循环流化床燃烧技术

合集下载

循环流化床锅炉低氮燃烧一体化的改造技术

循环流化床锅炉低氮燃烧一体化的改造技术

度等进行更改。

对一二次风的比例进行合理分配,使得一次风压头下降,二次风压头提升,大幅提高二次风的穿透力,达到分级燃烧的目的,使得燃料能够燃尽。

(2)烟气再循环系统优化改造前为降低成本,原有流化床四台锅炉燃煤主要为灰分低、碱金属含量高的准东煤,并且原设计分离器效率低,而燃煤本身含灰量较低,即使燃煤掺烧电石渣,灰分也无法有效提升。

分离器效率低、灰分差导致灰循环倍率明显不足,炉内热负荷分配不均,造成锅炉8个床温测点温度偏差大,有时候偏差可以达到60℃,造成燃烧极为不稳定。

本次烟再系统的优化就是把锅炉产生的含氧量低的一部分烟气在烟囱前引出一支,通过新增加的烟再风机送到一次风的入口再次利用。

通过烟气的再次利用,使得原有一次风量有所降低,同时密相区的低氧可以抑制床温,通过二次风量的适当增加,补充被替代的一次风量。

通过烟再的低氧烟气再次利用,在降低床温的同时,可以有效控制锅炉空预器进出口的氧含量,大幅降低NO x 排放。

由于烟气中存在一定的粉尘颗粒,可能对一次风机叶轮产生磨损。

针对此项问题,对磨损的原理展开分析,具体如式(1):W ∝V d 2.5×D d 3×ρd ×f (1)式中:W 为磨损量;V d 为粉尘速度;D d 为粉尘颗粒度;ρd 为粉尘浓度;f 为粉尘与金属表面冲击角度。

由公式(1)看出,气流速度的2.5次方、粉尘粒径的3次方与磨损成正比,是影响磨损的关键因素。

当采用烟气再循环后,一次风总量并不产生明显的变化,仅在一次风中增加一部分烟气量,由于锅炉目前除尘效率很高,除尘器后粉尘浓度极低,粉尘粒径小,且烟气量仅为一次风量的20%~35%左右(设计值留有较大裕量,实际运行值更低),混合后的气体含尘量进一步降低,磨损能力很弱,可以忽略不计。

按照设计值,除尘后烟气中的烟气中含尘量≤10mg/m 3,再和空气混合后其浓度不大于5mg/m 3,而在常规工业中的通风通道来说,一般将100mg/m 3以下含尘量的气体划归为洁净气体。

dlt2199-2020循环流化床锅炉燃料掺烧技术规程

dlt2199-2020循环流化床锅炉燃料掺烧技术规程

dlt2199-2020循环流化床锅炉燃料掺烧技术规程1. 引言1.1 概述本文是针对dlt2199-2020循环流化床锅炉燃料掺烧技术规程撰写的长文。

循环流化床锅炉是一种高效、低污染的锅炉设备,其燃料掺烧技术可以有效地利用多种不同类型的燃料,提高能源利用效率,并减少对环境的影响。

本文将从技术背景、燃料选择与准备要点以及燃烧过程控制要点等方面进行详细介绍和探讨,旨在为循环流化床锅炉操作人员和工程师提供指导与参考。

1.2 文章结构本文分为四个主要部分:引言、正文、循环流化床锅炉燃料掺烧技术规程和结论。

其中正文部分将详细介绍本技术规程涵盖的内容,包括技术背景、燃料选择与准备要点以及燃烧过程控制要点。

最后,在结论部分对整篇文章进行总结,并展望未来该技术规程的发展方向。

1.3 目的循环流化床锅炉燃料掺烧技术的规程旨在优化锅炉的燃烧效率、提高能源利用效率,同时减少对环境的污染。

通过详细阐述技术背景、燃料选择与准备要点以及燃烧过程控制要点,本文旨在为工程师和操作人员提供一套科学合理的操作指南和流程,以实现循环流化床锅炉的最佳性能和运行安全。

以上是文章“1. 引言”部分的内容。

2. 正文:循环流化床锅炉燃料掺烧技术是一种利用多种不同类型的燃料在循环流化床锅炉中进行同时或交替燃烧的方法。

这项技术能够提高锅炉的灵活性,允许使用多种低品位、廉价或特殊质量的燃料,同时也有助于降低对传统高品位燃料的依赖。

2.1 燃料选择与准备要点在进行循环流化床锅炉燃料掺烧前,需要对不同类型的可供选择的燃料进行评估和分析。

首先,要考虑到各种燃料之间的相容性和配比关系,确保在混合时不会产生副作用或影响到系统稳定运行。

同时,还需要对每种燃料的物理性质和化学成分进行全面了解,包括其粒度、水分含量、灰分含量、挥发分含量等参数。

这些信息将有助于确定适宜的混合比例,并为后续工艺控制提供参考依据。

对于固体废弃物类燃料,在进行掺入之前,通常需要进行预处理工序,如干燥、粉碎等。

流化床燃烧技术

流化床燃烧技术

鼓泡流化床燃烧技术的主要特点如下。
① 流化床床内混合剧烈,燃烧稳定,其燃料适应性很强,几乎可以燃 烧所有燃料。 ② 低温燃烧特性可以实现炉内加脱硫剂进行直接脱硫,而且可以利用 低灰熔点的燃料。 ③ 低温燃烧和分级燃烧可以较好地控制煤燃烧过程中NOx的生成。 ④ 通常燃用宽筛分燃料颗粒(如0-8mm,0-10mm),床料的组成也比 较复杂。 ⑤ 流化床运行速度较低,一般在2-4m/s之间,燃烧室内运行在鼓泡流 化状态,可以明显分为下部高颗粒浓度的流化床区(密相区)和上部 颗粒浓度很低的稀相区(悬浮段)。
1.2.3 循环流化床的气固两相流体动力特性
一般来说,循环流化床锅炉炉膛截面积形状大都是矩形或方形的,其高度与截 面当量直径之比要小得多,而且炉膛通常布臵垂直的膜式水冷壁以吸收热量。循环 流化床锅炉的炉内床料是宽筛分的粗颗粒,如中国循环流化床锅炉常用的煤粒粒径 为0-10mm。
项目 截面形状 直径/m 高度与当量直径比 反应器壁面 床料分布及平均直径/mm 循环流化床锅炉 大都为矩形 4-8(当量直径) <5(10) 膜式水冷壁(垂直管和鳍片) 约0.2
为了克服这些问题,通过把燃烧室内的流化床速度从原来的2-4m/s提高 到4-6m/s甚至更高后,把更多的床料颗粒从燃烧室下部的密相区带到了上部 稀相区,这样不仅使得更多的燃料在上部稀相区燃烧,而且也通过这些携带 的大量细灰颗粒从密相区带出了大量热量,从而使得燃烧室上部颗粒浓度增 加,燃烧室温度分布均匀,而密相区内则不再需要布臵埋管受热面吸热。同 时通过布臵飞灰颗粒分离及回送装臵,把携带出燃烧室细灰颗粒中不完全燃 烧的燃烧颗粒或未完全反应的脱硫剂颗粒重新送回到燃烧室内循环燃烧或利 用,从而大大提高燃料燃烧效率和脱硫剂利用率。这种状态运行的流化床燃 烧技术称为循环流化床燃烧技术,近三十年内得到快速发展的一种新型燃烧 技术。

循环流化床燃烧技术

循环流化床燃烧技术

循环流化床燃烧技术循环流化床燃烧技术是最近20多年来发展起来的新一代高效、低污染的清洁燃烧技术,也是目前商业化程度最好,应用前景最广的洁净煤燃烧技术,它的燃烧技术比较简单,当进炉的燃料粒度循环流化床锅炉独特的流体动力特性和结构使其具备有许多独特的优点。

1、燃料适应性甚广这是循环流化床锅炉的主要优点之一。

在循环流化床锅炉中按重量计,燃料仅占床料的1%~3%,其余是不可燃的固体颗粒,如脱硫剂、灰渣或砂。

循环流化床锅炉的特殊流体动力特性使得气~固和固~固混合非常好,因此燃料进人炉膛后很快与大量床料混合,燃料被迅速加热至高于着火温度,而同时床层温度没有明显降低。

只要燃料的热值大于加热燃料本身和燃烧所需的空气至着火温度所需的热量,上述特点就可以使得循环流化床锅炉不需辅助燃料而燃用任何燃料。

循环流化床锅炉既可燃用优质煤,也可燃用各种劣质燃料,如高灰煤、高硫煤、高灰高硫煤、高水分煤、煤矸石、煤泥,以及油页岩、泥煤、石油焦、尾矿、炉渣、树皮、废木头、垃圾等。

2、冷却效率高循环流化床锅炉的燃烧效率要比鼓泡流化床锅炉高,燃烧效率通常在97.5%~99.5%范围内,可与煤粉锅炉相媲美.循环流化床锅炉燃烧效率高是因为有下述特点:气~固混合良好;燃烧速率高,特别是对粗粒燃料;绝大部分未燃尽的燃料被再循环至炉膛。

与齿槽流化床锅炉相同,循环流化床锅炉能够在较宽的运转变化范围内维持低的冷却效率,甚至燃用细粉含量低的燃料时也就是如此。

循环流化床锅炉的脱硫比鼓泡流化床锅炉更加有效。

典型的循环流化床锅炉达到90%脱硫效率时所需的脱硫剂化学当量比为1.5~2.5,鼓泡流化床锅炉达到90%脱硫效率则需脱硫剂化学当量比为2.5~3,甚至更高,有时即使ca/s比再高,鼓泡流化床锅炉也不能达到90%的脱硫效率。

与冷却过程相同,烟气反应展开得较为缓慢。

为了并使氧化钙(研磨石灰石)充份转变为硫酸钙,烟气中的二氧化硫气体必须与脱硫剂存有充份短的碰触时间和尽可能小的面积。

循环流化床燃烧技术

循环流化床燃烧技术

2021/2/18
循环流化床燃烧技术
13
三、 流态化基本原理
• “流化”——流态化
• 当流体(液体、气体)向上流过固体颗粒床层时,其速度 增大到一定值后,颗粒被流体的摩擦力所承托,呈现飘浮 状态,颗粒可以在床层中自由运动,这种状态称为“流态 化”。
• 按流化介质的不同可分为液-固流态化、气-固流态 化。
2021/2/18
循环流化床燃烧技术
19
于是流化床开始应用于煤 的燃烧。二十世纪60年代初, 出现了“流化床锅炉”。
“流化床锅炉”——燃料在流化 状态下进行燃烧的锅炉叫流化床 锅炉。
从此流化床燃烧、固定床燃 烧、悬浮燃烧共同构成煤的 三种主要燃烧方式。
我国早期设计的鼓泡床锅炉
2021/2/18
循环流化床燃烧技术
2021/2/18
循环流化床燃烧技术
1
循环流化床燃烧技术
一、引子—传统燃煤方式带来的环境问题 二、洁净煤技术的兴起 三、流化床基础理论 四、第一代流化床锅炉—鼓泡床锅炉 五、第二代流化床锅炉—循环流化床锅炉 六、循环流化床锅炉应用现状及发展前景
2021/2/18
循环流化床燃烧技术
2
一、引子
• 近年来,在火力发电领域,一 个新名词越来越多地被人们听 到,这就是“循环流化床”。
2021/2/18
循环流化床燃烧技术
15
流化床的形成过程
图2-6 不同气流速度下固体颗粒床层的流动状态
2021/2/18
循环流化床燃烧技术
16
流化床类似流体的性质:
– 任一高度静压等于 此高度以上固体颗 粒重量
– 大而轻的物体浮在 床表面
– 床表面总保持水平
– 连通器作用

循环流化床燃烧原理

循环流化床燃烧原理

循环流化床燃烧原理
循环流化床燃烧是一种高效的燃烧技术,其原理是将燃料和空气在一定的条件下混合,形成细小的颗粒状物质,在循环流化床内进行燃烧。

循环流化床燃烧技术具有高效、低污染、可适应性强等优点,被广泛应用于煤炭、生物质等领域。

其原理主要包括以下几个方面:首先,循环流化床内的流体化气固两相流动状态可以保证燃料和空气充分混合,从而提高燃烧效率,减少污染物的排放。

其次,循环流化床内的床层温度均匀,可以有效防止燃烧温度过高或过低,从而保证燃烧过程的稳定性和安全性。

再次,循环流化床内的燃料和物料可以高度循环利用,节约能源,减少燃料消耗和废弃物的产生,有利于环境保护和可持续发展。

最后,循环流化床燃烧技术具有较强的适应性,可以适用于不同类型的燃料,如煤炭、生物质等,提高了其应用范围和实用性。

总之,循环流化床燃烧技术是一种高效、低污染、可持续的燃烧技术,具有广泛的应用前景。

- 1 -。

关于低氮燃烧技术在循环流化床锅炉上的应用研究

关于低氮燃烧技术在循环流化床锅炉上的应用研究

关于低氮燃烧技术在循环流化床锅炉上的应用研究一、低氮燃烧技术的概念和特点低氮燃烧技术是指一种在燃烧过程中通过优化燃烧工艺和系统设计,降低燃烧产物中氮氧化物的产生量的技术。

其主要特点是在燃烧过程中通过调节燃料和空气的混合比例,控制燃烧温度和延长燃烧时间等手段,有效降低燃烧产物中NOx的含量,达到减少大气污染的目的。

二、循环流化床锅炉的特点循环流化床锅炉是一种采用流化床技术的燃煤锅炉,其燃烧时燃料在空气的作用下形成气固两相流态化状态,具有燃烧温度低、燃烧效率高、燃烧产物中NOx和SOx的排放量较低等特点,被广泛应用于工业锅炉和发电厂。

三、低氮燃烧技术在循环流化床锅炉上的应用研究1. 燃料优化研究表明,选择合适的燃料对降低NOx排放量具有重要意义。

丰富的氢含量和低的灰分含量的煤对降低NOx排放量具有积极作用。

在燃烧过程中对燃料进行预处理,如添加氢气或氨气等还原剂,能够有效减少NOx的生成。

2. 空气分配优化在循环流化床锅炉的燃烧中,通过合理控制空气分配,使其与燃料充分混合,可以有效降低NOx的排放量。

采用二次空气等技术进行空气分配优化,能够有效提高燃烧效率和降低NOx排放。

3. 燃烧温度控制研究表明,降低燃烧温度是降低NOx排放的有效手段之一。

通过优化燃烧过程中的温度分布,使燃烧温度保持在适当范围内,能够有效减少燃烧产物中NOx的含量。

4. 燃烧时间延长通过延长燃烧时间,使燃料在燃烧过程中充分燃烧和混合,可以降低燃烧产物中NOx 的含量。

采用再循环燃气等技术,能够有效延长燃烧时间,减少NOx的生成。

四、低氮燃烧技术在循环流化床锅炉上的应用前景低氮燃烧技术在循环流化床锅炉上的应用研究具有广阔的应用前景。

随着环保政策的不断加大力度,对排放标准的要求也日益提高,低氮燃烧技术在循环流化床锅炉上的应用将会越来越受到重视。

随着相关技术的不断进步和成熟,低氮燃烧技术将会在循环流化床锅炉领域得到广泛应用,为环保和节能做出更大的贡献。

CFB锅炉简介

CFB锅炉简介

C F B 锅炉一前言循环流化床燃烧技术是一种高效、低污染的洁净煤燃烧技术。

进入商业化以来,因其燃料的适应性强、污染物排放低、运行良好等优点得到了迅速发展。

德国鲁奇(Lurqi)和芬兰奥斯龙(Ahlstrom)是研究开发CFB燃烧技术最早的公司,在长期实践和大量试验基础上形成了各具特色的循环流化床锅炉技术流派,并将其技术转让给其它一些锅炉制造商,为循环流化床锅炉技术的不断发展作出了历史贡献。

1 CFB锅炉主要优点:燃料适应性广燃烧效率高高效脱硫NO x等污染物排放低燃烧强度低,炉膛截面小给煤点少,燃料预处理系统简单灰渣易于综合利用负荷调节快,调节范围大二国外CFB锅炉的发展1德国鲁奇(Lurqi)公司是世界上最早从事循环流化床锅炉技术研究与开发的公司之一。

Lurqi型循环流化床锅炉技术、结构特点:循环系统由循环流化床燃烧室、高温热旋风分离器、外置式低速流化床热交换器(EXE)和机械分流回灰伐组成,靠调节通过外置式热交换器灰量来控制床温,负荷调节比为3:1,燃烧效率99%,当C a/s=1.1~2.0时,脱硫效率为85~90%,NO X排放100~200PPm.鲁奇(Lurqi)公司技术转让给:原美国CE、原法国Stein、意大利Ansaldo、英格兰NEL、印度BHEL、日本MHI 韩国KHIC等。

ALSTOM-Stein充分利用利用外置式热交换器的优越性,主要致力于CFB锅炉大型化开发工作。

其世界上第一座上250MWCFB锅炉,1995年顺利投运标志着大型化CFB锅炉技术已经成熟。

ALSTOM-CE致力于CFB锅炉大型化开发工作的同时,积极进行外置式热交换器与炉膛布置成一体化的研究,解决了外置式热交换器占地面积大、布置困难的问题,简化了锅炉的正体布置。

2 芬兰奥斯龙(AHLSTROM)是另一个主要研发CFB锅炉制造商,其Pyroflow型CFB锅炉销量占世界销量的一半。

Pyroflow型CFB锅炉结构特点:采用高温热旋风分离器、无外置换热器、采用非机械密封伐回灰、靠调节风量配比来控制床温、负荷调节比为4:1,燃烧效率97~99%,当C a/s=1.8~2.0时,脱硫效率为90%,NO X排放50~250PPm.该公司技术转让给:德国EVT、英国Babcock、奥地利AE公司等AHLSTROM设计了3台235MWCFB锅炉在1998年和2000年投运,证明了不采用外置换热器机组容量也可以达到200MW以上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循环流化床燃烧技术循环流化床燃烧(CFBC)技术系指小颗粒的煤与空气在炉膛内处于沸腾状态下,即高速气流与所携带的稠密悬浮煤颗粒充分接触燃烧的技术。

循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,燃煤和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。

石灰石受热分解为氧化钙和二氧化碳。

气流使燃煤、石灰颗粒在燃烧室内强烈扰动形成流化床,燃煤烟气中的SO2与氧化钙接触发生化学反应被脱除。

为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰送回燃烧室参与循环利用。

钙硫比达到2~2.5左右时,脱硫率可达90%以上。

流化床燃烧方式的特点是:1.清洁燃烧,脱硫率可达80%~95%,NO x排放可减少50%;2.燃料适应性强,特别适合中、低硫煤;3.燃烧效率高,可达95%~99%;4.负荷适应性好。

负荷调节范围30%~100%。

循环流化床锅炉主要由燃烧系统、气固分离循环系统、对流烟道三部分组成。

其中燃烧系统包括风室、布风板、燃烧室、炉膛、给煤系统等几部分;气固分离循环系统包括物料分离装置和返料装置两部分;对流烟道包括过热器、省煤器、空气预热器等几部分。

循环流化床锅炉属低温燃烧。

燃料由炉前给煤系统送入炉膛,送风一般设有一次风和二次风,有的生产厂加设三次风,一次风由布风板下部送入燃烧室,主要保证料层流化;二次风沿燃烧室高度分级多点送入,主要是增加燃烧室的氧量保证燃料燃烬;三次风进一步强化燃烧。

燃烧室内的物料在一定的流化风速作用下,发生剧烈扰动,部分固体颗料在高速气流的携带下离开燃烧室进入炉膛,其中较大颗料因重力作用沿炉膛内壁向下流动,一些较小颗料随烟气飞出炉膛进入物料分离装置,炉膛内形成气固两相流,进入分离装置的烟气经过固气分离,被分离下来的颗料沿分离装置下部的返料装置送回到燃烧室,经过分离的烟气通过对流烟道内的受热面吸热后,离开锅炉。

因为循环流化床锅炉设有高效率的分离装置,被分离下来的颗料经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,因此循环流化床锅炉不同于常规锅炉炉膛仅有的辐射传热方式,而且还有对流及热传等传热方式,大大提高了炉膛的传导热系数,确保锅炉达到额定出力。

循环流化床锅炉概述循环流化床锅炉是一种高效、低污染的节能产品。

自问世以来,在国内外得到了迅速的推广与发展。

但由于循环流化床锅炉自身的特点,在运行操作时不同于层燃炉和煤粉炉,如果运行中不能满足其对热工参数的特殊要求,极易酿成事故。

而目前有关循环流化床锅炉操作运行方面的资料还较少,笔者根据几年来锅炉设计及现场调试的经验,对循环流化床锅炉运行参数的控制与调整作了一下简述,希望能对锅炉运行人员有所启发。

1 循环流化床锅炉总体结构循环流化床锅炉主要由燃烧系统、气固分离循环系统、对流烟道三部分组成。

其中燃烧系统包括风室、布风板、燃烧室、炉膛、给煤系统等几部分;气固分离循环系统包括物料分离装置和返料装置两部分;对流烟道包括过热器、省煤器、空气预热器等几部分。

2 循环流化床锅炉燃烧及传热特性循环流化床锅炉属低温燃烧。

燃料由炉前给煤系统送入炉膛,送风一般设有一次风和二次风,有的生产厂加设三次风,一次风由布风板下部送入燃烧室,主要保证料层流化;二次风沿燃烧室高度分级多点送入,主要是增加燃烧室的氧量保证燃料燃烬;三次风进一步强化燃烧。

燃烧室内的物料在一定的流化风速作用下,发生剧烈扰动,部分固体颗料在高速气流的携带下离开燃烧室进入炉膛,其中较大颗料因重力作用沿炉膛内壁向下流动,一些较小颗料随烟气飞出炉膛进入物料分离装置,炉膛内形成气固两相流,进入分离装置的烟气经过固气分离,被分离下来的颗料沿分离装置下部的返料装置送回到燃烧室,经过分离的烟气通过对流烟道内的受热面吸热后,离开锅炉。

因为循环流化床锅炉设有高效率的分离装置,被分离下来的颗料经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,因此循环流化床锅炉不同于常规锅炉炉膛仅有的辐射传热方式,而且还有对流及热传等传热方式,大大提高了炉膛的传导热系数,确保锅炉达到额定出力。

3 循环流化床锅炉主要热工参数的控制与调整3.1 料层温度料层温度是指燃烧密相区内流化物料的温度。

它是一个关系到锅炉安全稳定运行的关键参数。

料层温度的测定一般采用不锈钢套管热电偶作一次元件,布置在距布风板200-500mm左右燃烧室密相层中,插入炉墙深度15-25mm,数量不得少于2只。

在运行过程中要加强对料层温度监视,一般将料层温度控制在850℃-950℃之间,温度过高,容易使流化床体结焦造成停炉事故;温度太低易发生低温结焦及灭火。

必须严格控制料层温度最高不能超过970℃,最低不应低于800℃。

在锅炉运行中,当料层温度发生变化时,可通过调节给煤量、一次风量及送回燃烧室的返料量,调整料层温度在控制范围之内。

如料层温度超过970℃时,应适当减少给煤量、相应增加一次风量并减少返料量,使料层温度降低;如料层温度低于80 0℃时,应首先检查是否有断煤现象,并适当增加给煤量,减少一次风量,加大返料量,使料层温度升高。

一但料层温度低于700℃,应做压火处理,需待查明温度降低原因并排除后再启动。

3.2 返料温度返料温度是指通过返料器送回到燃烧室中的循环灰的温度,它可以起到调节料层温度的作用。

对于采用高温分离器的循环流化床锅炉,其返料温度较高,一般控制返料温度高出料层温度20-30℃,可以保证锅炉稳定燃烧,同时起到调整燃烧的作用。

在锅炉运行中必须密切监视返料温度,温度过高有可能造成返料器内结焦,特别是在燃用较难燃的无烟煤时,因为存在燃料后燃的情况,温度控制不好极易发生结焦,运行时应控制返料温度最高不能超过1000℃。

返料温度可以通过调整给煤量和返料风量来调节,如温度过高,可适当减少给煤量并加大返料风量,同时检查返料器有无堵塞,及时清除,保证返料器的通畅。

3.3 料层差压料层差压是一个反映燃烧室料层厚度的参数。

通常将所测得的风室与燃烧室上界面之间的压力差值作为料层差压的监测数值,在运行都是通过监视料层差压值来得到料层厚度大小的。

料层厚度越大,测得的差压值亦越高。

在锅炉运行中,料层厚度大小会直接影响锅炉的流化质量,如料层厚度过大,有可能引起流化不好造成炉膛结焦或灭火。

一般来说,料层差压应控制在7000-9000Pa之间。

料层的厚度(即料层差压)可以通过炉底放渣管排放底料的方法来调节。

用户在使用过程中,应根据所燃用煤种设定一个料层差压的上限和下限作为排放底料开始和终止的基准点。

3.4 炉膛差压炉膛差压是一个反映炉膛内固体物料浓度的参数。

通常将所测得的燃烧室上界面与炉膛出口之间的压力差作为炉膛差压的监测数值。

炉膛差压值越大,说明炉膛内的物料浓度越高,炉膛的传热系数越大,则锅炉负荷可以带得越高,因此在锅炉运行中应根据所带负荷的要求,来调节炉膛差压。

而炉膛差压则通过锅炉分离装置下的放灰管排放的循环灰量的多少来控制,一般炉膛差压控制在500-2000Pa之间。

用户根据燃用煤种的灰份和粒度设定一个炉膛差压的上限和下限作为开始和终止循环物料排放的基准点。

此外,炉膛差压还是监视返料器是否正常工作的一个参数。

在锅炉运行中,如果物料循环停止,则炉膛差压会突然降低,因此在运行中需要特别注意。

4 需要特别说明的几个问题4.1 返料量控制返料量是循环流化床锅炉运行操作时不同于常规锅炉之处,根据前面提到的循环流化床锅炉燃烧及传热的特性,返料量对循环流化床锅炉的燃烧起着举足轻重的作用,因为在炉膛里,返料灰实质上是一种热载体,它将燃烧室里的热量带到炉膛上部,使炉膛内的温度场分布均匀,并通过多种传热方式与水冷壁进行换热,因此有较高的传热系数,(其传热效率约为煤粉炉的4-6倍)通过调整返料量可以控制料层温度和炉膛差压并进一步调节锅炉负荷。

另一方面,返料量的多少与锅炉分离装置的分离效率有着直接的关系,也就是说,分离器的分离效率越高,分离出的烟气中的灰量就越大,从而锅炉对负荷的调节富裕量就越大,操作运行相对就容易一些。

4.2 风量的调整在锅炉运行过程中,许多用户往往只靠风门开度的大小来调节风量,但对于循环流化床锅炉来说,其对风量的控制就要求比较准确。

对风量的调整原则是在一次风量满足流化的前提下,相应地调整二次风和三次风量。

因为一次风量的大小直接关系到流化质量的好坏,循环流化床锅炉在运行前都要进行冷态试验,并作出在不同料层厚度(料层差压)下的临界流化风量曲线,在运行时以此作为风量调整的下限,如果风量低于此值,料层就可能流化不好,时间稍长就会发生结焦。

对二次风量的调整主要是依据烟气中的含氧量多少,通常以过热器后的氧量为准,一般控制在3-5%左右,如含氧量过高,说明风量过大,会增加锅炉的排烟热损失q 2;如过小又会引起燃烧不完全,增加化学不完全燃烧损失q 3和机械不完全燃烧损失q 4。

如果在运行中总风量不够,应逐渐加大鼓引风量,满足燃烧要求,并不断调节一二三次风量,使锅炉达到最佳的经济运行指标。

循环流化床锅炉基本讲述循环流化床锅炉技术是近几十年来迅速发展起来的一项高效低污染清洁燃煤技术。

国际上这项技术在电站锅炉,工业锅炉和废弃物处理利用等领域已得到广泛的商业应用,并向几十万千瓦给规模的大型循环流化床锅炉发展。

国内在这方面的研究、开发和应用也是方兴未艾,已有上百台循环流化床锅炉投入运行或正在制造之中,可以预见,未来的几年将是循环流化床飞速发展的一个重要时期。

现根据我国近几年来出版的关于循环流化床锅炉理论设计与运行中有关循环流化床锅炉的原理、特点、启动和运行等方面的情况介绍如下:一、循环流化床锅炉的工作原理:(一)流态化过程:当流体向上流动流过颗粒床层时,其运行状态是变化的。

流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过。

当流速增加到某一速度之后,颗粒不再由分布板所支持,而全部由流体的摩擦力所承托。

此时对于单个颗粒来讲,它不再依靠与其他邻近颗粒的接触面维持它的空间位置。

相反地,在失去了以前的机械支承后,每个颗粒可在床层中自由运动;就整个床层面言,具有了许多类似流体的性质。

这种状态就被称为流态化。

颗粒床层从静止状态转变为流态化时的最低速度,称为临界流化速度。

流化床类似流体的性质主要有以下几点(1)在任一高度的静止近似于在此高度以上单位床截面内固体颗粒的重量。

(2)无论床层如何倾斜,床表面总是保持水平,床层的形状也保持容器的形状;(3)床内固体颗粒可以像流体一样从底部或侧面的孔口中排出;(4)密度高于床层表观察的物体化床内会下沉,密度小的物体会浮在床面上;(5)床内颗粒混合良好,颗粒均匀分散于床层中,称之为“散式”流态化。

因此,当加热床层时,整个床层的温度基本均匀。

而一般的气、固体态化,气体并不均匀地流过颗粒床层。

相关文档
最新文档