(2)由ABC DAC △∽△,可得:,AC BCDC AC =再代入数据可得答案;(3)由ABC DAC △∽△,可得:117,36,BAC D B DAC ∠=∠=︒∠=∠=︒再利用角的和差可得答案; 【详解】解:(1)23,,BC AC AD a ==3,2BC AC ∴= ABC DAC △∽△,,AB BCAD AC ∴= 3,2AB a ∴= 3.2AB a ∴=(2) ABC DAC △∽△,,AC BCDC AC ∴= 而3,,2BC AC b AC == 3,2b DC ∴=2.3DC b ∴=(3) ABC DAC △∽△,36,117,B D ∠=︒∠=︒117,36,BAC D B DAC ∴∠=∠=︒∠=∠=︒11736153.BAD BAC DAC ∴∠=∠+∠=︒+︒=︒【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边成比例是解题的关键.26.如图,在四边形ABCD 中,AC ,BD 交于点F .点E 在BD 上,且BAE CAD ∠=∠,AB ACAE AD =.(1)求证:ABC AED ∽△△. (2)若20BAE ∠=︒,求∠CBD 的度数. 【解答】(1)证明见解析 (2)20︒【提示】(1)根据两边对应成比例,且夹角相等,两个三角形相似,即可证明.(2)根据(1)中ABC AED ∽△△,得出ADB ACB ∠=∠,再根据对顶角相等,AFD BFC ∠=∠,证得AFD BFC ∽△△,得出CBD CAD BAE ∠=∠=∠,即可求解. (1)∵BAE CAD ∠=∠∴BAE EAF CAD EAF ∠+∠=∠+∠, ∴BAC DAE ∠=∠, AB ACAE AD =,∵在ABC 和AED △中, AB ACAE AD BAC DAE ⎧=⎪⎨⎪∠=∠⎩,∴ABC AED ∽△△. (2)∵ABC AED ∽△△, ∴ADB ACB ∠=∠,又∵AFD BFC ∠=∠,对顶角相等,∴AFD BFC ∽△△, ∴CBD CAD ∠=∠,∵BAE CAD ∠=∠,20BAE ∠=︒,∴20CAD ∠=︒, 故答案为:20︒.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 27.如图,四边形ABCD 为正方形,且E 是边BC 延长线上一点,过点B 作BF ⊥DE 于F 点,交AC 于H 点,交CD 于G 点.(1)求证:△BGC ∽△DGF ; (2)求证:GD AB DF BG ⋅=⋅; (3)若点G 是DC 中点,求GFCE 的值.【解答】(1)见解析 (2)见解析 (3)5GF CE=【提示】(1)由正方形性质和题干已知垂直条件得直角相等,后由对顶角相等,进而得到△BGC ∽△DCF .(2)由第一问的结论可得到相似比,既有DG BC DF BG ⋅=⋅,然后因为正方形四边相等,进行等量代换即可求出证明出结论.(3)通过ASA 判定出△BGC ≌△DEC ,进而根据第一问结论可得△BGC ∽△DGF ,然后通过相似比设未知数,赋值CG x =,即可求出GFCE 的值.(1)证明:∵四边形ABCD 是正方形 ∴90BCD ADC ∠=∠=︒ ∵BF DE ⊥ ∴90GFD ∠=︒ ∴BCD GFD ∠=∠,又∵BGC DGF ∠=∠, ∴△BGC ∽△DCF . (2)证明:由(1)知△BGC ∽△DGF , ∴BG BCDG DF =, ∴DG BC DF BG ⋅=⋅ ∵四边形ABCD 是正方形, ∴AB BC =∴DG AB DF BG ⋅=⋅. (3)解:由(1)知△BCC ∽△DGF , ∴FDG CBG ∠=∠,在△BGC 与△DEC 中,,{,=,CBG CDE BCG DCE BC CD ∠=∠∠=∠ ∴△BGC ≌△DEC (ASA ) ∴CG EC = ∵G 是CD 中点 ∴CG DG = ∴::GF CE CF DC = ∵△BGC ∽△DGF ∴::GF DG CG BG =在Rt △BGC 中,设CG x =,则2BC x =,BC =∴CG BG =∴GF CE=【点睛】本题主要考查了正方形的性质,全等三角形判定和性质,相似三角形判定和性质等知识点,熟练运用相似三角形判定和性质是解题的关键.28.如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF .(1)求证:ABF CBE ∽;(2)如图2,连接AE ,点P 、M 、N 分别为线段AC 、AE 、EF 的中点,连接PM 、MN 、PN .求PMN ∠的度数及MNPM 的值;(3)在(2)的条件下,若2BC =PMN 面积的最大值.【解答】(1)证明见解析;(2)135PMN ∠=;=2MN PM 3)14 【提示】(1)根据两边对应成比例,夹角相等判定即可.(2)PMN ∠的值可以根据中位线性质,进行角转换,通过三角形内角和定理求解即可,MNPM 的比值转换为AFCE 的比值即可求得.(3)过点P 作PQ 垂直于NM 的延长线于点Q ,12PMN S MN PQ =△,将相关线段关系转化为CE ,可得关系218PMN S CE =△,观察图象,当2CE BC == 【详解】(1)证明:∵90ACB ∠=︒,AC BC = ∴2AB BC =,45ABC BAC ∠=∠= ∵BE 垂直于射线CD , ∴90,BEF ∠= 又∵EF BE =∴2FB EB =,45FBE EFB ∠=∠= ∵+ABC ABE ABE FBE ∠∠=∠+∠ 即:ABF CBE ∠=∠又∵2AB BFCB BE == ∴ABF CBE ∽(2)解:∵点P 、M 、N 分别为线段AC 、AE 、EF 的中点∴//PM CN ,//MN AF ,11,22PM CE MN AF== ∴MPN CNP ∠=∠,CNM EFA ∠=∠∴+MPN MNP CNP MNP CNM EFA ∠∠=∠+∠=∠=∠ 又∵ABF CBE ∽ ∴90AFB CEB ∠=∠= 又∵45EFB ∠=∴904545EFA AFB BFE ∠=∠-∠=-= ∴+45MPN MNP ∠∠=又∵++180MPN MNP PMN ∠∠∠= ∴18045135PMN ∠=-=又∵12=12AFMN AFPM CECE = 又∵ABF CBE ∽ ∴=2AF AB CE CB = ∴=2MNPM(3)如下图:过点P 作PQ 垂直于NM 的延长线于点Q , 135,PMN ∠=︒ 45,PMQ MPQ ∴∠=︒=∠,PQ ∴= 111221222228216PMNS MN PQ AF PM AF CE AF CE ==⨯⨯==△又∵BC =∴AF =∴221168PMN S CE ==△∴当CE 取得最大值时,PMN 取得最大值, ,BE CE ⊥E ∴在以BC 的中点为圆心,BC 为直径的圆上运动,∴当CE CB ==CE 最大,∴11=2=84S ⨯, 【点睛】本题考查的是三角形相似和判定、以及三角形面积最大值的求法,根据题意找见相关的等量是解题关键.。

6相似三角形的性质和判定

6相似三角形的性质和判定

相似三角形的性质和判定一、一周知识概述(一)相似三角形1、三个角对应相等,且三条边对应成比例的两个三角形,叫做相似三角形.用符号“∽”表示相似,读作“相似于”.①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③由相似三角形的定义知如果两个三角形相似,那么它们的对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.(二)相似三角形的判定1、相似三角形的判定:判定定理1:三边对应成比例的两三角形相似.判定定理2:两角对应相等的两个三角形相似.判定定理3:两边对应成比例且夹角相等,两三角形相似.方法总结:(1)判定两个三角形相似,至少需要下列条件之一:①两角对应相等;②两边对应成比例且夹角相等;③三条边对应成比例.理解时,可类比全等三角形的判定方法.在①中,只要满足两个角对应相等,这两个三角形就相似,解题时关键是寻找对应角,一般地,在解题过程中要特别注意“公共角”“对顶角”“同角的余角(或补角)”都是相等的,这是常用的判定方法.(2)已有两边对应成比例时,可考虑利用判定定理(1)或判定定理(3).但是,在选择利用判定定理(3)时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”或“双直角三角形”,其应用较为广泛.如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD.所以AC2=AD·AB,BC2=BD·AB,CD2=AD·BD.(三)相似三角形的性质1、相似三角形的周长的比等于相似比.如图,其符号语言:2、相似三角形的对应高的比、对应中线的比和对应角平分线的比都等于相似比.其符号语言:如图①∵△ABC∽△A′B′C′,AD⊥BC,A′D′⊥B′C′,②∵△ABC∽△A′B′C′,BF=CF,B′F′=C′F′,③∵△ABC∽△A′B′C′,∠BAE=∠CAE,∠B′A′E′=∠C′A′E′,性质(1)与(2)可简记为:相似三角形中一切对应线段及周长之比都等于相似比.3、相似三角形的面积的比等于相似比的平方.二、重点难点疑点突破1、寻找相似三角形对应元素的方法与技巧正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.2、常见的相似三角形的基本图形:学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法.如:①“平行线型”相似三角形,②“相交线型”相似三角形,③“旋转型”相似三角形.从基本图形入手能较顺利地找到解决问题的思路和方法,能帮助我们尽快地找到添加的辅助线.以上“平行线型”是常见的,这类相似三角形的对应元素有较明显的顺序,“相交线型”识图较困难,解题时要注意从复杂图形中分解或添加辅助线构造出基本图形.三、典型例题讲解1、寻找相似三角形例1、如图,在□ABCD 中,E是AB延长线上一点,连结DE,交AC于点G,交BC 于点F,那么图中相似的三角形(不含全等三角形)共有()A.6对B.5对C.4对D.3对2、画符合要求的相似三角形例2、在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,B1C1,使得△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1请在图中画出一个△A1都在单位正方形的顶点上.(1)(2)3、利用相似三角形定义求线段长例3、已知△ABC中,AB=8,AC=6,点D,E分别在AB,AC上,如果以A,D,E 为顶点的三角形和以A,B,C为顶点的三角形相似,且相似比为,求AD和AE的长.4、相似三角形的判定例4、根据下列各组条件,判定△ABC和△A′B′C′是否相似,并说明理由.(1)AB=3.5,BC=2.5,CA=4,A′B′=24.5,B′C′=17.5,C′A′=28;(2)∠A=35°,∠B=104°,∠C′=44°,∠A′=35°;(3)AB=3,BC=2.6,∠B=48°,A′B′=1.5,B′C′=1.3,∠B′=48°.例5、如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.例6、如图,AD是△ABC的角平分线,BE⊥AD于E,CF⊥AD于F.求证:.5、相似三角形的性质的应用例7、如图所示,D是BC上一点,△ABC∽△DBA,E,F分别是AC,AD的中点,且AB=28,BC=36,求BE∶BF.例8、如图所示,PN∥BC,AD⊥BC,交PN于E,交BC于D.例9、如图,△ABC是一块直角三角形余料,∠C=90°,AC=6cm,BC=8cm,现要把它加工成正方形零件,试说明哪种加工方法的利用率较高.一、选择题1、下列命题正确的是()A.所有的直角三角形都相似B.所有的等腰三角形都相似C.所有的等腰直角三角形都相似D.以上结论都不正确2、如图,在矩形ABCD中,E在AD上,EF⊥BE,交CD于F,连结BF,则图中与△ABE 一定相似的三角形是()A.△EFB B.△DEFC.△CFB D.△EFB和△DEF3、点P是△ABC的AB边上的一点,过点P作直线(不与直线AB重合)截△ABC,使截得的三角形与原三角形相似.满足这样条件的直线最多有()A.2条B.3条C.4条D.5条4、如图,正三角形ABC中,D、E分别在AC、AB上,且,AE=BE,则()A.△AED∽△BED B.△AED∽△CBDC.△AED∽△ABD D.△BAD∽△BCD5、两个相似三角形的对应边上的中线之比是2∶3,周长之和是20,那么这两个三角形的周长分别是()A.8和12 B.9和11C.7和13 D.6和146、如图,在△ABC中,DE∥BC,AD∶DB=1∶2,则S△ADE∶S△ABC等于()A.1︰2 B.1︰4C.1︰8 D.1︰97、两个相似三角形面积的比值为a,周长的比值为b,若a+b=6,则等于()A.2 B.C.3 D.8、两个相似三角形对应中线之比为,其中一个三角形面积是9,则另一个三角形面积是()A.B.3或27C.27 D.39、如图所示,∠AOD=90°,OA=OB=BC=CD,下列结论正确的是()A.△OAB∽△OCA B.△OAB∽△ODAC.△BAC∽△BDA D.△AOC∽△DOA10、下列命题不成立的是()A.在△ABC和△A′B′C′中,如果∠A=80°,∠B=40°,∠A′=80°,∠B′=60°,那么这两个三角形相似B.在Rt△ABC和Rt△A′B′C′中,设∠C=∠C′=90°,AB、A′B′边上的中线分别为CD和C′D′,且,则△ABC∽△A′B′C′C.如果一个三角形的两边及第三边上的高与另一个三角形的两边及第三边上的高对应成比例,那么这两个三角形相似D.如果一个三角形的两边及第三边上的中线与另一个三角形的两边及第三边上的中线对应成比例,那么这两个三角形相似二、解答题11、如图所示,已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P点在AC上(与A、C不重合),Q点在BC上.(1)当△PQC的面积与四边形PABQ的面积相等时,求CP的长;(2)当△PQC的周长与四边形PABQ的周长相等时,求CP的长.12、如图,在△ABC中,AB=8厘米,BC=16厘米,点P从点A开始沿AB边向点B以2厘米/秒的速度移动,点Q从点B开始沿BC边向点C以4厘米/秒的速度移动,如果P、Q分别从A、B同时出发,经几秒钟△PBQ与△ABC相似?13、如图,已知格点△ABC,请在图中分别画与△ABC相似的格点△A1B1C1和格点△A2B2C2,并使△A1B1C1与△ABC的相似比等于2,而△A2B2C2与△ABC的相似比等于.(说明:顶点都在网格线交点处的三角形叫做格点三角形.友情提示:请在画出的三角形的顶点处标上相对应的字母.)14、如图,已知矩形ABCD中,CD=2,AD=3,P是AD上的一个动点,且和A、D不重合,过P作PE⊥CP交直线AB于E,设PD=x,AE=y.(1)写出y与x的函数关系式,并写出x的取值范围;(2)判断直线PE是否一定和线段AB相交?证明你的结论.15、已知:DE是△ABC的中位线,P为DE上一点,BP、CP的延长线分别交AC、AB于N、M.求证:.16、如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向B以2cm/s 的速度移动,点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤6).那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?解:由AE∥DC,可得△AEG∽△CDG,△DFC∽△EFB.由BC∥AD,可得△BFE∽△ADE,△FCG∽△DAG,△DCF∽△EAD.故选 B.点评:本题主要是考查相似三角形识别的掌握情况.可运用平行线去直接找相似三角形,也可利用相似三角形的判定定理来找相似三角形,但要注意不要漏找.分析:设单位正方形的边长为1,则△ABC的三边为,从而根据相似三角形判定定理1或3可画△A1B1C1,易得点评:B1C1只能画出以上三个,若正方形方格数在4×4的正方形方格中,满足题设的△A1不加限制,则和△ABC相似且不全等的三角形可以画无数个.分析:通过相似比,将AD,AE的长转化到方程中求解.由于已知的两个三角形相似,并没有具体的对应关系,所以结论具有不确定性,应分类讨论.解:①如图(1)所示,当△ADE∽△ABC时,有,,AE=2.②如图(2)所示,当△ADE∽△ACB时,,小结:数形结合思想方法是解答有关相似三角形问题的基本方法.在解题时需借助图形深入理解数量之间的关系,并对问题进行全面的、进一步的分析与探索.分析:(1)中所给出的是两个三角形中的六条边的长,考虑用“三边对应成比例”;(2)中给出的是两个三角形中的两组角,考虑用“两角对应相等”;(3)中给出的是两个三角形中的两组边、一组角,考虑用“两边对应成比例且夹角相等”.解:(2)因为∠C=180°-∠A-∠B=41°,∠B′=180°-∠A′-∠C′=101°,所以两个三角形中只有∠A=∠A′,所以△ABC与△A′B′C′不相似.分析:(1)△ADF与△EDB都是直角三角形,要证它们相似,只要再找一个角对应相等即可;(2)注意到CD是斜边AB的中线,AD=BD=CD,由结论(1)不难得出结论(2).证明:(1)∵DF⊥AB,∴∠ADF=∠BDE=90°,又∵∠F+∠A=∠B+∠A,∴∠F=∠B,∴△ADF∽△EDB.(2)由(1)得,∴AD·BD=DE·DF.又∵CD是Rt△ABC斜边上的中线,∴AD=BD=CD.故CD2=DE·DF.点评:本题综合考查了直角三角形的性质与相似三角形的判定等.这是一道阶梯型问题,第(2)题根据(1)得出有关比例式,然后使用“等线代换”使问题简捷获证.其实第(2)题也可这样思考:把它转化为比例式,证明这三条线段所在的△CDE∽△FDC.请同学们完成这一证明.分析:待证式中的四条线段不是在两个三角形中,无法直接根据两个三角形相似得出,需要插入一个“中间比”,由题设易证△ABE∽△ACF,△BDE∽△CDF,从中不难找到这个中间比.证明:∵AD是△ABC的角平分线,∴∠1=∠2.∵BE⊥AD,CF⊥AD,∴∠3=∠4=90°,∴△ABE∽△ACF,点评:①当无法直接由两个三角形相似得出结论中的比例式时,一般可寻找“中间比”帮忙;解析:BE,BF分别是△ABC,△ABD中AC,AD边上的中线,而AC,AD又恰是相似三角形ABC和三角形DBA的一组对应边,因而考虑利用相似三角形对应中线的比等于相似比来解答.因为△ABC∽△DBA,且BC=36,AB=28,所以相似比.又因为BE,BF分别是△ABC,△ABD中AC,AD边上的中线,.点拨:利用相似三角形对应线段的比等于相似比的性质解决问题时,注意把相似三角形的对应元素确定准确分析:首先,先说明△APN与△ABC相似,再根据相似三角形的性质和比例的有关知识结合已知条件,就可求出这三个问题的结论.解:(1)因为PN∥BC,所以可得△APN∽△ABC.又因为相似三角形面积比等于相似比的平方,因为S△=18cm2,所以S△APN=2cm2.ABC小结:两个三角形相似,具有的性质包括:(1)周长比等于相似比;(2)对应高(中线、角平分线)的比等于相似比;(3)面积比等于相似比的平方.本题的关键是由相似三角形面积的比等于相似比的平方这一性质建立比例式,列方程求解,体现了数形结合的思想.分析:此题实质上是比较两种图形中正方形的面积的大小,即比较这两个正方形的边长的大小.解:(1)如图(1),设正方形CDEF的边长为x cm.∵EF∥AC,.解之得.(2)如图(2),设正方形DEFG的边长为y cm.作CN⊥AB于N,交DG于M.由勾股定理得AB=10cm.由,得AC·BC=AB·CN..∵DG∥AB,∴△CDG∽△CAB.(相似三角形对应高的比等于相似比).即.解之,得.由于.所以第(1)种加工方法的利用率较高.反思:有关三角形的内接正方形、矩形的问题的解题方法,通常是利用三角形对应高之比等于相似比,当题目中无高时可考虑作适当的垂线段以帮助解题.第1题答案错误! 正确答案为 C第2题答案错误! 正确答案为 B第3题答案错误! 正确答案为 C第4题答案错误! 正确答案为 B第5题答案错误! 正确答案为 A第6题答案错误! 正确答案为 D第7题答案错误! 正确答案为 B第8题答案错误! 正确答案为 B第9题答案错误! 正确答案为 C第10题答案错误! 正确答案为 C提示:1、根据相似三角形的定义,要判定两个三角形相似,一定满足:(1)对应角相等;(2)对应边成比例.选项C满足上述两个条件.故选C.2、利用有两角对应相等的两个三角形相似可判定.3、过P分别作与BC和AC平行的直线所截得的三角形与原三角形相似,这时有两条直线,过P作∠PKB=∠A交BC于K可得一条直线;过P作∠PNA=∠B交AC于N又可得一条直线,故可作4条直线.4、因为且∠A=∠C=60°,所以△AED∽△CBD.5、可设一个三角形的周长为x,另一个三角形的周长为20-x,故,所以x=8.20-x=12.6、DE∥BC,∴△ADE∽△ABC,.7、a=b2,知b2+b=6,解得b1=2,b2=-3.由b>0,知b=2,所以a=b2=4,.8、题中未注明面积为9的三角形是哪一个三角形,故有可能出现两种情形.9、设OA=OB=BC=CD=a,因为∠AOD=90°,所以根据勾股定理,得又∠ABC=∠DBA,所以△BAC∽△BDA.11 解:∵,又∴.(2)∵△PQC的周长与四边形PABQ的周长相等.∴CP+CQ+PQ=AP+AB+BQ+PQ,而AP=CA-CP,BQ=CB-CQ.∴CP∶CA=CQ∶CB.即CP∶CQ=4∶3,.12 分析:△PBQ与△ABC相似,顶点之间有两点可能的对应关系,一种是△PBQ∽△ABC,另一种是△PBQ∽△CBA,所以我们要分两种情况加以解决.解:设P、Q同时出发后,经x秒,△PBQ与△ABC相似,则AP=2x,BQ=4x,PB=8-2x.(1)若△PBQ∽△ABC,则,即,∴x=2;(2)若△PBQ∽△CBA,则,即,∴.答:经过2秒或秒,△PBQ与△ABC相似.13解答:因为AC=1,BC=由于三角形的位置不确定,所以所作的三角形具有开放性,答案不唯一,如图是其中一种答案.15 分析:要证几个比的和(差)为常数,通常需将这几个比转化为分母相同的比,而后再进行加减运算.本题中利用已有的平行线DE//BC,无法将两个比转化,所以需要添加适当的辅助线.证明:过A作GF//BC交BN、CM的延长线于F、G.∴,∴∵AG//PE,AE=EC,∴CP=PG,同理可证:BP=PF又∵∠BPC=∠FPG,∴△BPC≌△FPG∴BC=FG,∴说明:若需证几个比的积为常数,则通常把几个比化为能约分的比,而后再进行乘积运算.16 解:(1)t=2s,△QAP为等腰直角三角形;(2)S=36,∴P、Q两点在运动的过程中,四边形QAPC的面积保持不变;QAPC(3)分两种情况:若△QAP∽△ABC,t=1.2s;若△PAQ∽△ABC,t=3s.中考解析中考对本节的要求:会用相似三角形的判定定理判定两个三角形相似,会画与已知三角形相似的三角形,能利用“相似三角形对应角相等,对应边成比例”证明或计算一些简单的几何问题.例1、( 临安)如图所示,小正方形的边长均为1,则下图中三角形(阴影部分)与△ABC 相似的是()分析:本题考查三角形相似的判定与勾股定理的综合应用.从上左图中可知△ABC三边长分别为,而A中三角形三边长为;B中三角形三边长分别为;C中三角形三边长分别为;D中三角形三边长分别为,故知B中三角形与△ABC相似.故正确答案为B.例2、(南京)如图所示,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则点P到AB的距离是()分析:本题考查相似三角形性质的运用.根据题意,由AB∥CD可知∠PAB=∠PCD,又∠A=∠A,所以△PAB∽△PCD.因此△PAB的高与△PCD的高的比等于相似比,而AB=2,CD=5,点P到CD的距离为3,故点P到AB的距离等于,故正确答案为C.。

三角形相似的判定方法

三角形相似的判定方法

三角形相似的判定方法三角形相似的判定方法一1、定义法:三个对应角相等,三条对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似. 5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.特殊、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则AD=BD·DC,AB=BD·BC ,AC=CD·BC 。

22二相似三角形常见的图形三、1,下面我们来看一看相似三角形的几种基本图形:BC(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2)B(3)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。

(有“反A共A角型”、“反A共角共边型”、“蝶型”)A4DCDEADE1E(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”DEB(D)B(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似形(一)一、比例性质1.基本性质: bc ad d cb a =⇔=(两外项的积等于两内项积) 2.反比性质:cda b d c b a =⇔= (把比的前项、后项交换)3.合比性质:ddc b b ad c b a ±=±⇒=(分子加(减)分母,分母不变) .4.等比性质:(分子分母分别相加,比值不变.)如果)0(≠++++====n f d b nmf e d c b a ,那么b a n f d b m ec a =++++++++ . 谈重点:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.5.黄金分割:○1内容 ○2尺规作图作一条线段的黄金分割点经典例题回顾:例题1.已知a 、b 、c 是非零实数,且k cb a dd a b c d c a b d c b a =++=++=++=++,求k 的值.例题2.已知111x y x y+=+,求y x x y +的值。

概念: 谈重点:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关. ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况.⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。

则,,,…AB BC DE EF AB AC DE DF BC AC EFDF===②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。

③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ;符号语言:拓展延伸:(1)有一组锐角对应相等的两个直角三角形相似。

(2)顶角或底角对应相等的两个等腰三角形相似。

【重难点高效突破】例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC可以推出AD AEBD CE=吗?请说明理由。

(用两种方法说明)例题2.(射影定理)已知:如图,在△ABC中,∠BAC=90°,AD ⊥BC 于D.求证:(1)2AB BDBC=⋅;(2)2AD BD CD =⋅;(3)CB CD AC ⋅=2例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则BDBEAD AF =吗?说说你的理由.例题精讲例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C(1) 求证:△ABF ∽△EAD ;(2) 若AB=4,∠BAE=30°,求AE 的长; (3) 在(1)(2)条件下,若AD=3,求BF 的长。

【即时训练】一、选择题1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( ) A . 3对 B . 4对 C . 5对 D . 6对2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( ) A .AC AE AB AD = B . FB EA CF CE = C . BDAD BC DE = D . CB CF AB EF =.3.在矩形ABCD 中,E 、F 分别是CD 、BC 上的点,若∠AEF=90°,则一定有( ) A .ΔADE ∽ΔAEF B.ΔECF ∽ΔAEF C.ΔADE ∽ΔECF D.ΔAEF ∽ΔABF4、如图,直线l 1∥l 2,AF ∶FB=2∶3,BC ∶CD=2∶1,则AE ∶EC 是( ) A.5∶2 B.4∶1 C.2∶1 D.3∶2(1题图) (2题图) (3题图) (4题图)5.如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连结AE 交CD 于F ,则图中共有相似三角形( ) A.1对 B.2对 C.3对 D.4对(5题图) (6题图) (7题图) ( 8题图)6.ΔABC 中,DE ∥BC ,且AD ∶DB=2∶1,那么DE ∶BC 等于( ) A.2∶1 B.1∶2 C.2∶3 D.3∶27.如图,P 是Rt ΔABC 的斜边BC 上异于B 、C 的一点,过点P 做直线截ΔABC ,使截得的三角形与ΔABC 相似,满足这样条件的直线共有( )A.1条 B.2条 C.3条 D.4条8.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )A.ACAE ABAD = B.FBEA CFCE = C.BDAD BCDE = D.CBCF ABEF =9.下列说法:其中正确的是( )①所有的等腰三角形都相似;②所有的等边三角形都相似; ③所有等腰直角三角形都相似;④所有的直角三角形都相似. A.①② B.③④ C.①④ D.②③ 二、解答题AGF E DC B A1、如图,ΔABC 中,BD 是角平分线,过D 作DE ∥AB 交BC 于点E ,AB=5cm ,BE=3cm ,求EC 的长.2.如图,在梯形ABCD 中,AD ⊥BC ,∠BAD=90°,对角线BD ⊥DC. (1)ΔABC 与ΔDCB 相似吗?请说明理由. (2)如果AD=4,BC=9,求BD 的长.3.已知:如图,在正方形ABCD 中,P 是BC 上的点,且BP=3PC , Q 是CD 的中点.ΔADQ 与ΔQCP 是否相似?为什么?4.如图,已知AD 为△ABC 的角平分线,AD 的垂直平分线交BC 的延长线于点E ,交AB 与F ,试判定△BAE 与△ACE 是否相似,并说明理由。

5.如图,在矩形ABCD 中,AB=5cm ,BC=10cm ,动点P 在AB 边上由A 向B 作匀速运动,1分钟可到达B 点;动点Q 在BC 边上由B 向C 作匀速运动,1分钟可到达C 点,若P 、Q 两点同时出发,问经过多长时间,恰好有PQ ⊥BD ?6.已知:如图所示,D 是AC 上一点,BE ∥AC ,AE 分别交BD 、BC 于点F 、G ,∠1=∠2.则BF 是FG 、EF 的比例中项吗?请说明理由.7.如图,CD 是Rt ΔABC 的斜边AB 上的高,∠BAC 的平分线分别交BC 、CD 于点E 、F. AC •AE=AF •AB 吗?说明理由.相似形(二)知识点1.相似三角形的判定B Q P D CB AABC DDABCDABCEA BCD E 判定定理(2):两边对应成比例且夹角相等,两三角形相似.判定定理(3):三边对应成比例,两三角形相似.知识点2.直角三角形相似的判定知识点3. 相似三角形中的基本图形A 型,X型 交错型 旋转型 母子形【重难点高效突破】例题1.如图在4×4的正方形方格中,△ABC 和△DEF 的顶点都在长为1的小正方形顶点上.(1)填空:∠ABC=______,BC=_______.(2)判定△ABC 与△DEF 是否相似?并说明理由。

例题2. 如图,在△ABC 中,已知BD 、CE 是△ABC 的高,求证:△ADE ∽△ABC 。

例题3.如图,已知AB ⊥BD ,CD ⊥BD ,AB=6cm ,CD=4cm ,BD=14cm ,点P 在BD 上由B点向D 点移动,当BP 等于多少时,△ABP 与△CPD 相似?例题4.已知:如图,在△ABC 中,∠C =90°,P 是AB 上一点,且点P 不与点A 重合,过点P 作PE ⊥AB 交AC 于E ,点E 不与点C 重合,若AB =10,AC =8,设AP =x ,四边形PECB 的周长为y ,求y 与x 的函数关系式.例题5.在三角形ABC 中,AB=AC ,AD ⊥BC 于点D ,DE ⊥AC 于点E ,M 为DE 的中点,AM 与BE 相交于点N ,延长AM 交BC 于点G ,AD 与BE 相交于点F , 求证:(1)DE AD =CECD;(2)△BCE ∽△ADM ; (3)AM ⊥BE.例题精讲A BC DE【随堂演练】 A 组1.下列命题中正确的是( )①三边对应成比例的两个三角形相似 ②二边对应成比例且一个角对应相等的两个三角形相似 ③一个锐角对应相等的两个直角三角形相似 ④一个角对应相等的两个等腰三角形相似 A 、①③ B 、①④ C 、①②④ D 、①③④2.如图,D 、E 分别是AB 、AC 上两点,CD 与BE 相交于点O ,下列条件中不能使ΔABE 和ΔACD 相似的是( )A. ∠B=∠CB. ∠ADC=∠AEBC. BE=CD ,AB=ACD. AD ∶AC=AE ∶AB3.如图,在正方形网格上有6个斜三角形:①ΔABC ,②ΔBCD ,③ΔBDE ,④ΔBFG ,⑤ΔFGH ,⑥ΔEFK.其中②~⑥中,与三角形①相似的是( )(A)②③④ (B)③④⑤ (C)④⑤⑥ (D)②③⑥ 4.如图,DE 与BC 不平行,当ACAB= 时,ΔABC 与ΔADE 相似。

5.如图,平行四边形 ABCD 中,AB=10,AD=6,E 是AD 的中点,在AB 上取一点F ,使△CBF •∽△CDE ,则BF 的长是( ).A .5B .8.2C .6.4D .1.8(3题图) (4题图) (5题图)5.如图,四边形ABCD 是平行四边形,AE ⊥BC 于E ,AF ⊥CD 于F.(1)ΔABE 与ΔADF 相似吗?说明理由. (2)ΔAEF 与ΔABC 相似吗?说说你的理由.6.已知:如图,在正方形ABCD 中,P 是BC 上的点,且BP=3PC ,Q 是CD 的中点.ΔADQ 与ΔQCP 是否相似?为什么?7.如图,在正方形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连接FC (),AE AB >△AEF ∽△EFC 吗若相似,请证明;若不相似,请说明理由。

若ABCD 为矩形呢?1.如图,正方形ABCD 中,点E ,F 分别为AB ,BC 的中点,AF 与DE 相交于点O ,则AODO等于( ). A .13 B.23 D .122.如图,直线EF 交AB 、AC 于点F 、E ,交BC 的延长线于点D ,AC ⊥BC ,已知AB CD=DE AC ⋅⋅,求证:AE CE=DE EF ⋅⋅6.已知D 是BC 边延长线上的一点,BC =3CD ,DF 交AC 边于E 点,且AE =2EC .试求AF 与FB 的比.7.已知:如图,在△ABC 中,∠BAC =90°,AH ⊥BC 于H ,以AB 和AC 为边在Rt △ABC 外作等边△ABD 和△ACE ,试判断△BDH 与△AEH 是否相似,并说明理由.相似三角形的性质及其应用知识要点:相似三角形的性质①相似三角形的对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. ③相似三角形周长的比等于相似比.④相似三角形面积的比等于相似比的平方. 【重难点高效突破】 例题1.(1)两个相似三角形的面积比为21:s s ,与它们对应高之比21:h h 之间的关系为_______ (2)如图,已知DE ∥BC ,CD 和BE 相交于O ,若16:9:=∆∆COB ABC S S ,则AD:DB=_________(3)如图,已知AB ∥CD,BO:OC=1:4,点E 、F 分别是OC ,OD 的中点,则EF:AB 的值为D(4)如图,已知DE ∥FG ∥BC,且AD:FD:FB=1:2:3,则) (S ::FBCG DFGE =∆四边形四边形S S ABCA.1:9:36B.1:4:9C.1:8:27D.1:8:36(5)梯形ABCD 中,AD ∥BC ,(AD<BC ),AC 、BD 交于点O,若ABCD OAB S S ∆∆=256,则△AOD 与△BOC 的周长之比为__________。

相关文档
最新文档