第2讲 数形结合思想.ppt
小升初第2讲:数轴、相反数与倒数

(小升初) 备课教员:×××第二讲 数轴、相反数和倒数一、教学目标: 1. 能正确掌握数的分类,理解数轴、相反数与倒数的重要概念。
2. 给一个数能求出它的相反数,并且在数轴上表示,掌握求倒数的方法。
3. 通过相反数的几何意义,进一步渗透数形结合的思想;经历倒数的意义和形成过程,培养学生观察、分析、归纳、举例及语言表达能力。
二、教学重点: 数形结合,理解相反数及倒数的意义 三、教学难点: 相反数及倒数,及比较有理数的大小。
四、教学准备: PPT ,温度计 五、教学过程:第一课时(50分钟)一、导入(5分种)师:同学们,还记得上节课我们学了什么吗?谁能来说说? 生:有理数。
师:上节课我们是不是学了有理数?还记得有理数的分类吗? 生:师:有理数是不是可以分为正有理数、负有理数和零?那同学们看老师手上拿的是什么?(温度计) 生:温度计。
师:是的,那它形状是什么样的?上面的刻度和数字有什么样的特点? 生:……师:是不是也有正的和负的还有零? 生:……师:好,那么今天就来学习和温度计有相似之处的数轴。
我们课本也给了数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
这三个统称为数轴的三要素。
三者缺一不可。
板书课题:数轴、相反数和倒数数轴定义:规定了原点、正方向和单位长度的直线叫做数轴。
相反数:数值相反的两个数,我们就说其中一个数是另一个数的相反数。
倒数:设一个数a 与其相乘的积为1的数,得到的a1就是a 的倒数。
二、星海遨游(43分钟) 例题一:(9分钟)如下图所示,数轴中正确的是( )。
师:同学们先看看这些数轴,发现了什么? 生:……师:我们可以先看看哪个是错的?是不是B 肯定是错的?因为它连原点都没有,再看看选项A 它少什么? 生:……师:是不是少了正方向?所以它也是不对的。
再看选项C ,它是哪里错了呢? 生:……师:因为我们已经判断了选项A 和选项B 是错的,那C 和D 肯定有一个是正确的,同学们看看C 和D 有什么不同的呢? 生:……师:它们是不是都有原点和正方向?但是大家仔细看一下选项C 的单位长度是不是不一样?0到-1的长度和0到1的长度都是一个单位长度,然而它们长度不一样,所以C 也是错的。
人教A版高考数学(文)复习课件 专题 数学思想方法第1部分专题7第2讲

设 lg(log210)=t,则 lg(lg2)=-t.由条件可知 f(t)=5,即 f(t)= at3+bsin t+4=5,所以 at3+bsin t=1,所以 f(-t)=-at3-bsin
t+4=-1+4=3.
答案 C
规律方法 复杂的数学问题常用换元法实现化归与转化,运用 “换元”把式子转化为有理式或使整式降幂等,或者把较复杂 的函数、方程、不等式问题转化为易于解决的基本问题.
▪分类讨论的常见类型:
▪(1)由数学概念引起的分类讨论:有的概念本身 就是分类的,如绝对值、直线斜率、指数函数、 对数函数等.
▪(2)由性质、定理、公式的限制引起的分类讨论: 有的定理、公式、性质是分类给出的,在不同 的条件下结论不一致,如等比数列的前n项和公 式、函数的单调性等.
▪(3)由数学运算和字母参数变化引起分类;如偶 次方根非负,对数的底数与真数的限制,方程 (不等式)的运算与根的大小比较,含参数的取 值不同会导致所得结果不同等.
3a1+3d=6, 8a1+28d=-4,
解得ad1==-3,1.
故 an=3-(n-1)=4-n.
(2)由(1)可得 bn=n·qn-1,于是 Sn=1·q0+2·q1+3·q2+…+n·qn-1. 若 q≠1,将上式两边同乘 q,得 qSn=1·q1+2·q2+…+(n-1)·qn-1+n·qn. 两式相减,得(q-1)Sn=nqn-1-q1-q2-…-qn-1 =nqn-qqn--11=nqn+1-qn-+11qn+1. 于是,Sn=nqn+1-q-n+112qn+1. 若 q=1,则 Sn=1+2+3+…+n=nn2+1.
▪历年高考中,化归与转化思想无处不在,我们 要不断培养和训练自觉的转化意识,将有利于 提高解决数学问题的应变能力,提高思维能力 和技能、技巧.
【名师伴你行】2021届高考理科数学二轮复习专题-提能专训2-第2讲-数形结合思想Word版含解析

提能专训(二) 数形结合思想一、选择题1.(2022·锦州质检)设全集U =R ,A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x x -2<0,B ={x |2x <2},则图中阴影部分表示的集合为()A .{x |x ≥1}B .{x |1≤x <2}C .{x |0<x ≤1}D .{x |x ≤1}[答案] B[解析] A =⎩⎪⎨⎪⎧x ⎪⎪⎪⎪⎭⎪⎬⎪⎫x x -2<0={x |0<x <2},B ={x |2x <2}={x |x <1},则题图中阴影部分表示的集合为A ∩∁R B ={x |0<x <2}∩{x |x ≥1}={x |1≤x <2}.2.(2022·唐山二模)已知函数f (x )=sin(ωx +φ)的部分图象如图所示,则f ⎝ ⎛⎭⎪⎫π2=()A .-32B .-22C.32 D.22[答案] B[解析] 由题图知,T =2⎝⎛⎭⎪⎫3π4-5π12=2π3,∴ω=2πT =3,∴f (x )=sin(3x +φ),代入点⎝ ⎛⎭⎪⎫5π12,0,得sin ⎝ ⎛⎭⎪⎫5π4+φ=0,则可取φ=-π4.∴f (x )=sin ⎝ ⎛⎭⎪⎫3x -π4,∴f ⎝ ⎛⎭⎪⎫π2=sin ⎝ ⎛⎭⎪⎫3π2-π4=sin 5π4=-22.3.(2022·临沂4月质检)当a >0时,函数f (x )=(x 2-ax )e x 的图象大致是()[答案] B[解析] f (x )=(x 2-ax )e x ,∵e x >0,∴当x ∈(0,a )时,f (x )<0;当x ∈(a ,+∞)时,f (x )>0,且增长很快.当x ∈(-∞,0)时,f (x )>0,由于e x 的影响,增长很慢.分析选项知,应选B.4.(2022·郑州质检二)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2,y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4][答案]B[解析] 如图所示,不等式组表示的平面区域是△ABC 内部(含边界),x 2+y 2表示的是此区域内的点(x ,y )到原点距离的平方.从图中可知最短距离为原点到直线BC 的距离,其值为1;最远的距离为AO ,其值为2,故x 2+y 2的取值范围是[1,4].5.(2022·云南统检)已知圆M 经过双曲线S :x 29-y 216=1的一个顶点和一个焦点,圆心M 在双曲线S 上,则圆心M 到双曲线S 的中心的距离为( )A.134或73B.154或83C.133D.163 [答案] D[解析] 依题意可设圆心M 的坐标为(x 0,y 0).若圆M 经过双曲线同一侧的焦点与顶点,以右焦点F 与右顶点A 为例,由|MA |=|MF |知,x 0=3+52=4,代入双曲线方程可得y 0=±473,故M 到双曲线S 的中心的距离|MO |=x 20+y 20=163.若M经过双曲线的不同侧的焦点与顶点时,结合图形知不符合.故选D.6.(2022·衡水一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ,y ≥0,若目标函数z =ax +by (a ,b >0)的最大值是12,则a 2+b 2的最小值是( ) A.613 B.365 C.65 D.3613 [答案] D[解析] 作出可行域可得,z =ax +by 在x -y +2=0与3x -y -6=0的交点(4,6)处取最大值,即4a +6b =12.化简,得2a +3b =6,又∵(a 2+b 2)(22+32)≥(2a +3b )2,则a 2+b 2≥3613.7.对于图象Γ上的任意点M ,存在点N ,使得OM →·ON →=0,则称图象Γ为“美丽 图象”.下列函数的图象为“美丽 图象”的是( )A .y =2x +1B .y =log 3(x -2)C .y =2x D .y =cos x[答案] D[解析] 在y =2x +1图象上取点M (0,2),由于y =2x +1>0,所以在y =2x +1图象上不存在点N ,使OM →·ON →=0,排解A ;在y =log 3(x -2)图象上取点M (3,0),由于x >2,所以在y =log 3(x -2)图象不存在点N ,使OM →·ON →=0,排解B ;在y =2x 图象上取点M (1,2),在y =2x 图象上不存在点N ,使OM →·ON→=0,排解C.故选D. 8.过顶点在原点、焦点在x 轴正半轴上的抛物线C 的焦点F 的直线交抛物线于A ,B 两点,若|BF |=2|AF |=6,则抛物线的方程为( )A .y 2=8xB .y 2=4xC .y 2=2xD .y 2=x [答案] A[解析] 如图,设抛物线C 的方程为y 2=2px (p >0),分别过A ,B 作抛物线的准线的垂线,垂足分别为C ,D ,分别过点A ,F 作AM ⊥BD ,FN ⊥BD ,垂足分别为M ,N ,依据抛物线定义知|AC |=|AF |=3,|BD |=|BF |=6,所以|BM |=3,|BN |=6-p .易知△AMB ∽△FNB ,故|BM ||BN |=|AB ||BF |,即36-p =96,解得p =4,故抛物线C 的方程为y 2=8x ,故选A.9.(2022·唐山期末)f (x )=2sin πx -x +1的零点个数为( ) A .4 B .5 C .6 D .7 [答案] B[解析] 令2sin πx -x +1=0,则2sin πx =x -1,令h (x )=2sin πx ,g (x )=x -1,则f (x )=2sin πx -x +1的零点个数问题转化为两个函数h (x )与g (x )图象的交点个数问题.h (x )=2sin πx 的最小正周期为T =2ππ=2,画出两个函数的图象,如图所示,∵h (1)=g (1),h ⎝ ⎛⎭⎪⎫52>g ⎝ ⎛⎭⎪⎫52,g (4)=3>2,g (-1)=-2,∴两个函数图象的交点一共有5个,∴f (x )=2sin πx -x +1的零点个数为5.10.(2022·安阳调研)设函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数,如[-1.1]=-2,[π]=3.若直线y =kx +k (k >0)与函数f (x )的图象恰好有3个不同的交点,则实数k 的取值范围是( )A.⎝⎛⎭⎪⎫0,14 B.⎣⎢⎡⎭⎪⎫14,13 C.⎝⎛⎭⎪⎫13,1 D.⎣⎢⎡⎭⎪⎫14,1 [答案] B [解析]画出函数f (x )=⎩⎨⎧x -[x ],x ≥0,f (x +1),x <0,g (x )=k (x +1)(k >0)的图象,若直线y =kx +k (k >0)与函数y =f (x )的图象恰有三个不同的交点,结合图象可得:k PB ≤k <k P A ,∵k P A =12-(-1)=13,k PB =13-(-1)=14,∴14≤k <13,故选B.11.(2022·兰州、张掖联合诊断)设f (x )的定义域为D ,若f (x )满足下面两个条件则称f (x )为闭函数:①f (x )是D 上的单调函数;②存在[a ,b ]⊆D ,使f (x )在[a ,b ]上的值域为[a ,b ].现已知f (x )=2x +1+k 为闭函数,则k 的取值范围是( )A.⎝ ⎛⎦⎥⎤-1,-12 B .(-∞,1) C.⎣⎢⎡⎭⎪⎫12,1 D .(-1,+∞)[答案] A[解析] 如图,函数的定义域为x ∈-12,+∞,明显在定义域上函数f (x )单调递增,依题可知,在x ∈⎣⎢⎡⎭⎪⎫-12,+∞上,方程x -k =2x +1有两个不同的解,结合图象易得实数k 的取值范围为-1<k ≤-12.12.(原创题)已知集合A =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y =π24-x 2,B ={(x ,y )|y =tan 2x },C =A ∩B ,则集合C 的子集个数为( )A .2B .4C .8D .16 [答案] D[解析] 集合A 表示圆心为(0,0),半径为π2且在x 轴上方的半圆(包括与x 轴的两个交点),由于函数y =tan 2x 的周期为π2,画出函数y =π24-x 2与y =tan 2x 的图象(如图所示),由图知,函数y =π24-x 2与y =tan 2x 的图象有4个交点.由于C =A ∩B ,所以集合C 有四个元素,故集合C 的子集个数为24=16.故选D.二、填空题13.在平面直角坐标系xOy 中,已知圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,则实数c 的取值范围是________.[答案] (-13,13)[解析] 由题意知,当且仅当圆x 2+y 2=4的圆心到直线12x -5y +c =0的距离小于1时,圆x 2+y 2=4上有且只有四个点到直线12x -5y +c =0的距离为1,此时有d =|c |122+52<1,解得c ∈(-13,13).14.(2022·山西四校联考)已知f (x )=⎩⎪⎨⎪⎧e -x (x ≤0),x (x >0),g (x )=f (x )-x 2-b 有且仅有一个零点时,b 的取值范围是________.[答案] (-∞,0]∪⎩⎨⎧⎭⎬⎫12∪[1,+∞)[解析] 要使函数g (x )=f (x )-x2-b 有且仅有一个零点,只需要函数f (x )的图象与函数y =x2+b 的图象有且仅有一个交点,通过在同一坐标系中同时画出两个函数的图象并观看得,要符合题意,须满足b ≥1或b =12或b ≤0.15.(2022·温州十校联考)在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为________.[答案] 12[解析] 如图,△ABC 中,∠ACB 为钝角,AC =BC =1,记NA→=CA →-mCB →,则当N 在D 处,即AD ⊥BC 时,f (m )取得最小值32,因此|AD →|=32,简洁得到∠ACB =120°.∵CO →=xCA →+yCB →且x +y =1,∴O 在边AB 上,∴当CO ⊥AB 时,|C O →|最小,|C O →|min =12.三、解答题16.(2022·浙江抽测)已知抛物线C :y =x 2.过点M (1,2)的直线l 交C 于A ,B 两点.抛物线C 在点A 处的切线与在点B 处的切线交于点P.(1)若直线l 的斜率为1,求|AB |的值; (2)求△P AB 的面积的最小值.解:(1)设点A (x 1,y 1),B (x 2,y 2),由题意知,直线l 的方程为y =x +1,由⎩⎪⎨⎪⎧y =x +1,y =x 2消去y 解得,x 1=1+52,x 2=1-52. 所以|AB |=2⎪⎪⎪⎪⎪⎪1+52-1-52=10. (2)易知直线l 的斜率存在,设直线l 的方程为y =k (x -1)+2,设点A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x -1)+2,y =x2消去y 整理得, x 2-kx +k -2=0, x 1+x 2=k ,x 1x 2=k -2,又y ′=(x 2)′=2x ,所以抛物线y =x 2在点A ,B 处的切线方程分别为y =2x 1x-x 21,y =2x 2x -x 22.得两切线的交点P ⎝ ⎛⎭⎪⎫k 2,k -2.所以点P 到直线l 的距离d =|k 2-4k +8|2k 2+1.又|AB |=1+k 2(x 1+x 2)2-4x 1x 2 =1+k 2·k 2-4k +8.设△P AB 的面积为S ,所以S =12|AB |·d =14((k -2)2+4)3≥2(当k =2时取得等号).所以△P AB 面积的最小值为2.17.(2022·皖南八校二联)已知函数f (x )=ax +1+ln x x ,其中a ∈R . (1)若f (x )在定义域上单调递增,求实数a 的取值范围; (2)若函数g (x )=xf (x )有唯一零点,试求实数a 的取值范围. 解:(1)f ′(x )=a +1-ln x x 2=ax 2-ln x +1x 2, 又∀x >0,f ′(x )≥0, ∴ax 2-ln x +1≥0,∀x >0, ∴a ≥ln x -1x 2,令h (x )=ln x -1x 2,则h ′(x )=1x ·x 2-2x (ln x -1)x 4=3-2ln x x 3=0有根:x 0=e 32, x ∈(0,x 0),h ′(x )>0,函数h (x )单调增; x ∈(x 0,+∞),h ′(x )<0,函数h (x )单调减; ∴a ≥h (x )max =h (x 0)=12e 3;故实数a 的取值范围是⎣⎢⎡⎭⎪⎫12e 3,+∞. (2)由题g (x )=xf (x )=ax 2+x +ln x =0,即a =-x -ln xx 2有唯一正实数根, 令φ(x )=-x -ln xx 2,即函数y =a 与函数y =φ(x )有唯一交点, φ′(x )=⎝⎛⎭⎪⎫-1-1x x 2-(-x -ln x )2xx 4=x -1+2ln xx 3. 再令R (x )=x -1+2ln x ,R ′(x )=1+2x >0,∀x >0,R (x )为增函数,且易得R (1)=0.∴当x ∈(0,1)时,R (x )<0,φ′(x )<0,函数φ(x )单调递减; 当x ∈(1,+∞)时,R (x )>0,φ′(x )>0,函数φ(x )单调递增. 即φ(x )≥φ(1)=-1, 又当x →0时,φ(x )→+∞, 而当x →+∞时,φ(x )→0且φ(x )<0,故满足条件的实数a 的取值范围为:{a |a ≥0或a =-1}.。
高中数学七大基本思想方法讲解

在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法
第2讲直线与圆的位置关系复习课件人教新课标

知识网络
要点归纳
题型研修
题型三 函数方程思想
在直线与圆的位置关系中,涉及很多数量关系, 既有角的大小,也有线段的长度,在求它们的大 小时,有时不太方便,这时我们可以利用类似三 角形或有关定理建立以欲求量为未知数的函数或 方程,通过求函数的最值或解方程求出所要求的 量,这种函数方程的思想在直线与圆的位置关系 中有广泛的应用.
知识网络
要点归纳
题型研修
3.圆的切线的性质与判定 (1)圆的切线的性质 定理 圆的切线垂直于过切点的半径. 推论1 经过圆心且垂直于切线的直线必过切点. 推论2 经过切点且垂直于切线的直线必过圆心. (2)圆的切线的判定 定理 经过半径的外端点并且垂直于这条半径的直线是圆 的切线. (3)切线长定理:从圆外一点引圆的两条切线长相等. 推论 经过圆外的一个已知点和圆心的直线,平分从这点 向圆所作的两条切线所夹的角.
知识网络
要点归纳
题型研修
规律方法 本题综合性较强,在(1)的证明中,把 证明AF=DF的问题转化为证明AE=DE的问题, 进而又转化为证明∠DAE=∠ADE的问题;在(2) 的解答中,通过作辅助线,把求sin∠AED的问题 转化为求sin∠AEG的问题,进而转化为求AG, AE的问题;在(3)的解答中,把求S△ABC的问题转 化为求BC与AG的问题,如此等等,每一步都体 现着转化与化归的思想方法.
24 ∴sin∠AED=AAGE= 55xx=2245.
知识网络
要点归纳
题型研修
(3)解 ∵∠B=∠CAE,∠AEC=∠BEA, ∴△AEC∽△BEA. ∴AE2=EC·EB, ∴BE=AEEC2=255x2=10x.
2x ∴BD=5x,∴5x=10,∴x=2. 从而 AG=254x=458. ∴S△ABC=12BC·AG=125x+52x×254x=72.
2 苏科版七年级第一学期数学 有理数 数轴 第2课时 教学课件

⑤比-2大4的数是什么数?
⑥表示数a的点在原点的左侧,且到原点的距离是2,a是什么数?
02
二、定义
知识精讲
有理数的定义
m
我们就把能写成分数形式 (m、n是整数且n≠0)的数称为
n
有理数
———定义1
整数和分数统称为有理数
———定义2
02
知识精讲
话说前一回合,我们分析了分数与小数的关系
(2)将点A向右移动4个单位后的数是多少?这时三个点所表示的数谁最小?
(3)将C点向左移动6个单位后,这时点B所表示的数比点C表示的数大多少?
新知巩固
5.观察数轴,回答下列问题:
①有没有最大或最小的有理数?最大或最小的整数?最大或最小的
自然数吗?
②正整数和负整数有最大或最小?
③不小于-3的负整数有哪些?
2
4
新知巩固
3.在数轴上表示-4、-3、-2、-1、0、1、2、3、4,并根据数轴指出
所有大于-3 而小于4的整数.
-4
-3
-2
-1
0
1
2
3
4
5
新知巩固
例5.如图,点A、B、C为数轴上的3点,请回答下列问题:
A
-4
-3
B
-2
-1
C
0
1
2
3
4
(1)将点B向左移动3个单位后,三个点所表示的数谁最小?
有限小数
小数
分数
有理数
无限循环小数
无限小数
无限不循环小数,例:π、1.010010001…
∵有限小数、无限循环小数都可以化成分数
高考数学数形结合思想分析与讲解

高考数学数形结合思想分析与讲解所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;((4)以几何元素和几何条件为背景建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。
以“形”变“数” 虽然形有形象、直观的优点,但在定量方面还必须借助代数的计算,特别是对于较复杂的“形”,不但要正确的把图形数字化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行分析计算。
解题的基本思路:明确题中所给条件和所求的目标,分析已给出的条件和所求目标的特点和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题中用到的图形的用代数式表达出来,再根据条件和结论的联系,利用相应的公式或定理等。
“形”“数”互变“形”“数”互变是指在有些数学问题中不仅仅是简单的以“数”变“形”或以“形”变“数”而是需要“形”“数”互相变换,不但要想到由“形”的直观变为“数”的严密还要由“数”的严密联系到“形”的直观。
解决这类问题往往需要从已知和结论同时出发,认真分析找出内在的“形”“数”互变。
一般方法是看“形”思“数”、见“数”想“形”。
实质就是以“数”化“形”、以“形”变“数”的结合。
数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法。
要想提 高学生运用数形结合思想的能力,需要教师耐心细致的引导学生学会联系数形结合思想、理解数形结合思想、运用数形结合思想、掌握数形结合思想。
基础自测:1.已知10<<a ,则方程x aa xlog =的实数根的个数为()A.1个B.2个C.3个D.1个或2个或3个 2.设数集⎭⎬⎫⎩⎨⎧+≤≤=43m x m x M ,数集⎭⎬⎫⎩⎨⎧≤≤-=n x n x N 31,且N M ,都是集合{}10≤≤x x 的子集,如果把a b -叫做集合{}b x a x ≤≤的“长度”,那么集合N M 的长度的最小值为 A.31 B.32C.121D.1253.若奇函数)(x f 在()+∞,0上的增函数,有0)3(=-f ,则{}=<⋅0)(x f x x ( ) A.{}033<<->x x x 或 B.{}330-<<<x x x 或 C.{}33-<>x x x 或 D.{}0330<<-<<x x x 或 4.当y x ,满足条件1≤+y x 时,变量3-=y xu 的取值范围是() A.[]3,3- B.⎥⎦⎤⎢⎣⎡-31,31 C.⎥⎦⎤⎢⎣⎡-31,21 D.⎥⎦⎤⎢⎣⎡-21,31参考解析:1.解析 在同一坐标系下,画出函数y=a|x|, y=|logax|的图象,则图象有两个交点.2.解析 由题意知.集合M 的“长度”为43,集合N 的“长度”为31,而集合{x|0≤x ≤1}的“长度” 为1;设线段AB=1,41,43==b a ,a ,b 可在线段AB 上自由滑动,a ,b 重叠部分的长度即为M ∩N.如图,显然当a ,b 各自靠近AB 两端时,重叠部分最短,其值为12113143=-+ . 答案 C3.解析 由f(x)为奇函数且f(-3)=0,得f(3)=0.又f(x)在(0,+∞)上是增函数,据上条件做出满足题意的y=f(x)草图,如图,如右图中找出f(x)与x 异号 的部分,可以看出x ·f(x)<0的解 集为{x|0<x <3或-3<x <0}. 答案 D4.解析 由题意在坐标系下画出|x|+|y|≤1的图象如右图阴影部分, ①若x=0时,|y|≤1,此时u=0;②若x ≠0时,变量 可看成点A (0,3)与可行域内的点B 连线斜率k 的 倒数,而k ∈(-∞,-3]∪[3,+∞),典型例题讲解题型一 代数问题“几何化”——以形助数【例1】求函数m m A -++=642的值域。
最新小升初暑假课件 伊嘉儿数学同步版第2讲:数轴、相反数与倒数

(小升初)备课教员:×××第二讲数轴、相反数和倒数一、教学目标: 1. 能正确掌握数的分类,理解数轴、相反数与倒数的重要概念。
2. 给一个数能求出它的相反数,并且在数轴上表示,掌握求倒数的方法。
3. 通过相反数的几何意义,进一步渗透数形结合的思想;经历倒数的意义和形成过程,培养学生观察、分析、归纳、举例及语言表达能力。
二、教学重点:数形结合,理解相反数及倒数的意义三、教学难点:相反数及倒数,及比较有理数的大小。
四、教学准备:PPT,温度计五、教学过程:第一课时(50分钟)一、导入(5分种)师:同学们,还记得上节课我们学了什么吗?谁能来说说?生:有理数。
师:上节课我们是不是学了有理数?还记得有理数的分类吗?生:师:有理数是不是可以分为正有理数、负有理数和零?那同学们看老师手上拿的是什么?(温度计)生:温度计。
师:是的,那它形状是什么样的?上面的刻度和数字有什么样的特点?生:……师:是不是也有正的和负的还有零?生:……师:好,那么今天就来学习和温度计有相似之处的数轴。
我们课本也给了数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
这三个统称为数轴的三要素。
三者缺一不可。
板书课题:数轴、相反数和倒数数轴定义:规定了原点、正方向和单位长度的直线叫做数轴。
相反数:数值相反的两个数,我们就说其中一个数是另一个数的相反数。
倒数:设一个数a 与其相乘的积为1的数,得到的a1就是a 的倒数。
二、星海遨游(43分钟)例题一:(9分钟)如下图所示,数轴中正确的是( )。
师:同学们先看看这些数轴,发现了什么?生:……师:我们可以先看看哪个是错的?是不是B 肯定是错的?因为它连原点都没有,再看看选项A 它少什么?生:……师:是不是少了正方向?所以它也是不对的。
再看选项C ,它是哪里错了呢? 生:……师:因为我们已经判断了选项A 和选项B 是错的,那C 和D 肯定有一个是正确的,同学们看看C 和D 有什么不同的呢?生:……师:它们是不是都有原点和正方向?但是大家仔细看一下选项C 的单位长度是不是不一样?0到-1的长度和0到1的长度都是一个单位长度,然而它们长度不一样,所以C 也是错的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
感悟高考 明确考向
|lg x|, 0<x≤10,
(2010·全国)已知函数 f(x)=-12x+6, x>10,
若
a,b,c 互不相等,且 f(a)=f(b)=f(c),则 abc 的取值范
围是 A.(1,10)
B.(5,6)
()
C.(10,12)
D.(20,24)
热点分类突破
题型一 数形结合思想在解决方程的根的个数、不等式
解集的问题中的应用
例 1 (1)已知:函数 f(x)满足下面关系.
①f(x+1)=f(x-1);
②当 x∈[-1,1]时,f(x)=x2.
则方程 f(x)=lg x 解的个数是()来自A.5B.7C.9
D.10
(2)设奇函数 f(x)在(0,+∞)上为增函数,且 f(1)=0,
答案 (1)C (2)D
探究提高 (1)用函数的图象讨论方程(特别是含参数的指 数、对数、根式、三角等复杂方程)的解的个数是一种重 要的思想方法,其基本思想是先把方程两边的代数式看作 是两个熟悉函数的表达式(不熟悉时,需要作适当变形转 化为两熟悉的函数),然后在同一坐标系中作出两个函数 的图象,图象的交点个数即为方程解的个数. (2)解不等式问题经常联系函数的图象,根据不等式中量的 特点,选择适当的两个(或多个)函数,利用两个函数图象 的上、下位置关系转化数量关系来解决不等式的解的问 题,往往可以避免繁琐的运算,获得简捷的解答. (3)函数的单调性经常联系函数图象的升、降;奇偶性经常 联系函数图象的对称性;最值(值域)经常联系函数图象的 最高、最低点的纵坐标.
解析 作出 f(x)的大致图象.
由图象知,要使 f(a)=f(b)=f(c),不妨设 a<b<c,则 -lg a=lg b=-21c+6. ∴lg a+lg b=0, ∴ab=1,∴abc=c. 由图知 10<c<12,∴abc∈(10,12). 答案 C
考题分析 本小题考查了分段函数的特征及性质.考查 了对数函数及其运算.重点考查了解决问题的方法即数 形结合的思想方法.体现了对知识和能力的双重考查. 易错提醒 (1)找不到问题解决的突破口.即想不到用数
形结合. (2)f(x)的图象的特征不清,忽视对(1,0)和(10,1)这两个特 殊点的分析. (3)不会借助图形进行分析.
思想方法概述
1.数形结合的数学思想:包含“以形助数”和“以数 辅形”两个方面,其应用大致可以分为两种情形: 一是借助形的生动性和直观性来阐明数之间的联 系,即以形作为手段,数作为目的,比如应用函数 的图象来直观地说明函数的性质;二是借助于数的 精确性和规范严密性来阐明形的某些属性,即以数 作为手段,形作为目的,如应用曲线的方程来精确 地阐明曲线的几何性质.
3.数形结合思想解决的问题常有以下几种: (1)构建函数模型并结合其图象求参数的取值范围; (2)构建函数模型并结合其图象研究方程根的范围; (3)构建函数模型并结合其图象研究量与量之间的 大小关系; (4)构建函数模型并结合其几何意义研究函数的最 值问题和证明不等式; (5)构建立体几何模型研究代数问题; (6)构建解析几何中的斜率、截距、距离等模型研究 最值问题; (7)构建方程模型,求根的个数; (8)研究图形的形状、位置关系、性质等.
2.运用数形结合思想分析解决问题时,要遵循三个原 则: (1)等价性原则.在数形结合时,代数性质和几何性 质的转换必须是等价的,否则解题将会出现漏洞.有 时,由于图形的局限性,不能完整的表现数的一般 性,这时图形的性质只能是一种直观而浅显的说明, 要注意其带来的负面效应. (2)双方性原则.既要进行几何直观分析,又要进行 相应的代数抽象探求,仅对代数问题进行几何分析 容易出错. (3)简单性原则.不要为了“数形结合”而数形结 合.具体运用时,一要考虑是否可行和是否有利; 二要选择好突破口,恰当设参、用参、建立关系、 做好转化;三要挖掘隐含条件,准确界定参变量的 取值范围,特别是运用函数图象时应设法选择动直 线与定二次曲线.
5.在运用数形结合思想分析问题和解决问题时,需做 到以下四点: (1)要彻底明白一些概念和运算的几何意义以及曲线 的代数特征; (2)要恰当设参,合理用参,建立关系,做好转化; (3)要正确确定参数的取值范围,以防重复和遗漏; (4)精心联想“数”与“形”,使一些较难解决的代 数问题几何化,几何问题代数化,以便于问题求解. 很多数学概念都具有明显的几何意义,善于利用这 些几何意义,往往能收到事半功倍的效果.
解析 (1)由题意可知,f(x)是以 2 为周期,值域为[0,1] 的函数. 又 f(x)=lg x,则 x∈(0,10],画出两函数图象, 则交点个数即为解的个数.又∵lg 10=1,故当 x>10 时, 无交点.∴由图象可知共 9 个交点.
(2)∵f(x)为奇函数, ∴f(x)-f(-x)=2f(x) 画出 y=2f(x)的大致图象. 如图,则 f(x)与 x 异号的区间 如图阴影所示, ∴解集为(-1,0)∪(0,1),故选 D.
4.数形结合思想是解答高考数学试题的一种常用方法 与技巧,特别是在解选择题、填空题时发挥着奇特 功效,这就要求我们在平时学习中加强这方面的训 练,以提高解题能力和速度.具体操作时,应注意 以下几点: (1)准确画出函数图象,注意函数的定义域; (2)用图象法讨论方程(特别是含参数的方程)的解的 个数是一种行之有效的方法,值得注意的是首先要 把方程两边的代数式看作是两个函数的表达式(有 时可能先作适当调整,以便于作图),然后作出两个 函数的图象,由图求解.
则不等式f(x)-xf(-x)<0 的解集为
()
A.(-1,0)∪(1,+∞)
B.(-∞,-1)∪(0,1)
C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1)
思维启迪 (1)在同一坐标系中画出 y=f(x)和 y=lg x 的 图象,由它们交点个数判断方程的解的个数;(2)f(x)- f(-x)=2f(x),画出 y=2f(x)的大致图象,f(x)与 x 异号的 区间,即为不等式的解集.