理论力学-运动学基础
理论力学6—刚体的基本运动

§6-5 以矢量表示角速度和角加速度.以矢积表示点的速度和加速度
1、角速度矢量和角加速度矢量
角速度矢量
dj
ww
dt
大小
角速度矢沿轴线,弯向表示刚体转动的方向。
指向用右手螺旋法则。
w wk
角加速度矢量
dw dw
k k
dt
dt
§6-5 以矢量表示角速度和角加速度.以矢积表示点的速度和加速度
2
例6-6
某定轴转动刚体通过点M0(2,1,3),其角速度矢w 的方向
余弦为0.6,0.48,0.64,角速度 的大小ω=25rad/s 。求:刚体上点
M(10,7,11)的速度矢。
解:角速度矢量
w wn
其中 n (0.6,0.48,0.64)
M点相对于转轴上一点M0的矢径
r rM rM0 10,7,11 2,1,3 8,6,8
Z2=60,Z3=12,Z4=70。(a)求减速箱的总减速比i13 ;(b)如
果n1=3000r/min,求n3.
1
n1
2
n2
3
n3
4
解:求传动比:
n1 n1 n2 Z 2 Z 4
i13
34.8
n3 n2 n3 Z1 Z 3
则有:
n1 3000
n3
86r / min
i13
4 rad
dw dw d
dw
w
dt
d dt
d
dw
w
0.2
d
解:
w
w wdw
0
理论力学-5-运动学基础

ds =v =s dt
dv at s dt
an
v
2
a a a
2 τ
2 n
5.1 点的运动学
自然轴系
自然轴系
当运动轨迹为空间曲线时,弧坐标系中所得 到的结论同样成立,只需将弧坐标系扩展为自然 轴系。
5.1 点的运动学
自然轴系P-TNB
B(副法线) N(主法线)
0
dτ n d
5.1 点的运动学
τ vτ av
τ
弧坐标法
τ ?
ds =v =s dt
dτ dτ d ds dt d ds dt
dτ n d
d 1 曲率 ds
a at an at τ an n
速度方向的变化率 法向加速度
xA OC CM R
M
即
CM v0t R R
v0t x OC AM sin v t R sin 0 R 于是M点的运动方程为: vt y AC AM cos R R cos 0 R
5.1 点的运动学
v0t x OC AM sin v t R sin 0 R vt y AC AM cos R R cos 0 R
切线方向的单位矢量为t ,则有 r ds lim τ =v = s t 0 s dt t指向弧坐标s增加的方向。 动点的速度为
τ v vτ s
速度方向
速度大小
5.1 点的运动学
弧坐标法
加速度
dτ dτ d ds dt d ds dt dτ d 1 ds 曲率 ? =v =s ds d dt τ
理论力学知识点总结

理论力学知识点总结理论力学是研究物体运动规律的一门基础物理学科,它主要研究在力的作用下物体的运动状态。
以下是理论力学的知识点总结:1. 基本概念- 力:物体间的相互作用,可以改变物体的运动状态。
- 质量:物体所含物质的多少,是物体惯性大小的量度。
- 惯性:物体保持其运动状态不变的性质。
- 运动:物体位置随时间的变化。
- 静止:物体相对于参照系位置不发生改变的状态。
2. 牛顿运动定律- 第一定律(惯性定律):物体在没有外力作用下,将保持静止或匀速直线运动。
- 第二定律(加速度定律):物体的加速度与作用力成正比,与物体质量成反比,方向与作用力方向相同。
- 第三定律(作用与反作用定律):对于任何两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。
3. 功和能- 功:力在物体上做功,等于力与位移的乘积,是能量转化的量度。
- 动能:物体由于运动而具有的能量,与物体质量和速度的平方成正比。
- 势能:物体由于位置而具有的能量,与物体位置有关。
- 机械能守恒定律:在没有非保守力做功的情况下,系统的机械能(动能加势能)保持不变。
4. 动量和角动量- 动量:物体运动状态的量度,等于物体质量与速度的乘积。
- 角动量:物体绕某一点旋转运动状态的量度,等于物体质量、速度与该点到物体距离的乘积。
- 动量守恒定律:在没有外力作用的系统中,系统总动量保持不变。
- 角动量守恒定律:在没有外力矩作用的系统中,系统总角动量保持不变。
5. 刚体运动- 平动:刚体上所有点的运动状态相同,即刚体整体移动。
- 转动:刚体绕某一点或某一轴的旋转运动。
- 刚体的转动惯量:衡量刚体对转动的抵抗程度,与刚体的质量分布和旋转轴的位置有关。
6. 振动和波动- 简谐振动:物体在回复力作用下进行的周期性振动,其运动方程为正弦或余弦函数。
- 阻尼振动:在阻尼力作用下的振动,振幅随时间逐渐减小。
- 波动:能量在介质中的传播,包括横波和纵波。
7. 分析力学- 拉格朗日力学:通过拉格朗日量(动能减势能)来描述物体的运动。
理论力学概述

理论力学理论力学(theoretical mechanics)是研究物体机械运动的基本规律的学科。
是力学的一个分支。
它是一般力学各分支学科的基础。
理论力学通常分为三个部分: 静力学、运动学与动力学。
静力学研究作用于物体上的力系的简化理论及力系平衡条件;运动学只从几何角度研究物体机械运动特性而不涉及物体的受力;动力学则研究物体机械运动与受力的关系。
动力学是理论力学的核心内容。
理论力学的研究方法是从一些由经验或实验归纳出的反映客观规律的基本公理或定律出发, 经过数学演绎得出物体机械运动在一般情况下的规律及具体问题中的特征。
理论力学中的物体主要指质点、刚体及刚体系, 当物体的变形不能忽略时, 则成为变形体力学(如材料力学、弹性力学等)的讨论对象。
静力学与动力学是工程力学的主要部分。
理论力学建立科学抽象的力学模型(如质点、刚体等)。
静力学和动力学都联系运动的物理原因——力, 合称为动理学。
有些文献把kinetics和dynamics看成同义词而混用, 两者都可译为动力学, 或把其中之一译为运动力学。
此外, 把运动学和动力学合并起来, 将理论力学分成静力学和动力学两部分。
理论力学依据一些基本概念和反映理想物体运动基本规律的公理、定律作为研究的出发点。
例如, 静力学可由五条静力学公理演绎而成;动力学是以牛顿运动定律、万有引力定律为研究基础的。
理论力学的另一特点是广泛采用数学工具, 进行数学演绎, 从而导出各种以数学形式表达的普遍定理和结论。
总述理论力学是大部分工程技术科学的基础, 也称经典力学。
其理论基础是牛顿运动定律。
20世纪初建立起来的量子力学和相对论, 表明牛顿力学所表述的是相对论力学在物体速度远小于光速时的极限情况, 也是量子力学在量子数为无限大时的极限情况。
对于速度远小于光速的宏观物体的运动, 包括超音速喷气飞机及宇宙飞行器的运动, 都可以用经典力学进行分析。
理论力学从变分法出发, 最早由拉格朗日《分析力学》作为开端, 引出拉格朗日力学体系、哈密顿力学体系、哈密顿-雅克比理论等, 是理论物理学的基础学科。
理论力学运动学基础

第五章运动学基础一、是非题1.已知直角坐标描述的点的运动方程为X=f1(t),y=f2(t),z=f3(t),则任一瞬时点的速度、加速度即可确定。
()2.一动点如果在某瞬时的法向加速度等于零,而其切向加速度不等于零,尚不能决定该点是作直线运动还是作曲线运动。
()3.切向加速度只表示速度方向的变化率,而与速度的大小无关。
()4.由于加速度a永远位于轨迹上动点处的密切面内,故a在副法线上的投影恒等于零。
()5.在自然坐标系中,如果速度υ=常数,则加速度α=0。
()6.在刚体运动过程中,若其上有一条直线始终平行于它的初始位置,这种刚体的运动就是平动。
()7.刚体平动时,若刚体上任一点的运动已知,则其它各点的运动随之确定。
()8.若刚体内各点均作圆周运动,则此刚体的运动必是定轴转动。
()9.定轴转动刚体上点的速度可以用矢积表示为v=w×r,其中w是刚体的角速度矢量,r是从定轴上任一点引出的矢径。
()10、在任意初始条件下,刚体不受力的作用、则应保持静止或作等速直线平动。
()二、选择题1、已知某点的运动方程为S=a+bt2(S以米计,t以秒计,a、b为常数),则点的轨迹。
①是直线;②是曲线;③不能确定。
2、一动点作平面曲线运动,若其速率不变,则其速度矢量与加速度矢量。
①平行;②垂直;③夹角随时间变化。
3、刚体作定轴转动时,切向加速度为,法向加速度为。
①r×ε②ε×r③ω×v④v×ω4、杆OA绕固定轴O转动,某瞬时杆端A点的加速度α分别如图(a)、(b)、(c)所示。
则该瞬时的角速度为零,的角加速度为零。
①图(a)系统;②图(b)系统;③图(c)系统。
三、填空题1、点在运动过程中,在下列条件下,各作何种运动?①aτ=0,a n=0(答):;②aτ≠0,a n=0(答):;③aτ=0,a n≠0(答):;④aτ≠0,a n≠0(答):;2、杆O1B以匀角速ω绕O1轴转动,通过套筒A带动杆O2A绕O2轴转动,若O1O2=O2A=L,α=ωt,则用自然坐标表示(以O1为原点,顺时针转向为正向)的套筒A 的运动方程为s=。
理论力学教材知识点总结

理论力学教材知识点总结1. 牛顿运动定律牛顿运动定律是理论力学的基础,它包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
牛顿第一定律:一个物体如果受到合外力作用,将保持静止状态或匀速直线运动状态。
这一定律反映出了物体的运动状态与外力的关系。
牛顿第二定律:物体的加速度与作用在其上的合外力成正比,与物体的质量成反比。
即F=ma,其中F为合外力,m为物体的质量,a为物体的加速度。
牛顿第三定律:任何两个物体之间的相互作用都是相等的,方向相反。
即作用力等于反作用力,它们的方向相反,大小相等。
这三条定律是理论力学的基石,它们为我们理解物体的运动提供了基本的规律。
在学习理论力学的过程中,我们要深刻理解这些定律,并能够灵活运用它们来解决实际问题。
2. 力的概念力是物体之间相互作用的表现,它是导致物体产生加速度的原因。
力的大小可以用牛顿(N)作为单位来表示,力的方向对物体的运动状态有着重要的影响。
在学习力的概念时,我们要了解各种不同类型的力,例如重力、弹力、摩擦力、弦力等,以及它们的性质和作用规律。
3. 动力学动力学是研究物体运动状态变化规律的学科,它包括物体的运动参数、牛顿第二定律、动量定理、动量守恒定律等内容。
动量是描述物体运动状态的物理量,它等于物体质量乘以速度。
动量定理指出,当合外力作用于物体时,物体的动量将发生改变,这个变化率等于作用力的大小与方向。
动量守恒定律说明了在某些特定条件下,物体的总动量是守恒的,即在某个过程中总动量保持不变。
通过学习动力学,我们可以更好地理解物体的运动状态变化规律,掌握物体的动量和动能等重要概念。
4. 静力学静力学是研究物体静止状态和平衡的学科,它包括物体受力平衡条件、力的分解、受力分析等内容。
物体受力平衡条件是指物体受到的各个力的合力和合力矩均为零时,物体处于平衡状态。
通过受力平衡条件,我们可以分析物体受力的情况,判断物体的平衡状态。
力的分解是指将一个斜面上的力分解为平行于斜面和垂直于斜面的两个分力,这样可以更好地分析斜面上物体的运动状态。
理论力学运动学知识点总结

理论力学运动学知识点总结第一篇:理论力学运动学知识点总结运动学重要知识点一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。
2.刚体平行移动。
·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。
·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。
·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。
3.刚体绕定轴转动。
• 刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。
• 刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。
• 角速度ω表示刚体转动快慢程度和转向,是代数量,以用矢量表示。
,当α与ω。
角速度也可• 角加速度表示角速度对时间的变化率,是代数量,同号时,刚体作匀加速转动;当α 与ω异号时,刚体作匀减速转动。
角加速度也可以用矢量表示。
• 绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。
速度、加速度的代数值为。
• 传动比。
一、点的运动合成知识点总结1.点的绝对运动为点的牵连运动和相对运动的合成结果。
• 绝对运动:动点相对于定参考系的运动;• 相对运动:动点相对于动参考系的运动;• 牵连运动:动参考系相对于定参考系的运动。
2.点的速度合成定理。
• 绝对速度:动点相对于定参考系运动的速度;• 相对速度:动点相对于动参考系运动的速度;• 牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。
3.点的加速度合成定理。
• 绝对加速度:动点相对于定参考系运动的加速度;• 相对加速度:动点相对于动参考系运动的加速度;• 牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度;• 科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。
• 当动参考系作平移或 = 0,或与平行时,= 0。
理论力学-运动学

绝对运动 = 相对运动 + 牵连运动
三、 点的合成运动
3、速度合成定理
G GG va = vr + ve
绝对速度
相对速度
牵连速度
牵连速度 —— 动系上与动点重合之点 (牵连点)的绝对速度,称为牵连速度。
三、 点的合成运动
4、加速度合G成定理G G G aa = ae + ar + aC
运动学的主要内容 研究物体运动的几何性质
运动学所涉及的研究内容包括: 1、 建立物体的运动方程 2、 分析运动的速度、加速度、
角速度、角加速度等 3、 研究运动的分解与合成规律
一、 点的运动学
采用以下三种方法研究点的运动方程、 运动的速度和加速度:
U 描述点运动的矢量法 U 描述点运动的直角坐标法 U 描述点运动的自然法
(2)投影法 vB= vA+ vBA
vBcosϕ= vAcosθ
y y´ vBA vB
S
Bϕ
ω
vA
Aθ
x´
O
vA x
速度投影定理:平面图形上任意两点的速度 在这两点连线上的投影相等。
2、平面图形内各点的速度
(3)瞬心法
vC = 0
vA= vAC
vA= vC+ vAC
vA = ω ⋅ AC vB = ω ⋅ CB
y
G j+
G z k =
vx
G i + vy
G j + vz
G k
vx = x , vy = y , vz = z
(aG3=)vG加 =速x度iG+
y
G j+
G zk =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章运动学基础
一、是非题
1.已知直角坐标描述的点的运动方程为X=f1(t),y=f2(t),z=f3(t),则任一瞬时点的速度、加速度即可确定。
()2.一动点如果在某瞬时的法向加速度等于零,而其切向加速度不等于零,尚不能决定该点是作直线运动还是作曲线运动。
()3.切向加速度只表示速度方向的变化率,而与速度的大小无关。
()4.由于加速度永远位于轨迹上动点处的密切面内,故在副法线上的投影恒等于零。
()5.在自然坐标系中,如果速度υ=常数,则加速度α=0。
()6.在刚体运动过程中,若其上有一条直线始终平行于它的初始位置,这种刚体的运动就是平动。
()7.刚体平动时,若刚体上任一点的运动已知,则其它各点的运动随之确定。
()8.若刚体内各点均作圆周运动,则此刚体的运动必是定轴转动。
()9.定轴转动刚体上点的速度可以用矢积表示为v=w×,其中w是刚体的角速度矢
量,r是从定轴上任一点引出的矢径。
()
10、在任意初始条件下,刚体不受力的作用、则应保持静止或作等速直线平动。
()
二、选择题
1、已知某点的运动方程为S=a+bt2(S以米计,t以秒计,a、b为常数),则点的轨迹。
①是直线;②是曲线;③不能确定。
2、一动点作平面曲线运动,若其速率不变,则其速度矢量与加速度矢量。
①平行;②垂直;③夹角随时间变化。
3、刚体作定轴转动时,切向加速度为,法向加速度为。
①×②×
③×④×
4、杆OA绕固定轴O转动,某瞬时杆端A点的加速度
分别如图(a)、(b)、(c)所示。
则该瞬时的角速度为零,
的角加速度为零。
①图(a)系统;②图(b)系统;③图(c)系统。
三、填空题
1、点在运动过程中,在下列条件下,各作何种运动?
①a τ=0,a n =0(答):;
②a τ≠0,a n =0(答):;
③a τ=0,a n ≠0(答):;
④a τ≠0,a n ≠0(答):;
2、杆O 1 B 以匀角速ω绕O 1轴转动,通过套筒A 带
动杆O 2A 绕O 2轴转动,若O 1O 2=O 2A=L ,α=ωt ,则用自
然坐标表示(以O 1为原点,顺时针转向为正向)的套筒A
的运动方程为s=。
3、已知点沿半径为R 的圆周运动,其规律为①S=20t ;②S=20t 2(S 以厘米计,t 以秒计),若t=1秒,R=40厘米,则上述两种情况下点的速度为①,②;点的加速度为①,②。
4、图示平面机构中,刚性板AMB 与杆O 1 A 、O 2 B
铰接,若O 1 A=O 2 B ,O 1O 2=AB ,在图示瞬时,O 1A 杆角
速度为ω,角加速度为ε,则M 点的速度大小为;M 点的
加速度大小为。
(方向均应在图中表示)。
5、已知图示平行四边形O 1 AB O 2机构的O 1 A 杆以匀
角速度ω绕O 1轴转动,则D 的速度为,加速度为。
(二者
方向要在图上画出)。
6、齿轮半径为r ,绕定轴O 转动,并带动齿条AB 移
动。
已知某瞬时齿轮的角速度为ω,角加速度为ε,齿轮
上的C 点与齿条上的C '点相接触,则C 点的加速度大小为;
C '点的加速度大小为。
(方向均应表示在图上)。
7、双直角曲杆可绕O 轴转动,图示瞬时A 点的加速
度a A =30cm/s 2,方向如图。
则B 点加速度的大小为cm/s 2,
方向与直线成角。
8、曲杆ABC 在图示平面内可绕O 轴转动,已知某瞬
时A 点的加速度(单位为m/s 2),则该瞬时曲杆上B 点
的加速度为。
(可用分量表示)。
9、绕在轮O2上的绳子的一端系住物块A,使其沿固定杆CD滑动,已知:r1=40cm,r2=50cm,ω1=10rad/s,图示瞬时有α=β=30°,则物块A沿CD杆运动的速度的大小为,方向在图中画出。
第五章运动学基础参考答案
一、是非题
1、对
2、对
3、错
4、对
5、错
6、错
7、对
8、错
9、对10、错
二、选择题
1、③
2、②
3、②③
4、①③
三、填空题
1、(1)匀速直线;(2)变速直线;(3)匀速曲线;(4)变速曲线。
2、L(π+2ωt)
3、速度:①20cm/s;②40cm/s;
加速度:①10cm/s;②402cm/s;
4、υM=υA=Lω;
a M=a A=L(ε2+ω4)1/2;
5、υD=υA=2rω;
a D=a A=2rω2。
6、a C=r(ε2+ω4) 1/2;
a C =rε。
7、50;OB;30°
8、32a m/s2(aτ=92a/5,a n=122a/5)
9、800cm/s。