永磁调速技术发展综述

合集下载

国外永磁传动技术的新发展.doc

国外永磁传动技术的新发展.doc

国外永磁传动技术的新发展国外永磁传动技术的新发展摘要综述了国外永磁传动技术的最新发展。

应用领域拓宽、技术性能提高;出现一些新技术、新工艺、新结构;应用先进制造技术与管理,使磁力泵更加高效、可靠与耐用。

关键词永磁传动技术材料结构应用AbstractNewdevelopmentonmagneticdrivinginforeigncountryiss yntheticallyreviewed. Applicationsfieldisbecomewideandtechnicalpropertyisimproved; Newtechnique,technologyandconstructionappear;Magneticdrivepumpsbecomeh ighefficiency, rliabilityandlonglifebyusingadvancedmanufacturetechniqueand management.Keywordsmagneticdrive;Mag-drivepumps;newtechnique. [中图分类号]TM351[文献标识码]B文章编号1561-0330200307-00 1引言1940年英国人Charles和GeoffreyHwward首次解决了具有危险性介质化工泵的泄漏问题,解决的方法是用磁力驱动泵。

在以后30多年里永磁传动技术由于磁性材料的原因进步十分缓慢。

1983年高性能钕铁硼(NdFeB)永磁材料的问世,为磁力驱动泵的快速发展提供了关键部件的材料。

近年来永磁传动技术已从泵类向其它密封机械扩展,技术上集中于提高设备的可靠性、抗介质腐蚀新材料的研究,流体技术及制造装配的精度。

磁力泵代表着一个国家制造技术的水平,近年来工业发达国家的磁力泵在效率、寿命、制造周期、成本、可靠性等方面有了突破性的进展。

永磁传动技术是将原动机的动力通过其轴上的外磁部件传递给工作轴上的内磁部件,内外磁部件由隔离罩分开,从而工作轴无须伸出所要封闭的空间,取消了动密封,实现无密封、零泄漏。

永磁电机的研究现状与发展趋势

永磁电机的研究现状与发展趋势

永磁电机的研究现状与发展趋势永磁电机是一种以永磁体为磁场源,通过永磁磁场与线圈产生的磁场之间的相互作用来实现转动的电机。

与传统的电机相比,永磁电机具有结构简单、效率高、功率密度大、响应快、维护简单等特点,被广泛应用于各个领域。

本文将介绍永磁电机的研究现状与发展趋势。

一、永磁电机的研究现状永磁电机的研究始于20世纪70年代,随着磁性材料研究及现代微电子技术的发展,永磁电机得到了迅速发展。

近年来,随着新能源、能源节约与环保理念的不断提出与推广,永磁电机又进入了一个快速发展的时期。

各国在永磁电机的研究方面取得了不同程度的成果,下面将从设计技术、控制技术、应用领域等方面介绍永磁电机的研究现状。

1.设计技术(1)结构设计:在永磁电机的结构设计方面,目前主要分为和式电机和差式电机两种类型。

和式电机是指永磁体和线圈磁极呈现出相同数量和分布的电机结构,如平面直流电动机、径向通用电机等;差式电机则是永磁体和线圈磁极数目及分布不同的电机结构,如磁悬浮轴承驱动电机、直线电机等。

(2)永磁材料:目前常用的永磁材料主要有钕铁硼永磁材料、钴钴磁钕永磁材料、铁氧化物永磁材料等。

其中,钕铁硼永磁材料具有高矫顽力、高能量积等特点,因此应用最为广泛。

(3)电流密度分布:在电流密度分布方面,永磁电机分为两种基本类型:分布式永磁电机和集中式永磁电机。

分布式永磁电机的磁极和线圈的磁场相互作用更加均匀,但是转子制造工艺复杂;集中式永磁电机的磁体制作简单,但是转子制造成本较高。

2.控制技术控制技术是永磁电机研究中的核心问题之一,其发展直接影响到永磁电机在不同场合下的应用效果。

目前,永磁电机常用的控制技术有以下几种:(1)矢量控制技术:矢量控制技术是目前较为成熟的永磁电机控制技术之一,能够实现永磁电机的高效控制,使永磁电机得到充分利用。

(2)直接转矩控制技术:直接转矩控制技术将电流向量分解为电磁向量和电势向量,通过调节电磁向量的大小来控制永磁电机的转矩。

永磁调速器工作原理与特点

永磁调速器工作原理与特点

>>>永磁调速器(PMD)的工作原理及特点2007年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国现在应用案例主要有电厂,海化自备热电厂, 华电东华电厂, 华能电厂, 中石化燕山石化, 枣庄煤业集团庄煤矿等大型企业集团。

永磁磁力驱动技术首先由美国MagnaDrive公司在1999年获得了突破性的发展。

该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。

它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到98.5%。

该技术现已在各行各业获得了广泛的应用。

该技术将对传统的传动技术带来了崭新的概念,必将为传动领域带来一场新的革命。

该产品已经通过美国海军最严格的9-G抗震试验。

同时,该产品在美国获得17项专利技术,在全球共获得专利一百多项。

目前,由MagnaDrive公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。

由于该技术创新,使人们对节能概念有了全新的认识。

在短短的几年中,MagnaDrive获得了很大的发展,现已经渗透到各行各业,在全球已超过6000套设备投入运行。

(一) 系统构成与工作原理永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。

该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械。

其工作原理是一端稀有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。

由下图所示,PMD主要由导体转子、永磁转子和控制器三部分组成。

导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。

这样电动机和负载由原来的硬(机械)转变为软(磁),通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。

永磁同步电机调速原理

永磁同步电机调速原理

永磁同步电机调速原理以永磁同步电机调速原理为标题,本文将详细介绍永磁同步电机的调速原理及相关知识。

一、永磁同步电机简介永磁同步电机是一种常用于工业领域的高性能电机,具有高效率、高功率因数、高转矩密度等优点。

它的转速与电网频率同步,因此在调速过程中需要采取一些措施。

二、永磁同步电机的调速原理永磁同步电机的调速原理是通过改变电机的磁场以实现转速的调节。

常用的调速方式有矢量控制、直接转矩控制和间接转矩控制等。

1. 矢量控制矢量控制是一种常用的永磁同步电机调速方法,通过控制电机的电流和转子磁场来实现转速的调节。

该方法可以实现精确的转速控制和较大的转矩输出。

2. 直接转矩控制直接转矩控制是一种基于电流矢量的调速方法,通过直接控制电机的转矩来实现转速的调节。

该方法具有响应快、控制精度高的优点,适用于高性能的应用场景。

3. 间接转矩控制间接转矩控制是一种基于电流和转速控制的方法,通过控制电机的电流和转速来实现转速的调节。

该方法可实现较为稳定的转速控制,适用于对转速要求不高的应用场景。

三、永磁同步电机调速系统的组成永磁同步电机调速系统主要由电机、传感器、控制器和驱动器等组成。

1. 电机永磁同步电机是调速系统的核心部件,负责将电能转化为机械能。

2. 传感器传感器用于监测电机的状态参数,如转速、温度和电流等,以便控制器进行相应的调节。

3. 控制器控制器是调速系统的智能核心,根据传感器反馈的信息进行数据处理和控制指令输出,实现电机的精确调节。

4. 驱动器驱动器将控制器输出的调速指令转化为电机能够理解的信号,控制电机的运行状态。

四、永磁同步电机调速的应用领域永磁同步电机调速技术广泛应用于工业生产中的各种场景,如风电、电动汽车、机床、电梯等。

1. 风电永磁同步电机在风电行业中得到了广泛应用,其高效率和稳定性使得风力发电系统更加可靠和经济。

2. 电动汽车永磁同步电机在电动汽车中具有较高的功率密度和能量转换效率,能够满足电动汽车对动力性能和续航里程的要求。

永磁电机技术的发展与应用

永磁电机技术的发展与应用

永磁电机技术的发展与应用伴随着当代工业技术的发展,各种新能源设备以及智能化机械设备不断涌现,永磁电机作为一种重要的驱动源,日渐受到人们的青睐。

那么,永磁电机技术又是怎样发展的呢?它有着哪些广泛的应用呢?一、永磁电机技术的发展历程1966年,200磁性材料被制成永磁体并用于电机上,标志着永磁电机技术的诞生;1970年,现代永磁电机技术的雏形建立起来;1980年代,永磁材料得到了迅速发展,新型永磁材料的研制和使用促进了永磁电机技术的快速发展;随着信息技术的发展,永磁电机控制技术逐渐成熟,永磁电机的效能和控制精度得到了进一步提高。

到了21世纪,永磁电机已成为各种高效、节能、产能、高速、高性能电机的代表。

永磁电机技术的发展历程是一个较长的过程,这个过程伴随着材料学、电气学、机械学以及控制学等各个相关领域的不断发展,最终形成了当今先进的永磁电机技术。

二、永磁电机技术的应用领域与传统的交流异步电机相比,永磁电机具有许多优点:具有高效率、高功率密度、高动态响应等特性,适用于各种传动应用。

在如今的社会环境中,永磁电机技术得到了广泛的应用:1. 汽车电机汽车电机的发展趋势是低噪声、低振动、高效率和节能环保。

永磁电机技术在汽车电机方面的应用是有效地满足了上述需求。

例如:永磁电机驱动的汽车动力行驶中噪声更小、行驶能力更强,且比传统汽车更安全。

2. 空气调节系统永磁电机在空气调节系统上主要应用于汽车的空调系统中,由于其高效率、低噪声和较低的功耗,得到了广泛的使用。

永磁电机技术已经被应用到了空气调节系统的风扇驱动上,在高温高湿的环境下也能够稳定运行,能够为车主提供更加舒适的驾乘环境。

3. 家用电器永磁电机技术在家用电器上也得到了广泛应用。

目前,许多家用电器已被永磁电机替换掉了传统的电机,例如吸尘器、电饼铛、食物加工机、抽油烟机等。

由于其高效率和低噪声,对环境的影响更小,更受消费者的青睐。

4. 工业制造领域制造业的生产效率是发达国家的核心竞争力之一。

永磁调速器(PMD)的工作原理及特点

永磁调速器(PMD)的工作原理及特点

2022 年永磁耦合与调速驱动器从美国引进我国,在美国已大量应用于冶金、石化、采矿、发电、水泥、纸浆、海运、军舰等行业,国内现在应用案例主要有浙江嘉兴电厂,山东海化自备热电厂, 华电东华电厂, 华能南京电厂, 中石化北京燕山石化, 枣庄煤业集团蒋庄煤矿等大型企业集团。

永磁磁力驱动技术首先由美国 MagnaDrive 公司在 1999 年获得了突破性的发展。

该驱动方式与传统的同步式永磁磁力驱动技术有很大的区别,其主要的贡献是将永磁驱动技术的应用大大拓宽。

它不解决密封的问题,但是它解决了旋转负载系统的对中、软启动、减震、调速、及过载保护等问题,并且使永磁磁力驱动的传动效率大大提高,可达到 98.5%。

目前,由 MagnaDrive 公司和美国西北能效协会组成专门小组对该技术设备进行商业化推广。

由于该技术创新,使人们对节能概念有了全新的认识。

在短短的几年中, MagnaDrive 获得了很大的发展,现已经渗透到各行各业,在全球已超过 6000 套设备投入运行。

永磁磁力耦合调速驱动(PMD)是通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。

该技术实现了在驱动(电动机)和被驱动(负载)侧没有机械链接。

其工作原理是一端希有金属氧化物硼铁钕永磁体和另一端感应磁场相互作用产生转矩,通过调节永磁体和导体之间的气隙就可以控制传递的转矩,从而实现负载速度调节。

由下图所示, PMD 主要由导体转子、永磁转子和控制器三部份组成。

导体转子固定在电动机轴上,永磁转子固定在负载转轴上,导体转子和永磁转子之间有间隙(称为气隙)。

这样电动机和负载由原来的硬(机械)链接转变为软(磁)链接,通过调节永磁体和导体之间的气隙就可实现负载轴上的输出转矩变化,从而实现负载转速变化。

由上面的分析可以知道,通过调整气隙可以获得可调整的、可控制的、可以重复的负载转速。

磁感应原理是通过磁体和导体之间的相对运动产生。

也就是说, PMD 的输出转速始终都比输入转速小,转速差称为滑差。

永磁调速器介绍

永磁调速器介绍

永磁调速器介绍
1.高效性能:永磁调速器采用了先进的调制技术,能够提供较高的效率,减少能源的浪费,并且降低了设备的散热和损耗。

2.宽范围的调速性能:永磁调速器可以实现广泛的转速范围调节,从低速到高速,甚至超高速都可以实现精确的控制。

3.高动态性能:永磁调速器响应速度快,能够实现快速加速和减速,非常适用于需要频繁改变转速的工况。

4.系统可靠性高:永磁调速器采用了先进的控制算法和保护机制,可以实现稳定的运行和保护电机免受过载、短路等故障的影响。

5.高精度的控制:永磁调速器通过电流和电压的调节,可以实现非常精确的转速控制,满足各种工艺要求。

在机械制造领域,永磁调速器被广泛应用于机床、印刷机、包装机等设备中,可以实现高效、精确的工作,提高产品质量和生产效率。

在能源行业,永磁调速器被用于发电设备,可以根据电网的需求调整发电机的转速,实现电能的稳定输出。

在冶金行业,永磁调速器被应用于轧钢机、连铸机等设备中,可以实现精确的轧制和冷却过程,降低产品的能耗和生产成本。

在石油化工行业,永磁调速器被用于泵、风机等设备中,可以根据实际需要调整流量和压力,提高设备的运行效率和系统的稳定性。

在交通运输领域,永磁调速器被广泛应用于电动车辆、电梯、飞机等设备中,可以实现高效的动力输出和精确的控制。

总之,永磁调速器作为一种先进的电动机控制设备,具有高效、精确、可靠和灵活的特点,在各个行业中得到广泛应用,并为工业生产和社会发
展带来了巨大的效益。

「分析」永磁电机目前拥有的成熟技术和发展方向

「分析」永磁电机目前拥有的成熟技术和发展方向

「分析」永磁电机目前拥有的成熟技术和发展方向随着20世纪70年代稀土永磁材料的发展,稀土永磁电机得到广泛认可和推崇。

它励磁性能优异、稳定、损耗低、质量轻、功率密度大,远远优于传统电机。

近年来,稀土电磁材料性能及工艺再上新台阶,电力电子与电力传动技术、自动控制技术高速发展,永磁同步电机性能得以更加改善。

永磁同步电机的技术及发展现状1 永磁同步电机的发展基础① 高性能稀土永磁材料的应用现今使用最广的稀土永磁材料以钕铁硼为代表。

永磁材料的发展带动了永磁电机的发展。

与传统电励磁三相感应电机相比,永磁体替代了电激磁磁极,简化了结构,消除了转子的滑环、电刷,实现了无刷结构,缩小了转子体积,提高了电机功率密度、转矩密度和工作效率。

② 新型控制理论的应用矢量控制算法从原理上解决了交流电机的驱动策略问题,使得交流电机具有良好的控制性能。

直接转矩控制的出现使控制结构更加简单,以及具有对参数变化电路棒性能强和转矩动态响应速度快的特点。

间接转矩控制技术解决了直接转矩在低速时转矩脉动大的问题,提高了电动机的转速和控制精度。

③ 高性能电力电子器件和处理器的应用现代电力电子技术是信息产业与传统产业间重要的接口,是弱电与被控强电之间的桥梁。

电力电子技术的发展使驱动控制策略得以实现。

比如20世纪70年代出现的通用变频器系列产品,它们能将工频电源转换成频率连续可调的变频电源,就解决了同步电动机的启动问题。

2 国内外永磁同步电机的发展现状近年来,在永磁同步电机本体上出现了很多高端电机,比如六相永磁同步电动机。

用它为舰船提供动力,其体积比传统的直流电机小近60%,损耗降低近20%;用于舰船推进的永磁同步电动机最大安装容量达38MW;我国已经研制出的3MW高速度永磁风力发电机。

现在的永磁同步电机正向着拥有更大的调速范围和更高的精度控制发展,具有高性能的永磁材料得到青睐。

现阶段的永磁同步电动机技术1 永磁同步电机设计技术内置式永磁电机具有效率高、功率因数大、单位功率密度大、弱磁扩速能力强和动态响应速度快等优点,成为驱动电机的理想选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永磁调速技术发展综述
摘要永磁调速技术是一种利用磁力来实现无机械接触扭矩传递的技术,按结构可分为盘式、筒式和双筒式;按用途可分为永磁耦合器、永磁调速器、限矩型永磁耦合器等,通常用于电力、石化、钢铁、造纸等领域中,可实现离心式风机、泵、压缩机等设备的调速节能,以及电机拖动系统的柔性传动、过载保护等。

关键词永磁调速、结构、节能、柔性传动
前言
1940年,英国的Charles和Geoffrey Howard首次采用磁力驱动泵解决了危险性介质输送过程中的泄漏问题[1]。

在以后的30多年里,永磁传动技术由于磁性材料的原因进步十分缓慢。

20世纪70年代起,一些科技工作者又开始对磁力驱动技术进行深入研究,并取得了很大的进展。

1983年高性能钕铁硼(NdFeB)永磁材料问世,磁力驱动技术得以迅速发展,取得了极大的提高[2]。

永磁调速技术是目前应用较为广泛的磁力驱动技术,最早于1993年由美国MagnaForce公司提出,并于1995年得到尝试应用;1996年Rexnord公司第一个采用MagnaForce公司的永磁技术制造了无接触软启动联轴器;1999年MagnaDrive公司也开始采用MagnaForce公司的永磁技术制造无接触调速器,并获得了突破性的进展,成功对风机、水泵等离心式负载进行了调速,达到了节能的目的[3]。

1 永磁调速技术的种类
1.1 盘式永磁调速器
永磁调速器最初的结构为MagnaDrive公司提出的盘式结构,如图1所示。

盘式永磁调速器的导体转子和永磁转子为盘状结构,导体与永磁体磁场产生相对运动时,导体转子会切割永磁体的磁力线产生涡流,涡流产生的感应磁场与永磁场相互耦合,从而实现动力的传递。

调节器控制永磁转子和导体转子之间的气隙,改变导体转子切割永磁体磁力线的多少,从而改变感应磁场的大小,进而控制输出转矩,实现负载转速的调节。

1.2 筒式永磁调速器
筒式永磁调速器于2009年提出,导体转子与永磁转子均为筒状结构,如图2所示。

导体转子与永磁转子之间的气隙不变,通关调节两者的啮合面积改变输出扭矩。

减小导体转子和永磁转子的啮合面积时,通过导体环的磁力线减少,传递的转矩下降,输出转速随之减小,从而起到调速节能的作用。

与盘式结构相比,筒式磁场方向为径向,轴向调节力小,调节器结构简单、
紧凑;但盘式永磁调速器的对中要求较低。

1.3 双筒式永磁调速器
双筒式永磁调速器是在筒式的基础上做了进一步的改进,为了使更多的磁力线穿过导体转子,增大磁场耦合面积,导体转子采用了双层共底结构,外层内侧和内层外侧筒壁上均有导体环,导体环均与永磁体相对,相对运动时切割磁力线产生涡流[4],如图3所示。

双筒式永磁调速器的结构相较于前两种明显提高了磁场的利用率,在相同永磁体用量的情况下可以传递更大的扭矩。

但是该结构内层因涡流产生的热量难以带走,限制了大功率设备的开发。

2 永磁调速技术的应用
2.1 永磁耦合器
永磁耦合器主要由导体转子和永磁转子组成,分别连接电机和负载,没有调节机构,安装完成后气隙或啮合面积固定,不可调节。

可取代传统联轴器,实现软连接,用于输送机、挖掘机、磨煤机、空预器、水泵、风机等各种动力设备,可消除冲击载荷、隔离振动、避免安装应力造成零配件损坏等。

2.2 永磁调速器
永磁调速器适用于离心式风机、压缩机、泵类设备的调速节能,利用离心式负载流量与转速成正比、扭矩与转速的平方成正比、轴功率与转速的三次方成正比的近似关系,通过调节负载的转速改变负载的流量或压力,适应工况需求。

与传统的阀门或风门挡板调节相比,永磁调速方式消除了节流损耗,提高了系统的运行效率。

永磁调速器的节电率一般為10%~60%。

2.3 限矩型永磁耦合器
限矩型永磁耦合器与永磁耦合器结构类似,导体转子随电机同步旋转,当负载出现过载或堵转时,与负载连接的永磁转子转速下降,与导体转子的转速差增大,从而产生较大的轴向推力将两转子之间的气隙拉大。

这种距离使得导体转子与永磁转子之间的磁耦合力迅速降低,从而断开了电机和负载之间的扭矩传递。

当负载扭矩超过某个限定值时,限矩型永磁耦合器可以起到保护电机的作用;在正常运行时,则起到柔性传动的作用。

3 永磁调速技术的发展趋势
3.1 大功率
在电力行业,1000MW机组配备的引风机、一次风机等辅机系统功率均在
3000kW以上。

但是目前永磁调速产品的最大功率为3000kW,在一定程度限制了永磁调速器的应用。

我国火电机组向大容量发展,对永磁调速器的功率也提出了更高的要求。

永磁调速器的功率主要受到两个因素的限制:一方面,功率越大,需要的永磁体数量越多,设备的体积和重量越大;另一方面,功率越大,因涡流导致的发热越大,对散热的要求高。

为了促进永磁调速器向更大功率发展,首先就要做好提高磁场利用率以及优化磁路排列的研究工作,减少磁漏,达到更高的功率密度。

采用新型的导体材料,降低涡流发热,并改善冷却系统,提高散热效率。

3.2 高转速
永磁调速器目前主要应用于转速在1500r/min及以下的系统中。

对于3000r/min的系统,由于转速高,永磁调速产品中的轴承发热大,设备振动较大、噪音大。

为拓宽永磁调速器的应用领域,还需改善高转速产品的稳定性,改进永磁调速器旋转部件的支撑结构,改善轴承的受力,保证轴承的润滑和散热[5]。

4 结束语
永磁调速技术通过磁力耦合实现非机械连接扭矩传递,具有调速节能、减小振动、轻载启停等功能,用于电力、石化、钢铁、水泥、造纸、水务等行业的风机、水泵、压缩机、输送带等设备,结构简单,环境适应能力强,可靠性高,维护成本低,应用前景广阔。

永磁调速器目前结构多样,各有优缺点,属于技术密集型产品。

目前生产厂家良莠不齐,在选择产品时要综合考虑厂家的研发和生产实力、应用业绩和效果等,从而保障系统的稳定运行。

参考文献
[1] 袁丹青,何有泉,陈向阳,等.磁力泵的研究现状与发展前景[J].磁性材料及器件,2011,42(2):1-3.
[2] 王玉良.国外永磁传动技术的新发展[J].磁性材料及器件,2001,32(4):45-49.
[3] 张泽东.永磁磁力耦合器设计与关键技术研究[D].沈阳:沈阳工业大学,2012.
[4] 牛晓博.基于ANSYS的永磁调速器磁场研究[D].西安:长安大学,2012.
[5] 申玉荣,赵爱军,蔡亮,等.电厂循环水泵永磁调速器改造节能分析[J].河北电力技术,2015,34(5):41-42.。

相关文档
最新文档