补燃式余热锅炉

补燃式余热锅炉
补燃式余热锅炉

余热锅炉

余热锅炉 在石油化工生产中,很多工艺过程是通过蒸汽来加热、蒸发、干燥进行强制化学反应的。因此,锅炉是石油化工生产装置中不可缺少的重要设备。为了节省能源,充分利用生产中的余热和副产品,在石油化工生产中一般采用燃油、燃气锅炉和余热锅炉(过去也称为废热锅炉)。 利用工业生产中的烟气或反应热来产生蒸汽和热水的设备称为余热锅炉,余热锅炉与一般锅炉受热面部分的结构相近,由钢构架、汽包、管束和水冷壁、过热器、蒸发器、省煤器等部件组成。为了适应热源的特点,满足工艺生产的要求,有效地回收余热,余热锅炉又有不同的类型。按照其结构特点,余热锅炉可分为管壳式和烟道式两大类。 1.管壳式余热锅炉 管壳式余热锅炉是一种由锅筒、管子及金属壳体构成一体的紧凑型小型余热锅炉。图11-1-2所示为DL480-0.6型管壳式余热锅炉。它用于小化肥工业,其蒸汽压力为0.588MPa,蒸汽温度为饱和温度,受热面积为480m2。锅炉蒸发器是由锅筒、受热的上升管和不受热的下降管所组成的自然循环水管系统。具有余热的炉气从锅炉下部的进气室进入,流经蒸发器受热管系后从锅炉上部的出口气室排出。水在蒸发器中受热后形成汽水混合物,沿上升管向上进入锅筒。在锅筒中进行汽水分离后,蒸汽向外输出;水由锅筒经下降管流下,然后再进入上升管受热、汽化、上升,从而形成自然水循环,并不断汽水分离,输出蒸汽。属于这一系列的锅炉产品还有DL100-0.6、DL480-1.2等型号。

图11-1-2 DL480-0.6型管壳式余热锅炉图 1-出口气室;2-蒸发器;3-进口烟室;4-下降管;5-上升管;6-锅筒2.烟道式余热锅炉 烟道式余热锅炉是一种布置成烟道形式的水管型受热面装置,它具有单独的炉墙和构架,因而是一种较大型的余热锅炉。其第一烟道(高温部分)为一个大的辐射冷却室,其后各烟道为对流受热区。烟道式余热锅炉可布置成多烟道式的和直通式的。前者的烟气是作上下转弯流动,而后者的烟气则自前至后作水平直通流动。烟道式的大型余热锅炉,又有强制循环和非强制循环两种结构型式。此外,低压余热锅炉一般设置上、下两个汽包,中压余热锅炉或设置上、下两个汽包、或设置一个上汽包,高压余热锅炉一般只设置一个上汽包。 图11-1-3所示为强制循环多烟道式余热锅炉(上汽包)。本锅炉由锅筒、蒸发管束及过热器等组成。蒸发管束由12根φ32mm×4mm的平行连接蛇形管构成。锅炉强制水循环的动力由循环泵产生。锅水自锅筒由循环泵抽出后,分两路分别进入焙烧炉冷却装置的受热管和余热锅炉的蒸发受热面吸热,所产生的汽水混合物全部流回锅筒进行汽水分离。分离出来的饱和蒸汽先后进入第一级过热器和第二级过热器受热,使其过热到450℃后输出。炉气进口温度为800~900℃左右。由于含尘量较高,为了避免矿尘沉积,故在炉气向上流动的第二烟道中不布置受热面,此烟道用作余热锅炉启动时加热用的燃烧装置的燃烧室。 (a) 锅炉侧视图(b) 3、4正视图(c) 2正视图 图11-1-3强制循环烟道式余热锅炉图

余热发电系统工艺流程

生产工艺流程: (19)余热发电系统 本方案拟采用单压纯低温余热发电技术,与双压系统和闪蒸系统相比,单压系统流程相对较简单,当设计选择的锅炉能完全吸收烟气放出的热量时,采用单压设计更为合理,系统内不同参数的工质较少,控制操作都更简单,窑头锅炉和汽轮机设备造价降低,系统管路减少,投资相对更省。 结合本工程的生产规模及投资环境,拟采用单压纯低温余热发电技术。该技术不使用燃料来补燃,因此不对环境产生附加污染,是典型的资源综合利用工程。主蒸汽的压力和温度较低,运行的可靠性和安全性高,运行成本低,日常管理简单。 综合考虑本工程2500t/d熟料新型干法水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下:系统主机包括一台PH余热锅炉、一台AQC余热锅炉和一套凝汽式汽轮发电机组。 据2500t/d水泥熟料生产线窑头冷却机废气排放温度的分布,在满足熟料冷却及工艺用热的前提下,采驭中部取气,从而提高进入窑头余热锅炉-AQC炉的废气温度,减少废气流量,在缩小 AQC炉体积的同时增大了换热量。并且提高了整个系统的循环热效率。 在窑头冷却机中部废气出口设置窑头余热锅炉 AQC炉,该锅炉分 2段设置,其中I段为蒸汽段,II段为热水段。AQC炉 II段生产的 150° C 热水提供给AQC炉 I段及PH锅炉°AQC炉I段生产的 1.6MPa- 3 2 0。C 的过热蒸汽作为主蒸汽与窑尾余热锅炉 P H炉生产的同参数过热蒸汽合并后,一并进入汽轮机作功。汽轮机的凝结水进入余热锅炉AQC炉I工段,加热后分别作为锅炉给水进入余热锅炉 SP炉、余热锅炉A QC炉的I

段。 ②PH余热锅炉:在窑尾预热器的废气出口管道上设置PH余热锅炉,该锅炉包括过热器和蒸发器,生产 1.6MPa-32 0C的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,出 P H余热锅炉废气温度降到18 0 —200C,供生料粉磨烘干使用。P H锅炉热效率可达35%以上。 ③汽轮发电机组:上述二台余热锅炉生产的蒸汽共可发电 4100kW 因此配置4500kW凝汽式汽轮机组一套。 整个工艺流程是:40 C左右的给水经过除氧,由锅炉给水泵加压进入 AQC 锅炉省煤器后加热成135 C左右的热水,热水分成两部分,一部分送往AQC锅炉,另一部分送往SP锅炉;然后依次经过各自锅炉的蒸发器、过热器产生1.6MPa-320C和1.6MPa-320C的过热蒸汽,在蒸汽母管汇合后进入汽轮发电机组做功,做功后的乏汽进入凝汽器成为冷凝水,冷凝水和补充纯水经除氧器除氧再进行下一个热力循环。 PH锅炉出口废气温度180-200 C左右,用于烘干生料。 表2-6主要余热发电设备一览表

余热锅炉的结构设计与布置

余热锅炉的结构设计与布置 余热锅炉型式为:无补燃、卧式烟道、单压汽水系统自然循环余热锅炉。 余热锅炉由烟道系统和余热锅炉本体两大部分组成。此外,余热锅炉还装有压力表、温度计、水位计、安全阀、吹灰器等主要附件。 一、烟道系统 从燃气轮机排出的高温烟气有两路出口:一路进入余热锅炉,流过各级受热面,从主烟囱排入大气:另一路进入旁通烟囱,排入大气。余热锅炉入口烟道上装有入口挡板,旁通烟道上装有旁通挡板。当燃气轮机工作而余热锅炉不工作时,旁通挡板开启,入口挡板关闭。燃气轮机和余热锅炉同时工作时,旁通挡板关闭,入口挡板开启。同时,相应调节挡板的开度可以使余热锅炉、汽轮机和燃气轮机在负荷方面更好的匹配。 入口烟道和旁通烟道都装有膨胀节,这是由于烟道受热后要伸长,会对烟道的支架产生热应力,采用膨胀节能吸收烟道的伸长量,从而减小热应力。 主烟道型式采用长方体结构,卧式烟道,长、宽、高分别为H=9m、W=2m、L=3m。 二、余热锅炉本体 余热锅炉本体采用模块式结构。经过工厂试验的各模块便于装运,可缩短现场安装工期,降低建造费用。 (一)入口过渡段烟道 入口过渡段烟道内装设导流板,使烟气均匀地流入过热器段。 入口过渡段烟道由内壁面耐热不锈钢板、中间保温层和箱体钢板、外壁铝合金护板组成。(二)受热面组件 受热面组件包括:过热器、蒸发器、省煤器、低压蒸发器。各组件由管束、联箱、支吊架等组成。 1、管组 每个受热面组件均采用不同数量的螺旋肋片管组成特定结构的管组。 选定的螺旋肋片管主要尺寸为:管束,材料为20钢;翅片材料为20钢,翅片高度=15.5mm,翅片厚度Y=1mm,翅片节距s=5mm。 过热器受热面管组采用蛇形管组型式,管束正三角形错列布置,横向节距=76.9mm,纵向节距=66.6mm,横向管子根数为26,纵向管子排数为12。 蒸发器受热面管组为双集箱立式管组。管束正三角形错列布置,横向节距=78.4mm,纵向节距=67.9mm,横向管子根数为25/26,纵向管子排数为39,每3排一组,一共13组。余热锅炉蒸发管束的上集箱利用连通管与锅筒连接,下集箱利用连通管与底部的连接集箱连接,锅筒与连接集箱之间布置一根总下降管。 省煤器受热面管组采用蛇形管组型式,管束正三角形错列布置,横向节距=111.1mm,纵向节距=96.2mm,横向管子根数为18,纵向管子排数为30。 低压蒸发器受热面管组为双集箱立式管组。管束正三角形错列布置,横向节距=129.0mm,纵向节距=111.7mm,横向管子根数为15/16,纵向管子排数为18,每3排一组,一共6组。余热锅炉蒸发管束的上集箱利用连通管与锅筒连接,下集箱利用连通管与底部的连接集箱连接,锅筒与连接集箱之间布置一根总下降管。 2、支吊架 采用“蜂窝状”吊架,一定数量的吊架、吊架顶板和吊架底板组成一个大的管组。管子的肋

水泥余热发电

12月11日上午,由中国能源环境科技协会主办的“余热回收再利用技术与产业发展研讨会”在杭州召开。会议齐聚了行业权威专家,业内知名企业负责人,专业技术人员等,旨在推动余热产业发展,交流余热再利用技术与经验,探讨我国政策环境和发展战略。中国水泥网CEO邵俊受邀参加会议并做了题为《低碳经济下的水泥窑余热发电技术发展》的报告,内容整理如下: 一、水泥低碳时代已经到来! 2009年11月26日哥本哈根会议召开前夕,中国政府正式对外宣布控制温室气体排放的行动目标,决定到2020年,单位GDP二氧化碳排放比2005年下降40%—45%,并将其作为约束性指标纳入国民经济和社会发展中长期规划。 从长期来看,中国发展低碳经济是必然的选择。但是,低碳经济转型过程中,也会带来巨大的社会成本。由于中国经济发展处于城市化和工业化背景下相对较高碳密度的重工业主导阶段、能源资源以高碳的煤为主等多方面现实原因,中国的碳排放总量还是会呈现上升的趋势。 水泥行业作为高耗能、高排放产业之一,二氧化碳排放量占人类活动制造的二氧化碳总量的5%,势必会感受到减排带来的压力。作为总产能已经达到了全世界的50%中国水泥行业,纯低温余热发电技术就是减排二氧化碳的有效方式之一。“作为水泥行业,节能减排、循环经济、低碳环保反复讲了很多年,

但我觉得其中最主要、最简单可行的就是纯低温余热发电技术。”邵俊简洁明了地说。 二、余热发电技术在水泥行业的应用现状 水泥行业里的余热利用已有相当长的发展过程,主要可以分为四个阶段: 第一阶段为1953年至1989年。这30多年的主要工作是开展了中空窑高温余热发电技术及装备的开发、推广、应用工作。我国水泥行业参照上世纪30年代日本引进德国技术在我国东北、华北地区建设的中空窑高温余热发电技术装备,对老厂进行改造,同时在老厂扩建中得到应用。总计投运了约290条中空窑余热发电系统,形成了不同蒸汽参数、余热锅炉形式、装机容量的高温余热发电窑系统,为我国开展水泥窑中低温余热发电技术及装备的研究开发奠定了坚实实践基础。 第二阶段为1990年至1996年。“八五”期间,国家安排了水泥行业科技攻关课题,其一是《带补燃锅炉的中低温余热发电技术及装备的研究开发》,主要内容为采用国产标准系列汽轮发电机组,回收400℃以下废气余热进行发电。该课题在1996年完成了攻关工作,形成了《带补燃锅炉的水泥窑中低温余热发电技术》,此项技术的研究、开发、推广、应用,为我国开发水泥窑纯低温余热发电技术及装备工作积累了丰富的经验。其二是《水泥窑纯低温余热发电工艺及装备技术的研究开发》。其三是《纯低温余热发电技术装备——螺杆式膨胀机研究开发》。根据带补燃锅炉的水泥窑中低温余热发电技术应用的

4.5MW纯低温余热发电利用工作总结

金昌水泥(集团)有限责任公司2500t/d电石渣水泥熟料生产线4.5MW纯低温余热发电新技术开发项目 工作总结 为落实国家关于节能减排工作的安排,实现“十一五”规划提出的节能降耗和污染减排目标。我公司立足于资源型城市可持续发展,依托金昌化工产业聚区的区位优势和丰富的工业废渣,进一步加强固体废弃物、废水、废气的综合利用,缓解金昌市废弃物污染及水资源短缺问题。开发水泥窑纯低温余热发电资源综合利用项目,引进先进技术及资金支持,促进节能减排行动的实施,减少温室气体排放。通过节能减排示范试点企业的实施,加强节能、环保、资源综合利用的新型干法水泥生产线建设,调整水泥产品结构,提高物耗、能耗及水耗的利用率,塑造绿色建材形象,从而以点带面地带动区域绿色建材行业的发展。水泥窑纯低温余热发电项目做到了资源综合利用、改善环境,符合国家提倡的方针政策,建设条件基本落实,技术上可行,具有良好的社会效益与一定的经济效益,符合可持续发展战略思路。 我公司2500t/d水泥熟料余热发电项目建成后,降低了进入窑尾除尘器的废气含尘浓度,提高了除尘器的除尘效率,减少了粉尘的对外排放,年降尘量约1.4万吨。年节省标煤1.01万吨,减少约21.08万吨的CO2排放,提前实现国家水泥生产节能目标。 金泥集团公司通过调整公司水泥产品结构、固体废弃物资源化以及新型干法水泥余热发电的经验,以点带面地推动地区绿色建材行业发展;金泥集团公司的快速发展将解决金昌市固废污染的难题,使资源型城市朝着多元化方向发展,为甘肃其他资源型城市解决固废问题

树立楷模,从而带动甘肃地区经济的可持续发展。 一、2500t/d电石渣水泥熟料生产线4.5MW纯低温余热发电新技术开发项目技术概述 本项目拟采用纯余热发电技术,该技术不使用燃料来补燃,因此不对环境产生附加污染;蒸汽参数较低,其运行操作简单方便,运行的可靠性和安全性高,运行成本低,日常管理简单。 综合考虑目前水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下: 本系统主机包括二台余热锅炉、一套凝汽式汽轮发电机组。 a.SP余热锅炉:在窑尾设臵SP余热锅炉,仅设臵蒸汽段,生产1.35MPa-310℃的过热蒸汽,与窑头AQC余热锅炉生产的过热蒸汽混合后通入汽轮发电机组,出SP余热锅炉废气温度降到220℃,供生料粉磨烘干使用。 b.AQC余热锅炉:利用冷却机中部抽取的废气(中温端,~360℃),在窑头设臵AQC余热锅炉,余热锅炉分为蒸汽段和热水段运行:蒸汽段生产1.35MPa-340℃的过热蒸汽,与窑尾SP余热锅炉生产的过热蒸汽混合后通入汽轮发电机组,热水段生产的170℃热水后,作为AQC余热锅炉蒸汽段及SP余热锅炉的给水,出AQC锅炉废气温度降至100℃。 c.汽轮发电机组:上述两台余热锅炉生产的蒸汽共可发电3.8MW ,因此配臵4.5MW凝汽式汽轮机组一套。 整个工艺流程是:40℃左右的纯水经过除氧器除氧,由锅炉给水泵加压进入AQC锅炉省煤器,加热成170℃左右的热水;分成两部分,一部分进入AQC锅炉汽包,另一部分进入SP锅炉汽包;然后依次经过

余热锅炉基本基本知识

燃机余热锅炉基本原理介绍 燃机余热锅炉,英文简写为 HRSG(Heat Recovery Steam Generator),是燃气-蒸汽联合循环的重要组成部分。其主要工作原理是通过布置大量的换热管(通常采用螺旋鳍片管)来吸收燃机排气的余热,产生蒸汽供汽机发电或作为供热及其它工艺用汽。 燃机余热锅炉发展至今,形成了各种结构形式和布置方法,简单介绍如下。 燃机余热锅炉按照其循环方式主要分为两种形式:即受热面水平布置的强制循环余热锅炉和受热面垂直布置的自然循环余热锅炉,两者的主要区别是强制循环锅炉需配置循环泵依靠循环泵的压头实现蒸发器内的水循环,而自然循环则主要靠下降管和受热的蒸发管束中工质的密度差来实现循环。强制循环就国外而言主要在欧洲使用较多,国内主要用于燃机燃用重油等含灰较多燃料、受热面需吹灰和清洗的情况,如我厂提供深圳南山电厂、月亮湾等电厂的 9E 级燃机余热锅炉及浙江金华、广州明珠等 6B 级燃机余热锅炉。自然循环就国外而言主要用于美国,国内主要用于燃机燃用天然气、轻油等清洁燃料的燃机余热锅炉,如我厂提供的深圳金岗、天津滨海等的6B,江苏无锡、海南南山的FT-8 及海南洋浦 V94.2 燃机余热锅炉。 强制循环和自然循环余热锅炉的结构形式见附图 1 和附图 2。 附图 1 强制循环余热锅炉

附图 2 自然循环余热锅炉 燃机余热锅炉按照是否补燃分为补燃型余热锅炉和非补燃型余热锅炉,除非是用于热电联产或其它特殊工艺要求,一般应选用非补燃型余热锅炉,因为补燃会降低余热锅炉的效率。 一般补燃采用烟道式燃烧器,布置在进口烟道中,仅利用燃机排气中的氧气而不掺入补燃空气,补燃后烟气温度控制在 750℃以下。 烟道式补燃燃烧器的布置位置见附图 3,其结构见附图 4。

如何提高水泥窑余热发电 效率

如何提高水泥窑余热发电的价值 中联水泥翟金明 现代水泥技术装备和水泥窑余热发电已经遍布祖国各地,余热发电的基础是水泥窑提供的余热,在工艺和装备已经定型的情况下,它的运行效果与窑操的水平密不可分,如何在中控室获取理想的操作效果,直接关系到余热发电的运行情况和经济效益。 一、关于热力系统的优化 “余热发电”与“火力发电”相比,相同点都是发电。就发电系统来讲,余热发电没有太多的新东西,而且装备也要小得多,不会有太多的问题。 所不同的是,一个是“余热”、一个是“火力”,主要区别在热力系统的不同上。进一步讲就是热源的不同,“余热”这个热源与“火力”相比,品质要低得多,利用起来要复杂得多,这才是搞好余热发电的关键所在。 目前的水泥窑纯低温余热发电,热力系统采用较多的是:“双压系统”和“窑尾蒸汽到窑头进一步加热”的设计,应该说比以前优化了许多,也取得了明显的效果,但还有进一步优化的空间。主要是窑头余热的进一步细分,把短缺的优质余热分离出来,用于锅炉的关键部位,比如: 1,在篦冷机篦上的二三段之间加隔墙,防止三段低温废气串入对二段中温废气的贫化; 2,将余热发电在篦冷机上的取风口一分为二,实现高温废气与中温废气的分开使用,进一步提高锅炉的蒸发能力; 3,在篦冷机的低温区增加一个取风口,作为煤磨用风的主风源,原有中温区的取风口仅作调节温度使用,把原来用于煤磨烘干的中温风让给发电; 4,利用窑头排放的废气(还有100多℃)作为篦冷机一二段的冷却风源,抬高余热发电的取风温度,也减少了废气排放; 5,进一步增加篦冷机一二段的料层厚度(必要时须对篦下风机进行提压改造),加强熟料中热量的集中释放,提高余热发电取风温度; 6,如有必要,可以在三次风管内、或窑头罩内增设蒸发器;或直接取少量的三次风或二次风用于锅炉的蒸发段;或采用有利于综合利用的补燃措施。 二、如何培养一个优秀操作员 优秀的操作员应该能够利用所拥有的全部操作和管理资源,按照应有的程序与方法,根据现场实际作出判断和选择,从而实现最佳操作和管理。 如何做一个好操作员,操作员进一步发展的方向是什么,操作员在企业中应该发挥什么作用?换句话讲,企业对操作员应该有什么要求,企业如何培养和用好操作员?个人要做一个好的操作员,就应该具有一定的“三员”能力,即是操作员、又是技术员、还是调度员;企业要培养一个好操作员,就要给他一定的“三员”权利、机会和动力。 因为操作员掌握的信息最全面、最直接、最及时,由他们直接的优化操作、进步技术、调度人员,从管理上讲,操作员岗位是最大效率岗位,所有上面的管理岗位和下面的支持岗位,都应该围绕操作员岗位运转。

纯低温余热发电系统

第十一章纯低温余热发电系统 11.1 发电规模 发电规模按5000t/d熟料生产线配套设计。 水泥生产线的窑头、窑尾会排放大量的废气,通常仅利用废气的余热来烘干原料,利用率很低,其余大量废气的余热不仅没有得到利用,而且还要对废气进行喷水降温,浪费水和电能。因此,利用余热发电技术回收这部分废气的热能,可以使水泥生产企业提高能源利用效率,降低成本,提高产品市场竞争力,降低污染物排放量。 综合考虑水泥熟料生产线的工艺流程、场地布置、供配电结构、供水设施等因素,利用生产线窑头、窑尾余热资源,可建设一条装机容量为9000KW的纯低温余热电站。 11.2 设计原则 1)余热电站在正常运行时应不影响原水泥生产线的正常生产; 2)充分利用窑头、窑尾排放的废气余热; 3)采用工艺成熟、技术先进的余热发电技术和装备; 4)余热电站尽可能与水泥生产线共用水、电、机修等公用设施; 5)贯彻执行有关国家和拟建厂当地的环境保护、劳动安全、消防设计的规范。 11.3 设计条件 1)余热条件 从更合理的利用窑头余热考虑,窑头篦冷机需要进行改造,在篦冷机的中部增加一个废气出口,改造后的窑头废气参数为:240000Nm3/h,360℃。此部分废气余热全部用于发电。 窑尾经五级预热器出口的废气参数为:312500Nm3/h,320℃。此部分废气经利用后的温度应保持在220℃左右,用于生料粉磨烘干。 2)建设场地 本工程包括:窑头AQC锅炉、窑尾SP锅炉、汽机房、化学水处理车间、冷却塔及循环水泵房等车间。 各车间布置遵循以下原则:窑头AQC锅炉和沉降室布置在窑头

厂房旁边的空地上,窑尾SP锅炉布置在窑尾高温风机的上方,汽机房的布置靠近锅炉,化学水处理车间、冷却塔及循环水泵房尽量靠近汽机房。在布置有困难时可以适当调整,不能影响水泥生产线的布置。 AQC锅炉占地面积:14.2m×6.35m SP锅炉占地面积:22m×12m 汽机房占地面积:31m×20.4m 3)水源、给水排水 电站的用水有:软化水处理、锅炉给水、循环冷却水及其它生产系统消耗,消防用水,部分用水可循环使用。 11.4 电站工艺系统 1)余热电站流程 本方案拟采用纯低温余热发电技术,该技术不使用燃料来补燃,因此不对环境产生附加污染;是典型的资源综合利用工程。主蒸汽的压力和温度较低,运行的可靠性和安全性高,运行成本低,日常管理简单。 综合考虑目前水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下: 系统主机包括两台余热锅炉、一套补汽式汽轮发电机组。 a.AQC余热锅炉:利用冷却机中部抽取的废气(中温端,~360℃),在生产线窑头设置AQC余热锅炉,余热锅炉分为高压蒸汽段、低压蒸汽段和热水段运行;高压蒸汽段生产 1.6MPa-350℃的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,低压蒸汽段生产0.15MPa-140℃的过热蒸汽,热水段生产的140℃热水后,作为AQC 余热锅炉蒸汽段及SP余热锅炉的给水,出AQC锅炉废气温度降至110℃。 b.SP余热锅炉:在窑尾设置SP余热锅炉,仅设置蒸汽段,生产 1.6MPa-305℃的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,出SP余热锅炉废气温度降到220℃,供生料粉磨烘干使用。 c.汽轮发电机组:上述余热锅炉生产的蒸汽共可发电7.9MW,因此配置9MW补汽式汽轮机组一套。

余热发电系统工艺流程

生产工艺流程: (19)余热发电系统 本方案拟采用单压纯低温余热发电技术,与双压系统和闪蒸系统相比,单压系统流程相对较简单,当设计选择的锅炉能完全吸收烟气放出的热量时,采用单压设计更为合理,系统内不同参数的工质较少,控制操作都更简单,窑头锅炉和汽轮机设备造价降低,系统管路减少,投资相对更省。 结合本工程的生产规模及投资环境,拟采用单压纯低温余热发电技术。该技术不使用燃料来补燃,因此不对环境产生附加污染,是典型的资源综合利用工程。主蒸汽的压力和温度较低,运行的可靠性和安全性高,运行成本低,日常管理简单。 综合考虑本工程2500t/d熟料新型干法水泥生产线窑头、窑尾的余热资源分布情况和水泥窑的运行状况,确定热力系统及装机方案如下: 系统主机包括一台PH余热锅炉、一台AQC余热锅炉和一套凝汽式汽轮发电机组。 ① 据2500t/d水泥熟料生产线窑头冷却机废气排放温度的分 布,在满足熟料冷却及工艺用热的前提下,采驭中部取气, 从而提高进入窑头余热锅炉-AQC炉的废气温度,减少废气流 量,在缩小AQC炉体积的同时增大了换热量。并且提高了整 个系统的循环热效率。 在窑头冷却机中部废气出口设置窑头余热锅炉AQC炉,该锅炉分2段设置,其中I段为蒸汽段,II段为热水段。AQC炉II段生产的150°C热水提供给AQC炉I段及PH锅炉。AQC炉I段生产的1.6MPa- 320。C的过热蒸汽作为主蒸汽与窑尾余热锅炉PH炉生产

的同参数过热蒸汽合并后,一并进入汽轮机作功。汽轮机的凝结水进入余热锅炉AQC炉I工段,加热后分别作为锅炉给水进入余热锅炉SP炉、余热锅炉AQC炉的I段。 ②PH余热锅炉:在窑尾预热器的废气出口管道上设置PH余热锅炉,该锅炉包括过热器和蒸发器,生产1.6MPa-320℃的过热蒸汽,进入蒸汽母管后通入汽轮发电机组,出PH余热锅炉废气温度降到180-200℃,供生料粉磨烘干使用。PH锅炉热效率可达35%以上。 ③汽轮发电机组:上述二台余热锅炉生产的蒸汽共可发电4100kW,因此配置4500kW凝汽式汽轮机组一套。 整个工艺流程是:40℃左右的给水经过除氧,由锅炉给水泵加压进入AQC锅炉省煤器后加热成135℃左右的热水,热水分成两部分,一部分送往AQC锅炉,另一部分送往SP锅炉;然后依次经过各自锅炉的蒸发器、过热器产生1.6MPa-320℃和1.6MPa-320℃的过热蒸汽,在蒸汽母管汇合后进入汽轮发电机组做功,做功后的乏汽进入凝汽器成为冷凝水,冷凝水和补充纯水经除氧器除氧再进行下一个热力循环。PH锅炉出口废气温度180-200℃左右,用于烘干生料。 表2-6主要余热发电设备一览表 序号没备名称及型号数量主要技术参数、性能、指标 1 凝汽式汽轮机 1 型号: BN4.1-0.689/0.13 额定功率: 4.1MW 最大功率4.4MW 额定转速: 5600r/min 输出轴转速: 3000r/min 主汽门前压力:0.689MPa 主汽门前温度:313.9℃ 排气压力:7k Pa 2 4.5MW发电机 1 型号: 额定功率:4.5MW 额定转速:3000r/min

余热发电

利用生产过程中多余的热能转换为电能的技术。余热发电不仅节能,还有利于环境保护。余热发电的重要设备是余热锅炉。它利用废气、废液等工质中的热或可燃质作热源,生产蒸汽用于发电。由于工质温度不高,故锅炉体积大,耗用金属多。用于发电的余热主要有:高温烟气余热,化学反应余热,废气、废液余热,低温余热(低于200℃)等。此外,还有用多余压差发电的;例如,高炉煤气在炉顶压力较高,可先经膨胀汽轮发电机继发电后再送煤气用户使用。 目录 1基本信息 2发电技术 3低温余热发电技术 4设备介绍 5提高措施 1 基本信息 定义 余热发电是指利用生产过程中多余的热能转换为电能的技术。余热发电不仅节能,还有利于环境保护。余热发电的重要设备是余热锅炉。它利用废气、废液等工质中的热或可燃质作热源,生产蒸汽用于发电。由于工质温度不高,故锅炉体积大,耗用金属多。用于发电的余热主要有高温烟气余热,化学反应余热、废气、废液余热、低温余热,低于200℃等。 概况

余热是在一定经济技术条件下,在能源利用设备中没有被利用的能源,也就是多余、废弃的能源。它包括高温废气余热、冷却介质余热、废汽废水余热、高温产品和炉渣余热、化学反应余热、可燃废气废液和废料余热以及高压流体余压等七种。根据调查,各行业的余热总资源约占其燃料消耗总量的17%~67%,可回收利用的余热资源约为余热总资源的60%。 钢铁行业加热炉高温烟气回收发电技术当年可收回全部成本,热量利用率提高5-10%。 利用途径 余热的回收利用途径很多。一般说来,综合利用余热最好;其次是直接利用;第三是间接利用(产生蒸汽用来发电)。如钢铁工业:钢铁厂中的焦炉。目前我国大中型钢铁企业具有各种不同规格的大小焦炉50多座,除了上海宝钢的工业化水平达到了国际水平,其余厂家能耗水平都很高,大有潜力可挖。炼钢厂中的转炉烟气发电,发电系统,可配置发电量为3000Kw的电站80座。炼钢厂中的电熔炉,现如今全国有20多座,其中65吨级可发电量在5000Kw/座以上。 发展 伴随着可持续发展、循环经济、节能减排以及低碳经济等一个个观念的提出,我国的余热发电行业经历了从无到有、从小到大的发展历程。 据国家统计局2011统计公报显示,2011年我国全年能源消费总量34.8亿吨标准煤,万元国内生产总值(GDP)能耗下降2.01%,未达到2011年单位GDP能耗较上年下降3.5%的目标。 尽管大多数专家预测,“十二五”期间我国经济增速较“十一五”时期将有所放缓,但每年8%以上的增速,仍意味着降低单位GDP能耗存在巨大压力。 紧随其后,工信部对外公布了《工业节能“十二五”规划》。《规划》提出,到2015年,规模以上工业增加值能耗比2010年下降21%左右,实现节能量6.7亿吨标准煤。 业内人士普遍认为,在保持工业年均增速8%的基础上,支撑工业增加值能耗下降21%的指标难度不小,这意味着“十二五”期间要实现6.7亿吨标准煤的节能量,较“十一五”的6.3亿吨还多出0.4亿吨。现如今,我国传统产业的工艺技术装备水平已经大幅提升,要实现这一目标只能从现有的装备节能中寻求突破。 [1] 根据《2013-2017年中国余热发电行业市场前瞻与投资战略规划分析报告》分析,随着国家节能减排力度不断加码,余热发电项目的魅力日益显著。预计,到2015年,我国余热余压发电要实现新增装机2000万千瓦。按照每千瓦造价5000元计算,“十二五”期间余热余压发电将形成1000亿元投资规模。[2] 2发电技术 中国水泥窑余热发电技术经过近十余年的发展有了长足的进步,现已接近国际先进水平。诞生了各种各样的并能满足不同窑型要求的发电系统。在未来相当长的时期内,中国水泥窑余热发电技术的发展趋势主要集中于以下几个方面:

余热锅炉系统详细介绍

余热锅炉系统 §1概论 一、简述 在燃气轮机内做功后排出的燃气,仍具有比较高的温度,一般在540℃左右,利用这部分气体的热能,可以提高整个装置的热效率。通常是利用此热量加热水,使水变成蒸汽。蒸汽可以用来推动蒸汽轮机一发电机,也可用于生产过程的加热或供生活取暖用。对于稠油的油田可以用蒸汽直接注入油井中,以提高采油量。根据不同的蒸汽用途,要求有相应的蒸汽压力和蒸汽温度,也就需要不同参数的产汽设备。利用燃气轮机排气的热量来产汽的设备,称为“热回收蒸汽发生器”,表明回收了排气的热量,用英文字母HRSG来表示。我国习惯上称为“余热锅炉,本文也采用“余热锅炉”的名称,并把燃气轮机的排气简称为“烟气”。 “余热锅炉”通常是没有燃烧器的,如果需要高压高温的蒸汽,可以在“余热锅炉”内装一个附加燃烧器。通过燃料的燃烧使整个烟气温度升高,能够产生高参数的蒸汽。例如某余热锅炉不装燃烧器时,入口烟气温度为500℃,装设附加燃烧器后,可使入口烟气温度达到756℃。蒸汽的压力可以从4MPa升到10MPa,蒸汽的温度可以从450℃升到510℃,蒸汽可以供高温高压汽轮机用,从而增加了电功率输出。目前我国油田进口的余热锅炉的蒸汽参数有:4MPa配450℃及1.4MPa配195℃(饱和蒸汽)。前者供给中压汽轮机来发电,后者可以供生产或供生活取暖用。 注:关于多种余热锅炉,余热锅炉利用燃气轮机排气的方式,补燃问题。 二、余热锅炉的组成 (一)蒸汽的生产过程 图19-1是一台余热锅炉的结构示意图,从图中可以看出产汽的过程。 图19-1强制循环余热锅炉

(注意蒸发器为顺流布置,即管束流向自下而上,以免上下弯头处积汽。) 从燃气轮机出口的烟气,经烟道到余热锅炉入口,烟气自下而上流动,流经过热器、两组蒸发器和省煤器,最后排入烟囱。排烟温度约为150-180℃,烟气温度从540℃降到排烟温度,所放出的热量用来使水变成蒸汽。进入余热锅炉的给水,其温度约为105℃左右,先进入上部的省煤器,水在省煤器内吸收热量使水温上升,水温升到略低于汽包压力下的饱和温度,就离开省煤器进入汽包。进入汽包的水与汽包内的饱和水混合后,沿汽包下方的下降管到循环泵,水在循环泵中压力升高,分别进入两组蒸发器,在蒸发器内的水吸热开始产汽,通常是只有一部份水变成汽,所以在蒸发器管内流动的是汽水混合物。汽水混合物离开蒸发器进入汽包上部。在汽包内装有汽水分离设备,可以把汽和水分开,水落到汽包内水空间,而蒸汽从汽包顶部出来到过热器。在过热器内吸收热量,使饱和蒸汽变成过热蒸汽。根据产汽过程有三个阶段,对应的应该要有三个受热面,即省煤器、蒸发器和过热器。如果不需要过热蒸汽,只需要饱和蒸汽,可以不装过热器。 (二)余热锅炉的型式 1、强制循环余热锅炉 图19-1所示的余热锅炉就是强制循环余热锅炉。从汽包下部出来的水经一台循环泵后,进入蒸发器,是靠循环泵产生的动力使水循环的,称为“强制循环余热锅炉”。其特点是;各受热面组件的管子是水平的,受热面之间是沿高度方向布置,可节省地面的面积,并使出口处的烟囱高度缩短。但在运行中需要循环泵,使运行复杂,增加维修费用。目前油田进口的余热锅炉,多数采用此种型式。 2.自然循环余热锅炉 图19-2是一自然循环余热锅炉,全部受热面组件的管子是垂直的。给水进入省煤器吸热后,进入汽包。汽包有下降管与蒸发部的下联箱相连,下降管位于烟道外面,不吸收烟气的热量。汽包还与蒸发器的上联箱相连。直立管簇吸收烟气的热量。当水吸收烟气热量就有部份水变成蒸汽,由于蒸汽的密度比水的密度要小得多,所以直立管内汽和水混合物的平均密度要小于下降管中水的密度,两者密度差形成了水的循环。也就是说:不吸热的下降管内的水比较重,向下流动。直立管内的汽水混合物向上流动,形成连续产汽过程。此时进入蒸发器的水不是靠循环泵的动力,而是靠流体的密度差而流动,这种余热锅炉称为“自然循环余热锅炉”。其特点是:省去循环泵,使运行和维修简单。但各受热面是沿水平方向布置,占地面积大,在排烟处所需烟囱的高度要高。 图2 自然循环余热锅炉 本文主要介绍“强制循环余热锅炉”。 (注:一般来说,余热锅炉的循环方式有5种:单压,双压无再热,双压再热,三压无再热,

水泥工业中低温余热发电技术及装备

水泥工业中低温余热发电技术及装备 天津水泥工业设计研究院唐金泉 摘要 1、中低温余热发电技术及装备的研制过程与现状 我国水泥窑余热发电技术源于二十世纪三十年代日本人在我国东北及华北地区建设的若干条中空窑高温余热发电站,其水泥窑废气温度为800℃~900℃、熟料热耗为6700KJ~8400KJ/kg,所配套的高温余热发电系统的发电能力为每吨熟料90kW~130kW。二十一世纪八十年代末,根据水泥工业节能降耗提高企业经济效益的需要,结合新型干法水泥熟料煅烧技术的发展、水泥生产过程中的废气余热温度已降至450℃以下的条件,国家在“八·五”期间安排了国家重大科技攻关项目《水泥厂中低温余热发电工艺及装备的研究开发》工作。针对这一项目,根据当时国内火力发电主要设备(锅炉、汽轮机、发电机)中的汽轮机设计、制造、材料技术的限制,国家建材局确定:项目的开发工作走两条技术线路,其一:利用国产标准系列的汽轮机开发研制带补燃锅炉的中低温余热发电工艺及装备,即国家建材局委托天津水泥工业设计研究院承担的“八五”国家重大科技攻关项目课题——《带补燃锅炉的中低温余热发电工艺及装备的研究开发》;其二:开发研制适于水泥厂纯中低温余热发电的特种汽轮机,即国家建材局委托中国建筑材料科学研究承担的“八·五”国家重大科技攻关项目课题——《双流低温余热发电系统及螺杆膨胀机的研究开发》。 就上述两个课题,天津水泥工业设计研究院、中国建筑材料科学研究院分别开展了各自的各项目具体工作。 对于天津水泥工业设计研究院: :根据其所承担的“八·五”攻关课题任务,经过对热能动力循环理论及在此之前该院已经设计投产的多个中空窑高温余热电站热力循环系统及装备在生产运行过程中所存在问题的细致分析和总结,结合新型干法水泥生产线的工艺特点、废气余热品位、废气余热分布、水泥生产系统与余热发电系统结合起来后的复杂性,确定了课题开发工作重点集中于如下几个方面:(1)余热电站的热力循环系统配置研究及系统、设备配置计算方法的研究;(2)余热电站内各余热锅炉及补燃锅炉的研制;(3)水泥生产系统与余热电站系统间管理、操作及安全保护关系的研究;(4)余热电站汽水管道配置及锅炉给水除氧系统的研究;(5)余热电站控制思想及计算机控制系统的研究;(6)带补燃的中低温余热电站与纯中低温余热电站节能效果及投资效益的比较分析研究。在确定上述研究开发工作重点的同时,确定了课题研究开发成果的应用方向——:1)利用课题开发成果为具有150℃至450℃废气余热的水泥生产企业建设带补燃锅炉的中低温余热电站;2)一旦适于水泥窑150℃至450℃废气余热的纯中低温余热电站特种汽轮机开发研制成功,课题开发成果取消补燃锅炉后直接采用特种汽轮机以实现纯中低温余热发电。 天津水泥工业设计研究院经过十年的艰苦努力全面完成了课题开发工作任务,同时在国家建材局原科技司的支持下至2000年进一步完成了适于水泥窑150℃至450℃废气余热的纯中低温余热电站所需特种汽轮机混压进汽(补汽式)汽轮机的开发研制任务,至2000年底: 为了确定经济、合理、高效的热力循环系统、循环参数及电站汽水管路配置和除氧系统;为了解决余热锅炉所存在的磨损、漏风、集灰、炉内换热过程不清、

余热发电的几种形式

烧结烟气与烧结矿显热联合回收发电 在钢铁生产过程中,烧结工序的能耗约占总能耗的9%-12%,仅次于炼铁工序,位居第二。在烧结工序总能耗中,有近50%的热能以烧结烟气和冷却机废气的显热形式排入大气。 烧结机工艺余热回收主要有两大部分:1)占烧结过程总带入热量约45%的烧结矿显热,在冷却机高温段废气温度为350-420℃;2)占总带入热量约24%的烧结机烟气显热,在烧结机机尾风箱高温段排出的废气温度为300-400℃。 ●系统技术特点 充分利用烧结机后风箱320℃左右的烟气余热和烧结矿显热(环冷机废气余热),分别配置一台烧结机锅炉和环冷余热锅炉,联合回收烧结机烟气和环冷机废气显热,提高余热回收率,降低能耗; 烟气由环冷机高中温段引出,三路烟气管道合并一路进入环冷余热锅炉,烟气为上进下出,烟风系统采用余风在循环; 环冷余热锅炉采用双压系统、立式自然循环结构,蒸发器及省煤器采用螺旋翅片管;环冷余热锅炉下部设置公共省煤器,余热锅炉给水后,分别送至环冷余热锅炉和烧结余热锅炉的省煤器。 ●与常见的烧结环冷余热发电系统比较 以单台180m2的烧结生产线为例,环冷机废气可用于余热发电的风量约为 30x104Nm3/h,余热锅炉入口风温为380℃,排烟温度约为120℃,采用双压热力系统,平均发电功率约为5500KW。 烧结机后风箱可用于余热发电的烟气量约为12×104Nm3/h,余热锅炉入口烟气温度约为320℃,为克服烧结烟气SO2腐蚀,排烟温度控制在170-190℃。则这部分烟气余热可增加约1600KW发电功率。 烧结烟气与环冷机废气余热联合回收发电系统的总装机容量可达7500KW,与常规环冷机废气余热发电系统相比,增加装机容量2000KW,发电量增加30%。 TRT高炉煤气余压发电技术 高炉煤气炉顶余压透平发电系统,Blast Furnace Top Gas Recovery Turbine(TRT)。即利用煤气余压通过煤气透平系统转化为机械能,再通过发电组将机械能最终转化为电能;TRT系统与减压阀组(高炉已配)并联,即高炉煤气经透平静叶自动调节控制,煤气经TRT后去煤气主管网;当透平机停机或无负荷运转时,再用减压阀组控制炉顶压力。 “一拖一”模式:一座高炉对用一套透平发电机组;“二拖一”共用型:两座高炉对应一套透平发电机组。 TRT系统的技术特点:1)装置发电过程中不消耗任何燃料,不产生环境污染;2)不改变原高炉煤气的品质;3)替代高炉自带的减压阀组对高炉煤气进行减压,减压阀组作为备用,降低噪声,同时净化了煤气,改善高炉的操作环境;4)发电成本较低,经济效益显著。 以2×450m3高炉为例,单台高炉煤气量约为13×104Nm3/h,温度180℃,透平入口压力130Kpa,透平出口压力15-20Kpa,若采用“二拖一”共用型高炉煤气余压膨胀透平装置的方式,透平发电组的装机容量可达5000KW,年发电量可达2700万KWh。 干熄焦CDQ余热发电技术

低温余热发电

焙烧炉烟气潜热回收前期研究 1低温余热发电简介 余热发电,是利用生产过程中多余的热能转换为电能的技术,是余热的动力回收途径,也是余热利用的一个重要发展方向。它不仅节能,还有利于环境保护。余热发电的重要设备是余热锅炉,它利用废气、废液等工质中的热或可燃质作热源,生产蒸汽用于发电。由于工质温度不高,故锅炉体积大,耗用金属多。用于发电的余热主要有:高温烟气余热,化学反应余热,废气、废液余热,低温余热等。此外,还有用多余压差发电的;例如,高炉煤气在炉顶压力较高,可先经膨胀汽轮发电机继发电后再送煤气用户使用。 余热发电的方式有许多种,如:利用余热锅炉首先产生蒸汽,再通过汽轮发电机组,按凝汽循环或背压供热循环发电。对于高温余热利用,采用余热发电系统产生电能更符合能级匹配的原则。对较低温度的余热,在没有合适的热用户的情况下,将余热转换成电能再加以利用,也是一种可以选择的回收利用方案。如:采用低沸点工质(氟里昂等)回收中低温余热,产生的氟里昂蒸汽按朗肯循环在透平中膨胀作功,带动发电机发电;或则采用加热工质至中低参数,再采用闪蒸器闪蒸出蒸汽,进入汽轮机中混汽做功。 余热发电技术与大中型火力发电不同,余热发电是通过回收工业生产过程中排放的废烟气、蒸汽所含的热量来发电,是一项变废为宝的高效节能技术。它的特点是经济效益高;余热利用效率较高;系统简单,便于管理,生产人员较少;不增加大气污染物的排放,等效减少了二氧化碳及其它污染气体的排放;不消耗燃料,经济效益不受燃料价格波动的影响。 1.1国外余热发电现状 国外从40年代就开始进行余热利用的研究,美、苏、日、法等国对余热利用给予重视,大量投资进行科研工作。而对于纯中、低温余热发电技术,从上世纪六十年代开始研究,到七十年代中期,该技术无论是从热力系统还是相关发电设备都进入实用阶段,到80年代初期此项技术的应用达到了高潮,渐趋普及。日本对此项技术的研究开发较早,也较为成熟,不但在本国二十几条预分解窑水泥生产线上应用了此项技术,并且出口到台湾,韩国等国家和地区。他们开发研制的余热锅炉及中、低品位蒸汽汽轮机,经数十个工厂多年运转试验证明:技术成熟可靠并且有很大的灵活性。 目前,国外水泥窑低温余热发电系统的比例是很高的。20世纪80年代以来,先进工业国家也正是一直这样做的,在日本,自1981年3月住友水泥公司蛙阜水泥厂投运一套1320千瓦×2的余热发电系统后到现在,70%的水泥企业在新型干法生产线上都设置有余热发电系统,其余热发电量占自身用电量的比例,在1995年就已经达到43%。 在发达国家,特别是在能源短缺地区,纯低温余热发电已被广泛应用。以色列可利用90℃左右的载热体来发电。因此,无论从利用载热体的温度上,还是地热废热发电设备的可靠性和这些设备的自动控制水平上来讲,以色列的废热地热发电技术居世界领先地位。目前世界上许多国家和地区,如美国、日本、俄罗斯、新西兰、菲律宾、冰岛等均引进了以色列的废热发电设备和技术。它使用的工质是碳氢化合物,在中、低温状态下就可获得高于水蒸汽循环的效率,详见有机郎肯循环发电系统的介绍。 在美国,水泥工业节约能源首先从在烧窑后设置空气预热器降低能耗开始,采用这种节能措施可使水泥生产的平均能耗减少22999×105焦耳/吨水泥(即回收余热的节能达45.7%)。后来在改造工艺窑的同时,采用设置余热锅炉回收余热进行发电的方式。例如,美国国家石膏公司水泥部的爱尔派工厂,从1973年后的5年时间内,先后建成了五套余热锅炉—蒸汽轮机发电机组,容量达5000—12500千瓦。美国北美公司和波特兰水泥厂所开发的有机工质

纯低温余热发电技术

第9章纯低温余热发电技术 9.1概述 随着新型干法水泥煅烧技术的发展,我国的水泥生产技术、装备、管理日渐成熟,目前国内已建成并运行了大量2000t/d以上熟料生产线。新型干法生产线与其他窑型相比在热耗方面显著降低,但是受煅烧工艺的限制,生产过程中仍有大量的中、低温废气余热资源未被充分利用,其中由窑头熟料冷却机和窑尾预热器排出的废气,温度约在350℃左右,带走的热能大约为水泥熟料烧成系统热耗量的35%。 水泥回转窑纯低温余热发电是一项将水泥窑窑头、窑尾排放的中低温废气余热转化为电能的节能技术,该技术可有效提高水泥生产过程中的能源利用效率,使水泥企业能源利用率提高到95%以上,降低能源消耗,减轻环境热污染,从而实现水泥工业的节能减排,提高企业的经济效益,增强企业的市场竞争力。9.1.1纯低温余热发电发展历程 水泥回转窑余热发电技术是随着水泥回转窑煅烧技术发展起来的。早在二十世纪初,德、日等国即开始中空回转窑余热发电技术的研究及应用,到七十年代中期,无论是热力系统还是装备都已进入实用阶段,八十年代初期,此项技术的应用达到了高潮,尤其是日本,技术较为成熟。 我国第一台水泥窑余热电站始建于大连水泥厂,日本小野田水泥公司在1922~1923年期间,扩建该厂第二条φ3×60m干法中空窑生产线时,利用日本余热电站技术装备,配套建设了高温余热发电机组,装机容量为3MW,称为“水泥干法中空余热发电窑”。 我国水泥窑余热发电技术的发展从第一个五年计划开始起步,经过半个多世纪的发展,水泥窑余热发电技术的研究、开发、推广、应用工作经历了4个阶段。 第一阶段为1950年~1989年。这30多年主要参照上世纪三十年代日本引进德国技术在我国东北、华北地区建设的中空窑高温余热发电技术装备,对老厂进行改造,同时在老厂扩建中得到应用。总计投运了约290条中空窑余热发电系统。形成了不同主蒸汽参数、余热锅炉形式、装机容量的高温余热发电窑系统。为我国开展水泥窑中低温余热发电技术及装备的研究开发奠定了坚实基础。 第二阶段为1990年~1996年。“八五”期间,国家安排了水泥行业科技攻关课题,其一是:“带补燃锅炉的中低温余热发电技术及装备的研究开发”,主要内容为采用国产标准系列汽轮发电机组,回收400℃以下废气余热进行发电。该课题在1996年完成了攻关工作,形成了“带补燃锅炉的水泥窑中低温余热发电技术”;其二是“水泥窑纯低温余热发电工艺及装备技术的研究开发”;其三是“纯低温余热发电技术装备——螺杆式膨胀机研究开发”。根据带补燃锅炉的水泥窑中低温余热发电技术应用的经验,以日本KHI公司为宁国水泥厂4000t/d水泥窑提供的6480kW纯低温余热电站的建设为契机,基本形成了我国

相关文档
最新文档