钢结构受弯构件(梁)的有关设计与计算

合集下载

钢结构受弯构件的计算

钢结构受弯构件的计算

钢结构受弯构件的计算1.受弯构件的力学模型受弯构件通常由横截面为直角梁的矩形或者工字形钢材组成。

其在受力时,会形成弯曲形状,上部为受压区,下部为受拉区。

为了进行计算,需要将受弯构件简化为力学模型,通常采用简支梁或者悬臂梁。

2.受弯构件的受力分析受弯构件在受力时,上部会形成压应力,下部会形成拉应力。

首先需要根据施加载荷的形式和大小,进行受力分析。

常见的施加载荷有集中力、均布力、温度应变和装配应变等。

3.弯矩计算弯矩是受弯构件设计中的重要参数,用于反映材料的抗弯性能。

弯矩的计算可以通过力学平衡方程和构件截面的几何特性来进行。

对于简单的受弯构件,可以根据荷载和材料性能直接计算得到弯矩值。

对于复杂的受弯构件,需要使用力学原理和数值计算方法。

4.应力计算受弯构件在承受弯矩时,会产生应力,应力的计算是结构设计中的关键环节。

主要有弯曲应力、剪应力和轴向应力。

弯曲应力是受弯构件中最主要的应力,可以通过受弯构件的弯曲截面惯性矩和截面模量来计算。

5.抗弯设计在进行抗弯设计时,需要根据弯矩和应力的计算结果,选择合适的钢材型号和截面尺寸。

一般来说,抗弯设计要满足两个条件:第一是满足弯矩设计要求,即受弯构件在设计工况下的弯矩不超过其抗弯强度;第二是满足截面抗弯设计要求,即受弯构件的截面要满足平衡力矩和压应力的要求。

6.构件验算和优化设计抗弯设计完成后,需要进行构件验算,即检查所设计的构件是否满足强度和稳定性要求。

如果验算结果不符合要求,则需要进行优化设计,重新选择钢材型号和截面尺寸,或者改变结构形式。

综上所述,钢结构受弯构件的计算涉及受力分析、弯矩计算、应力计算、抗弯设计和构件验算等多个方面。

通过合理的计算和设计,可以确保钢结构受弯构件的安全可靠性。

梁钢结构计算

梁钢结构计算

19.3.2.2 檩条的计算
在图19.10中,α为屋面坡角,q为竖向力。 檩条的设计一般是先假定型钢型号,再进行验算。 (1) 强度计算
Mx My f
yWnx yWny
(2)
当屋面板不能起可靠的侧向支承作用时,应按式 (19.10)进行整体稳定的验算,如瓦楞铁、石棉瓦等轻 屋面。一般设有拉条或跨度小于5m的檩条,可不进
Mmax=1637kN·m Mmax/φb′Wx=207.4N/mm2<f=215N/mm2
表19.4 轧制普通工字钢简支梁的φb
19.3 型钢梁设计
19.3.1 单向弯曲型钢梁
19.3.1.1 选择截面
一般来说,当有能阻止梁侧向位移的铺板或受 压翼缘侧向自由长度与宽度之比不超过表19.2的规定, 截面由抗弯强度控制。否则由整体稳定条件控制。
材性质接近于理想的弹性体;在屈服点之后,又接 近于理想的塑性体,所以可以把钢材视为理想的弹 塑性材料。
梁在弯矩作用下,随弯矩的逐渐增大,梁截面 上弯曲应力的分布,可分为三个阶段,如图19.2所示。
① 弹性工作阶段 ② 弹塑性工作阶段 ③ 塑性工作阶段 把边缘纤维达到屈服点视为梁承载能力的极限 状态,作为设计时的依据,叫做弹性设计;在一定 的条件下,考虑塑性变形的发展,称为塑性设计。 《规范》规定:计算抗弯强度时,对直接承受 动力荷载的受弯构件,不考虑截面塑性变形的发展; 对承受静力荷载或间接承受动力荷载的受弯构件, 考虑截面部分发生塑变。
现改为在l/3=2000 φb=1.163 φb′=0.828
My=-0.1808kN·m
My=0.0452kN·m 6.12×106/(0.828×39.7×103)+0.0452×106/(1.05×7.8×103) =192N/mm2

受弯构件

受弯构件

型钢梁
实腹式截面梁
按截面构成方式分
焊接组合截面梁
空腹式截面梁 组合梁
由若干钢板或钢板与型钢连接而成。它 截面布置灵活,可根据工程的各种需要 布置成工字形和箱形截面,多用于荷载 较大、跨度较大的场合。
3
钢结构原理与设计
图4.1 工作平台梁格
1-主梁 2-次梁 3-面板 4-柱 5-支撑
4
钢结构原理与设计
M x Wnx
a
M x f yWnx
a
σ
fy
fy
fy
M xp f yW pnx
M xp f y S1nx S2nx f yWpnx
式中: S1nx、S2nx 分别为中和轴以上、以下截面对中 和轴的面积矩; Wpnx 截面对中和轴的塑性抵抗矩。
(4-2) 5 2) (
16
钢结构原理与设计
2) 梁的抗剪强度 剪应力的计算公式:
VS fv It w
(4.6)
式中:V ——计算截面的剪力; S ——计算剪应力处以上毛截面对中和轴的面积矩; I ——毛截面惯性矩;
17
钢结构原理与设计
3) 梁的局部承压强度
图4.6 梁局部承压应力
18
钢结构原理与设计
式中:F ——集中荷载,动力荷载需考虑动力系数; ψ ——集中荷载增大系数,重级工作制吊车梁ψ=1.35; Lz ——集中荷载在腹板计算高度上边缘的假定腹板长度,按下式计算: Lz=a+2hy a ——集中荷载沿梁跨度方向的支承长度,吊车梁可取a为50mm; hy ——自吊车梁轨顶或其它梁顶面至腹板计算高度上边缘的距离
t1
ho
t1
b
20
钢结构原理与设计

钢结构设计-构件尺寸的简单估算

钢结构设计-构件尺寸的简单估算
估算公式稍微复杂点,这里就不在列举了。
以上公式的系数很简单,均来源于对规范公式的简化推导,必然有所误差,大家可以根据简化计算的数值,上下取整数调整即可。得到合适的h或者b之后,一般可以采用高频的截面,截面面积约为轮廓面积的10%上下,采用厚板情况具体分析。
3.压弯构件(单向)
a,对于多层钢结构一般可以令长细比lamda.x=80(235/fy)^0.5试算,此时HM可以用h=2.5*lo/lamda.x.一般h可以取(1/15-1/20)*lo。
b,由以上数据可以得到稳定系数fi.1。(大家可以自己拟合一下fi的简单计算公式)
c,由稳定承载力计算公式可以得到fi.2约=(20*N/h^2+50*beita.x*Mx/h^3)/f
b,由以上数据可以得到稳定系数fi.1。(大家可以自己拟合一下fi的简单计算公式)
c,由稳定承载力计算公式可以得到fi.2约=(5-10)*N/bhf
d,若fi.2<=fi.1,相差并不大,则估计的尺寸一般是可以满足设计和经济性要求的。假如不满足则说明长细比不合适,此时可根据fi.2反算构件尺寸。
e,方管和HN,可用公式b=2.5*lo/lamda.y,圆管d=3.0*lo/lamda。
b,连续梁一般承载力控制,梁高计算公式与上面相同,但是f可取300。
c,假如梁需要计算侧向稳定,最好每隔10b设置侧向支撑可避开稳定系数计算。
2.轴压构件
a,对于多层钢结构一般可以令长细比lamda.y=120(235/fy)^0.5试算,此时HM的b约=4*lo/lamda.y;当然如果lamda.x大的话,可以用h=2.5*lo/lamda.x.一般h可以取1.0-2.0倍的b。
举个例子(来自教材):一个柱lo=10m,N=800kN,Q235B

第二章(五)钢结构受弯构件 型钢梁设计

第二章(五)钢结构受弯构件 型钢梁设计

第三节 梁的整体稳定

在最大刚度平面内受弯的构件,其整体稳定性按下式计算:
Mx f bWx

在两个主平面内受弯的工字形截面构件的整体稳定按下式计 算在两个主平面受弯的H型钢或工字形截面构件:
My Mx f bWx yWy
第三节 梁的整体稳定
梁的整体稳定系数φ b的求法 《规范》 (1)
设计以及受弯构件的构造要求,在学习过程中应重点
(1) 掌握梁的强度、刚度和整体稳定性的计算方法,掌
握不需验算梁整体稳定的条件和措施; (2) 掌握型钢梁和焊接组合梁的截面设计方法;
本章提要
(3) 掌握梁腹板和翼缘局部稳定的保证条件和措施, (4) (5) 掌握梁的构造要求。
第一节 概述
1、概述: 受弯构件主要是承受横向荷载的实腹式构件和格构式构件 (桁架); 荷载通常有:均布荷载、集中荷载; 主要内力为:弯矩与剪力,按工程力学的弹性方法计算荷 载效应(弯矩、剪力、变形等) ;
第三节 梁的整体稳定
4、梁整体稳定的保证 提高梁的整体稳定承载力的关键是,增强梁受压翼缘的 抗侧移及扭转刚度,《钢结构设计规范》规定当满足一定 条件,当采取了必要的措施阻止梁受压翼缘发生侧向变形, 或者使梁的整体稳定临界弯矩高于梁的屈服弯矩,此时验算 了梁的抗弯强度后也就不需再验算梁的整体稳定。
第三节 梁的整体稳定
第二节 梁的强度与刚度

腹板计算高度
第二节 梁的强度与刚度
4、折算应力 产生的原因和位置:在弯矩、剪力都较大的截面,在腹板的 计算高度边缘同一点上同时产生的正应力、剪应力和局部压 应力。 应按下式验算其折算应力:
eq 2 c2 c 3 2 1 f

受弯构件计算技术手册

受弯构件计算技术手册

受弯构件计算技术手册受弯构件计算主要遵循《钢结构设计规范》GB50017-2003 第5章轴心受力构件和拉弯、压弯构件的计算第5.2节拉弯构件和压弯构件及第4章受弯构件的计算内容进行计算。

软件内受弯构件指仅受弯矩作用,无轴力作用状态下,构件的验算。

一:受弯构件强度的计算根据《钢结构设计规范》5.2拉弯构件和压弯构件规定,5.2.1弯矩作用在主平面内的拉弯构件和压弯构件,其强度应按下列规定计算:参数说明:为构件所受轴力;为构件净截面面积;为构件所受绕X轴弯矩作用;为构件所受绕Y轴弯矩作用;为与X轴截面模量相应的截面塑性发展系数;为与Y轴截面模量相应的截面塑性发展系数;为与X轴相关的净截面模量;为与Y轴相关的净截面模量;为钢材抗拉、抗压、抗弯强度设计值。

其中,、、均需用户根据构件实际受力情况给出具体的数值。

为构件净截面面积,软件计算过程中直接利用截面所计算出的截面实际面积(受弯构件无轴力作用状态下,此项最终比值为0)。

、为净截面模量,因软件计算过程中直接取截面计算过程中的毛截面模量数值,所以此处引入抵抗矩系数,用于调整净截面模量与毛截面模量的比值,用户可根据实际情况自行计算,并将所得数值输入。

参数计算过程可参见截面计算用户手册:《钢板截面计算用户手册》、《等边角钢截面计算用户手册》、《不等边角钢截面计算用户手册》、《工字钢截面计算用户手册》、《槽钢截面计算用户手册》、《圆钢管截面计算用户手册》、《热轧H型钢截面计算用户手册》、《T型钢截面计算用户手册》、《方钢管截面计算用户手册》、《矩形钢管截面计算用户手册》、《卷边薄壁C型钢截面计算用户手册》、《卷边薄壁Z型钢截面计算用户手册》、《焊接H型钢截面计算用户手册》、《箱型截面计算用户手册》、《增强H型截面计算用户手册》、《增强箱型截面计算用户手册》、《T形与圆管组合截面计算用户手册》、《单腹板两圆管抗弯组合截面计算用户手册》、《双腹板两圆管抗弯组合截面计算用户手册》、《闭口双C形组合截面计算用户手册》、《开口双C形组合截面计算用户手册》、《开口双槽钢组合截面计算用户手册》、《闭口双槽钢组合截面计算用户手册》、《等边双角钢组合截面计算用户手册》、《短肢相连不等边双角钢组合截面计算用户手册》、《长肢相连不等边双角钢组合截面计算用户手册》、《十字等边双角钢组合截面计算用户手册》、《十字等边四角钢组合截面计算用户手册》、《实腹角钢H型钢组合截面计算用户手册》、《实腹双槽钢组合截面计算用户手册》、《实腹双H型钢组合截面计算用户手册》、《实腹TH型钢组合截面计算用户手册》、《实腹槽钢H型钢组合截面计算用户手册》、《十字柱型钢组合截面计算用户手册》、《双槽钢双肢柱组合截面计算用户手册》、《双H型钢双肢柱组合截面计算用户手册》、《双肢角钢H型钢组合截面计算用户手册》、《双肢槽钢H型钢柱组合截面计算用户手册》、《四肢角钢柱组合截面计算用户手册》、《三肢圆管柱组合截面计算用户手册》、《四肢圆管柱组合截面计算用户手册》,上述截面种类中,用户可根据需要选择相符合的截面对应手册查看。

钢结构受弯构件计算

钢结构受弯构件计算

钢结构受弯构件计算4.1 梁的类型和应用钢梁在建筑结构中应用广泛,主要用于承受横向荷载。

在工业和民用建筑中,最常见的是楼盖梁、墙架梁、工作平台梁、起重机梁、檩条等。

钢梁按制作方法的不同,可分为型钢梁和组合梁两大类,如图4-1所示。

型钢梁又可分为热轧型钢梁和冷弯薄壁型钢梁。

前者常用工字钢、槽钢、H 型钢制成,如图4-1(a)、(b)、(c)所示,应用比较广泛,成本比较低廉。

其中,H 型钢截面最为合理,其翼缘内外边缘平行,与其他构件连接方便。

当荷载较小、跨度不大时可用冷弯薄壁C 型钢[图4-1(d)、(e)]或Z型钢[图4-1(f)],可以有效节约钢材,如用作屋面檩条或墙面墙梁。

受到尺寸和规格的限制,当荷载或跨度较大时,型钢梁往往不能满足承载力或刚度的要求,这时需要用组合梁。

最常见的是用三块钢板焊接而成的H 形截面组合梁[图4-1(g)],俗称焊接H 型钢,其构造简单,加工方便。

当所需翼缘板较厚时,可采用双层翼缘板组合梁[图4-1(h)]。

荷载很大而截面高度受到限制或对抗扭刚度要求较高时,可采用箱形截面梁[图4-1(i)]。

当梁要承受动力荷载时,由于对疲劳性能要求较高,需要采用高强度螺栓连接的H 形截面梁[图4-1(j)]。

混凝土适用于受压,钢材适用于受拉,钢与混凝土组合梁[图4-1(k)]可以充分发挥两种材料的优势,经济效果较明显。

图4-1 梁的截面形式(a)工字钢;(b)槽钢;(c)H 型钢;(d),(e)C型钢;(f)Z型钢;(g)H 形截面组合梁;(h)双层翼缘板组合梁;(i)箱形截面梁;(j)高强度螺栓连接的H 形截面梁;(k)钢与混凝土组合梁为了更好地发挥材料的性能,钢材可以做成截面沿梁长度方向变化的变截面梁。

常用的有楔形梁,这种梁仅改变腹板高度,而翼缘的厚度、宽度及腹板的厚度均不改变。

因其加工方便,经济性能较好,目前已经广泛用于轻型门式刚架房屋中。

简支梁可以在支座附近降低截面高度,除节约材料外,还可以节省净空,已广泛应用于大跨度起重机梁中,另外,还可以做成改变翼缘板的宽度或厚度的变截面梁。

受弯构件计算原理_图文_图文

受弯构件计算原理_图文_图文
§4-2 强度和刚度
开口薄壁截面如有对称轴,则剪切中心必位于对称轴上; 双轴对称截面的剪切中心必与该截面的形心重合(见图 (a); 单轴对称工字形截面的剪切中心不与其形心重合,但必 位于对称轴上接近于较大翼缘一侧,具体位置需经计算确定( 见图(b));
§4-2 强度和刚度
十字形截面、角形截面和T形截面,由于组成其截面的狭 长短形截面中心线的交点只有一点,该交点就是它们的剪切 中心(见图(c)~图(e));
受弯构件计算原理_图文_图文.ppt
§5-1 概述
承受横向荷载和弯矩的构件叫受弯构件或梁 1. 按荷载作用: 在一个主平面内受弯,称为单向受弯构件 在两个主平面内同时受弯,称为双向受弯构件 2. 按功能分:楼盖梁、平台梁、檩条、吊车梁等 3. 按制作方法:型钢梁(薄壁型钢)、组合梁、蜂窝梁 4. 按支承条件:实腹式、桁架
式中:
γ——塑性发展系数,查表获 得。
按截面形成塑性铰进行设计 ,省钢材,但变形比较大,会影 响正常使用。
规定可通过限制塑性发展区 有限制的利用塑性,一般限制a在 h/8~h/4之间。
§4-2 强度和刚度
截面塑性发展系数γx 、γy值
§4-2 强度和刚度
截面塑性发展系数γx 、γy值
§4-2 强度和刚度
§4-2 强度和刚度
——荷载放大系数;对重级工作制吊车梁,
它梁
;在所有梁支座处

;其
——集中荷载在腹板计算高度上边缘的假定分布长度, 按下式计算:
跨中集中荷载:
梁端支反力处:
——支承长度,对钢轨上的轮压取50mm; ——自梁顶面至腹板计算高度上边缘的距离; ——轨道的高度,对梁顶无轨道的梁 =0; b:支座边缘到支承边缘的距离
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Wnp— 截 面 对 x 轴 的 截 面 塑 性 模 量 。
Wpx S1n S2n S1n 、S2n —中和轴以上、下净截面对中和轴的面积矩。
xp

Mp My
Wnp fy Wnx fy
Wnp Wnx
xp—截面绕x轴的塑性系数。
塑性系数与截面形状有关,而与材料的性质无关,所以又称截 面形状系数。
剪力中心S位置的一些简单规律 (1)双对称轴截面和点对称截面(如Z形截面),S与截 面形心重和; (2)单对称轴截面,S在对称轴上; (3)由矩形薄板中线相交于一点组成的截面,每个薄板中 的剪力通过该点,S在多板件的交汇点处。
常用开口薄壁截面的剪力中心S位置
2.弯曲剪应力计算
根据材料力学开 口截面的剪应力计算 公式,梁的抗剪强度 或剪应力按下式计算:
且材料强度又同时为最小值的概率较小,故将设计强度适当提高。
当和c异号时比同号时要提早进入屈服,而此时塑性变形能力高, 危险性相对较小故取 1 =1.2。 和c同号时屈服延迟,脆性倾向增 加,故取1 =1.1 。
受弯构件截面强度验算
1.受力计算简图(荷载、支座约束) 2.各内力分布图(弯矩、剪力) 3.根据截面应力分布的不利情况,确定危险点 4.计算危险截面的几何特性 5.计算危险点的应力和折算应力 6.强度验算
M
1
Mz
u
M
Mcos
x
A
A′
1l
M
取分离体如图,x、y、
y
yz
z为固定坐标,变形后截面
(4.2.10)
M、V—验算截面的弯矩及剪力;
In—验算截面的净截面惯性矩; y1—验算点至中和轴的距离; S1—验算点以上或以下截面面积对中和轴的面积矩;
如工字形截面即为翼缘面积对中和轴的面积矩。
1—折算应力的强度设计值增大系数。
在式(4.2.10)中将强度设计值乘以增大系数1,是考虑到折算
应力最大值只在局部区域,同时几种应力在同一处都达到最大值,

式中 :
Vy Sx Ixt

fv
图4.2.3 工字形和槽形截面梁中的剪应力
(4.2.4)
工字型截面剪应力 可近似按下式计算
Vy ——计算截面沿腹板平面作用的剪力; Sx ——计算剪应力处以上或以下毛截面
对中和轴的面积矩;


V hw t w

fv
Ix——毛截面惯性矩; t——计算点处板件的厚度;
y
x
A
M
C
z
Mz
B D
图4.3.1 工字形截面构件自由扭转
特点:轴向位移不受约束,截面可自由翘曲变形;各截面翘曲变形 相同,纵向纤维保持直线且长度不变,构件单位长度的扭转角处处 相等;截面上只有剪应力,纵向正应力为零。
开口截面 自由扭转 剪应力分布
图4.3.2 自由扭转剪应力
按弹性分析:开口薄壁构件自由扭转时,截面上只有剪 应力。剪应力分布在壁厚范围内组成一个封闭的剪力流;剪 应力的方向与壁厚中心线平行,大小沿壁厚直线变化,中心
t
Y
13 235 b 15 235
fy局部稳定会有不利影响,应取x =1.0。
▲ 对于需要计算疲劳的梁,因为有塑性区深入的截面,塑
性区钢材易发生硬化,促使疲劳断裂提前发生,宜取 x= y =1.0。
4.2.2 抗剪强度 1.剪力中心
在构件截面上有一特殊点S,当外力产生的剪力作用在 该点时构件只产生线位移,不产生扭转,这一点S称为构件 的剪力中心。也称弯曲中心,若外力不通过剪力中心,梁在 弯曲的同时还会发生扭转,由于扭转是绕剪力中心取矩进行 的,故S点又称为扭转中心。剪力中心的位置近与截面的形 状和尺寸有关,而与外荷载无关。
tw—腹板厚度 lz—集中荷载在腹板计算高度上边缘的假定分布长度,可按下式计算:
跨中集中荷载: lz = a+5hy +2hR
梁端支座反力: lz = a+2.5hy +b a—集中荷载沿梁长方向的实际支承长度。对于钢轨上轮压取a=50mm; hy—自梁顶面至腹板计算高度上边缘的距离。 hR—轨道的高度,对梁顶无轨道的梁hR=0。 b—梁端到支座板外边缘的距离,按实际取,但不得大于2.5hy
缘其弱轴为1 -1轴,但由于有腹板作连续支承(下翼缘和腹板
下部均受拉,可以提供稳定的支承),压力达到一定值时,只
有绕y轴屈曲,侧向屈曲后,弯矩平面不再和截面的剪切中心重
合,必然产生扭转。梁维持其稳定平衡状态所承担的最大荷载
或最大弯矩,称为临界荷载或临界弯矩。
1Y 1
XX
Y
图4.4.1 工字形截面简支梁整体弯扭失稳
Mt tds t ds (4.34)
其中周边积分 ds恰好是截面壁厚中线所围成面积的2倍。
即:
M t 2At
任一点处的剪应力为: M t
2At
(4.3.5)
闭口截面的抗扭能力要比开口截面的抗扭能力大的多。
4.3.2 开口薄壁的约束扭转
o

x
y
Mz
V1 M1
受弯构件的计算原理
•理解受弯构件的工作性能 •掌握受弯构件的强度和刚度 的计算方法; •了解受弯构件整体稳定和局 部稳定的基本概念, •理解梁整体稳定的计算原理 以及提高整体稳定性的措施; •熟悉局部稳定的验算方法及 有关规定。
§4.1 概述
承受横向荷载和弯矩的构件称为受弯构件。结构中的实 腹式受弯构件一般称为梁,梁在钢结构中是应用较广泛的一 种基本构件。例如房屋建筑中的楼盖梁、墙梁、檩条、吊车 梁和工作平台梁。
腹板的计算高度h0
ho
t1
t1
b
b
1)轧制型钢,两内孤起点间距;
2)焊接组合截面,为腹板高度;
3)铆接(或高强螺栓连接)时为铆钉(或高强螺栓)间 最近距离。
4.2.4 折算应力
《规范》规定,在组合梁的腹板计算高度边缘处,若同时受有
较大的正应力、剪应力和局部压应力c,应对这些部位进行验 算。其强度验算式为:
z
o V1 M1
图4.3.4 构件约束扭转
特点:由于支座的阻碍 或其它原因,受扭构件的截 面不能完全自由地翘曲(翘 曲受到约束)。
导致 截面纤维纵向伸缩 受到约束,产生纵向翘曲正 应力 ,由此伴生翘曲剪应 力 。翘曲剪应力绕截面剪 心形成抵抗翘曲扭矩M的能 力。根据内外扭矩平衡关系 构件扭转平衡方程为:
(4.2.3)
Mx、My ——梁截面内绕x、y轴的最大弯矩设计值;
Wnx、Wny ——截面对x、y轴的净截面模量;
x、y ——截面对x、y轴的有限塑性发展系数,小于; f ——钢材抗弯设计强度 。
▲ 截面塑性发展系数的取值见P110--~111表 4.2.1
b
▲ 当翼缘外伸宽度b与其厚度t之比为:
§4.4 梁的整体稳定
4.4.1 梁整体稳定的概念
如图梁受横向荷 载P作用下,当P增 加到某一数值时,梁 将在截面承载力尚未 充分发挥之前突然偏 离原来的弯曲变形平 面,发生侧向挠曲和 扭转,使梁丧失继续 承载的能力,这种现 象称为梁的整体失稳, 也称整体屈曲或侧向 屈曲。
原因
梁受弯时可以看做是受拉构件和受压构件的组合体。受压翼
4.4.2 双轴对称工字形截面简支梁纯弯作用下的整体稳定
(1)基本假定 1)弯矩作用在最大刚度平面,屈曲时钢梁处于弹性阶段; 2)梁端为夹支座(只能绕x轴,y轴转动,不能绕z轴转动,
只能自由挠曲,不能扭转); 3)梁变形后,力偶矩与原来的方向平行(梁的变形属小变形
范围)。

u
υ
(2)纯弯曲梁的临界弯矩
2.抗弯强度计算
规范引入有限塑性发展系数x和y来表征截面抗弯强度的提高。 梁设计时只是有限制地利用截面的塑性,塑性发展深度取a≤h/8~
h/4。
梁的抗弯强度应满足: (1)绕x轴单向弯曲时
Mx fy f xWx R
(4.2.2)
(2)绕x、y轴双向弯曲时
式中:
Mx My f xWnx yWny
Wn x
(4.2.1)
Vmax
Wnx —截面绕 x 轴的净截面模量。
Mmax
当最大应力达到屈服点fy时,构件截面处于弹性极限
状态,其上弯矩为屈服弯矩My。
M y Wnx fy
随着Mx的进一步增大
截面全部进入塑性状态,应力分布呈矩形。弯矩达到最大
极限称为塑性弯矩Mp,截面形成塑性铰。
M p Wnp fy

It——截面扭转常数,也称抗扭惯性矩,量纲为(L)4;
——截面的扭转角
——杆件单位长度扭转角,或称扭转率; bi、ti—— 第 i个矩形条的长度、厚度;
It

k 3
biti3
k ——型钢修正系数。
(4.3.2)
板件边缘的最大剪应力t与Mt的关系为:
k的取值: 槽钢:
k=1.12
t

图4.2.4 腹板边缘局部压应力分布
腹板边缘处的局部承强度的计算公式为:
即要保证局
c
F
tw lz

f
式中:
(4.2.7)
部承压处的局部 压应力不超过材 料的屈服强度。
F—集中荷载,动力荷载作用时需考虑动力系数
—集中荷载放大系数(考虑吊车轮压分配不均匀),重级工作制吊车
梁=1.35,其它梁=1.0;
构件内力
弯矩 弯矩+剪力 弯矩+剪力,附加很小的轴力
受弯构件的设计应满足:强度、整体稳定、局部稳定
和刚度四个方面的要求。 前三项属于承载能力极限状态计
算,采用荷载的设计值; 第四项为正常使用极限状态的计
相关文档
最新文档