校园生活污水处理PLC电气控制系统设计

合集下载

基于PLC控制的生活污水处理控制系统设计

基于PLC控制的生活污水处理控制系统设计

基于PLC控制的生活污水处理控制系统设计基于PLC控制的生活污水处理控制系统设计一、引言生活污水的处理对保护环境和人类健康具有重要意义。

为了提高生活污水处理的效率和自动化程度,本文设计了一套基于可编程逻辑控制器(PLC)的生活污水处理控制系统。

二、系统的整体设计本系统包括生活污水收集、预处理、主处理和过滤处理四个部分。

PLC作为控制器,负责接收传感器信号、控制执行器和处理数据等功能。

三、生活污水收集生活污水通过下水管道收集到污水处理站。

在PLC控制下,收集过程中的泵、闸门和传感器协同工作,确保污水顺利流入污水处理站。

四、生活污水预处理在生活污水进入主处理前,必须进行预处理以去除部分污染物。

本系统采用化学法和物理法相结合的方式进行生活污水的预处理。

PLC通过控制药剂投加机和混合器等设备,确保预处理过程的精确和稳定。

五、生活污水主处理主处理是本系统的核心部分,其主要任务是去除污水中的悬浮物、有机物和无机物等。

本系统使用PLC控制的曝气池和二沉池进行主处理。

PLC通过控制曝气装置、池内搅拌器和污泥回流系统等设备,实现曝气、沉降和污泥处理等功能。

六、生活污水过滤处理经过主处理后的生活污水仍然含有一定的悬浮物和微生物。

本系统采用过滤处理的方式,通过PLC控制滤池内滤料的流动和清洗,将污水中的残余物质进一步去除。

七、系统的PLC控制本系统的控制由PLC实现。

PLC不仅负责控制传感器信号的采集和执行器的控制,还通过控制程序实现各个设备的协调和整体控制。

八、系统的优势1. 高效性:通过PLC控制,系统能够自动化地进行生活污水处理,提高处理效率和质量。

2. 稳定性:PLC控制确保了系统各个部分的精确和稳定,减少设备故障和维修频率。

3. 可扩展性:系统可以根据需要进行扩展和改进,以适应未来的生活污水处理需求。

4. 环保性:通过本系统的处理,生活污水的污染物得到有效去除,减少了对环境的负面影响。

九、总结基于PLC控制的生活污水处理控制系统可以提高生活污水的处理效率和自动化程度。

基于PLC控制的生活污水处理控制系统设计

基于PLC控制的生活污水处理控制系统设计

基于PLC控制的生活污水处理控制系统设计一、引言生活污水处理是解决城市污染问题、保卫水资源的重要环节之一,具有宽广的应用前景。

传统的生活污水处理系统通常依靠运营人员进行手动操作,存在人为疏忽、操作不稳定等问题。

基于可编程逻辑控制器(PLC)技术的生活污水处理控制系统能够实现自动化、智能化管理,提高处理效率、降低运营成本。

本文基于PLC控制技术,设计了一套生活污水处理控制系统,并对其进行了详尽介绍。

二、生活污水处理控制系统的功能与需求分析生活污水处理控制系统主要的功能包括污水收集、预处理、初级处理、中级处理和后期处理等工艺过程控制,以及设备、仪表状态监测、故障报警等功能。

依据功能需求,该控制系统需要具备以下特点:1. 自动化控制:实现系统的自动运行和调整,缩减人为干预。

2. 实时监测与数据处理:对污水处理过程中的参数进行连续监测与记录,实现实时反馈。

3. 故障报警与保卫:准时检测设备、仪表的故障,并进行报警和自动保卫。

4. 通信与遥程监控:能够实现与上位机的通信,实现遥程监控和管理。

三、PLC选择与硬件设计基于功能需求和实际应用状况,我们选择了一款适用于工业自动化控制的PLC设备。

PLC集成了处理器、输入/输出(I/O)模块、通信模块等组件,能够实现信号采集、处理和控制输出等功能。

通过接口与其他设备和仪表进行毗连。

硬件设计方面,我们依据生活污水处理控制系统的特点,选用了合适的传感器、执行机构等设备。

例如,接受液位传感器、PH传感器、溶解氧传感器等进行参数监测;接受电动阀门、泵等执行机构进行控制操作。

四、软件设计与编程在PLC软件设计方面,我们接受了一种常用的编程语言,并按照功能需求进行程序设计。

主要包括信号采集与处理、控制逻辑实现、故障检测与报警、通信与数据传输等模块。

详尽而言,信号采集与处理模块负责采集并处理传感器信号,对得到的数据进行校验、滤波和转换等操作。

控制逻辑实现模块依据处理流程和设备状态,制定相应的控制策略,实现自动控制。

基于PLC控制的生活污水处理控制系统设计

基于PLC控制的生活污水处理控制系统设计

基于PLC控制的生活污水处理控制系统设计近年来,随着城市化进程的加速,生活污水处理问题日益凸显。

传统的生活污水处理方式过于依赖人工操作,存在处理效率低、运行成本高、处理水质不稳定等问题。

因此,设计一种基于PLC控制的生活污水处理控制系统成为一项迫切需要解决的任务。

PLC(Programmable Logic Controller,可编程逻辑控制器)是一种通用的工业控制设备,具有高可靠性、可编程性和强大的工业通信能力。

将PLC应用于生活污水处理控制系统,能够实现对处理过程的全自动控制和监控,提高整个处理系统的运行效率和水质稳定性。

生活污水处理控制系统一般包括进水处理、沉淀池处理、生物处理和深度处理等环节。

在系统设计上,首先需要对污水的性质和处理工艺进行全面的分析和测试。

根据分析结果,确定合适的处理控制参数和设备布局,以保证系统能够高效稳定地运行。

在系统硬件设计方面,将PLC作为处理系统的核心控制器,配合触摸屏、电机驱动器、传感器等周边设备,构建一个完整的控制平台。

PLC通过接口板与其他设备进行通信,实时获取环境参数、传感器信号和执行器状态等信息,进而对系统进行控制和调节。

控制系统中的软件设计是至关重要的一环。

在软件编程过程中,首先需要根据实际情况编写相应的控制算法,确定各个处理环节的运行逻辑和调节策略。

编程过程中应注意到特定处理环节的相互联系和顺序控制,保证处理系统能够按照预定的流程正常运行。

在生活污水处理控制系统中,PLC的控制策略主要包括进水量控制、曝气风机控制、污泥泵控制、投药控制等。

进水量控制是根据进水情况的多少来控制处理设备的启动和停止,以保证污水处理系统的处理效率。

曝气风机控制是根据水质情况来自动调节曝气风机的转速和运行时间,以提供所需的溶解氧供养生物处理过程。

污泥泵控制是根据沉淀池中污泥的浓度来控制污泥泵的运行,保持适当的沉淀池污泥浓度。

投药控制是根据系统需要,在合适的时间和量下投入相应的药剂,以协助处理过程中的有机物和氮磷等物质的去除。

校园生活污水处理PLC电气控制系统设计

校园生活污水处理PLC电气控制系统设计

校园生活污水处理PLC电气控制系统设计一、校园生活污水处理电气控制系统设计任务书1.校园生活污水处理工艺的技术要求SBR废水处理技术是一种高效废水回用的处理技术,采用优势菌技术对校园生活污水进行处理,经过处理后的中水可以用来浇灌绿地、花木、冲洗厕所及车辆等,从而达到节约水资源的目的。

SBR废水处理系统方案要充分考虑现实生活中校园生活区较为狭小的特点,力求达到设备体积小,性能稳定,工程投资少的目的。

废水处理过程中环境温度对菌群代谢产生的作用直接影响废水处理效果,因此采用地埋式砖混结构处理池以降低温度对处理效果的影响。

同时,SBR废水处理技术工艺参数变化大,硬件设计选型与设备调试比较复杂,采用先进的PLC控制技术可以提高SBR 废水处理的效率,方便操作和使用。

SBR废水处理系统分别由污水处理池、清水池、中水水箱、电控箱以及水泵、罗茨风机、电动阀门和电磁阀等部分组成,在污水处理池、清水池、中水水箱中分别设置液位开关,用以检测水池与水箱中的水位。

SBR废水处理系统示意图如图11-1所示。

图11-1 SBR废水处理系统示意图污水处理的第一阶段:当污水池中的水位处于低水位或无水状态时,电动阀会自动开起纳入污水。

当污水池纳入的污水至正常高水位时,电动阀自动关闭,污水池中污水呈微氧和厌氧状态。

污水处理的第二阶段:采用能降解大分子污染物的曝气法,可使污水脱色、除臭、平衡菌群的pH值并对污染物进行高效除污,即好氧处理过程。

整个好氧(曝气)时间一般需要6~8h。

在曝气管路上安装了排空电磁阀,当电动阀门自动关闭后,排空电磁阀开起,罗茨风机延时空载起动,然后排空电磁阀关闭,污水池开始曝气。

当曝气处理结束后,排空电磁阀再次开起,罗茨风机空载停机,然后排空电磁阀延时关闭。

曝气风机在无负荷条件下起动和停止,能起到保护电动机和风机的作用。

经过0.5h的水质沉淀,PLC下达起动1#清水泵指令,将沉淀后的水泵入到清水池。

当清水池中的水位升至正常高水位时,1#清水泵自动停止运行。

基于PLC的污水处理系统设计

基于PLC的污水处理系统设计

基于PLC的污水处理系统设计一、引言污水处理是一项重要的环境保护工作,对于保护水资源、维护生态平衡具有重要意义。

为了提高污水处理的效率和自动化程度,本文将介绍基于可编程逻辑控制器(PLC)的污水处理系统设计。

二、系统概述本系统采用PLC作为控制核心,通过传感器、执行器和人机界面等组成的硬件设备,实现对污水处理过程的自动化控制和监测。

主要包括进水处理、沉淀池处理、过滤处理、消毒处理和排放处理等环节。

三、系统设计1. 进水处理进水处理环节主要包括污水的初步过滤和调节,以保证后续处理的稳定性。

PLC通过控制进水泵的启停和调节,根据进水管道中的压力和流量传感器的反馈信号,实现对进水量的自动控制。

2. 沉淀池处理沉淀池处理环节通过PLC控制污水的沉淀和搅拌过程。

PLC根据沉淀池中的液位传感器反馈的信号,控制搅拌器的启停和搅拌时间,以确保沉淀效果达到要求。

3. 过滤处理过滤处理环节通过PLC控制滤料的清洗和更换过程。

PLC根据滤料的压差传感器反馈的信号,判断滤料是否需要清洗或更换,然后控制清洗装置的启停和清洗时间,以保证过滤效果。

4. 消毒处理消毒处理环节通过PLC控制消毒剂的投加和反应时间。

PLC根据水质传感器反馈的信号,判断消毒剂的投加量和反应时间,然后控制消毒剂泵的启停和投加时间,以确保消毒效果达到要求。

5. 排放处理排放处理环节通过PLC控制污水的排放和监测。

PLC根据排放管道中的压力和流量传感器的反馈信号,实现对排放量的自动控制。

同时,PLC还可以通过人机界面显示当前的排放情况,并记录相关数据。

四、系统优势1. 自动化程度高:基于PLC的污水处理系统可以实现对整个处理过程的自动控制和监测,减少人工操作,提高处理效率和精度。

2. 稳定可靠:PLC作为控制核心,具有良好的稳定性和可靠性,能够确保系统长时间稳定运行。

3. 灵活可扩展:基于PLC的污水处理系统具有良好的灵活性和可扩展性,可以根据实际需求对系统进行调整和扩展。

《2024年基于PLC控制的生活污水处理控制系统设计》范文

《2024年基于PLC控制的生活污水处理控制系统设计》范文

《基于PLC控制的生活污水处理控制系统设计》篇一一、引言随着工业化的快速发展和城市化进程的加速,生活污水的处理成为了一个亟待解决的问题。

生活污水处理控制系统的设计对于保护环境、节约资源、维护生态平衡具有重要意义。

本文旨在设计一种基于PLC(可编程逻辑控制器)控制的生活污水处理控制系统,以实现高效、稳定、自动化的污水处理。

二、系统设计目标本系统设计的主要目标是实现以下功能:1. 自动化控制:通过PLC控制器实现生活污水的自动化控制,减少人工操作,提高处理效率。

2. 稳定性高:系统应具备较高的稳定性,确保在各种环境下都能正常运行。

3. 节能环保:通过优化控制策略,降低能耗,减少污染物的排放。

4. 远程监控:实现远程监控,方便管理人员随时了解污水处理情况。

三、系统设计原理本系统设计采用PLC控制器作为核心,通过传感器、执行器等设备实现生活污水的自动化控制。

具体设计原理如下:1. 数据采集:通过传感器实时采集生活污水的各项参数,如pH值、COD(化学需氧量)、氨氮等。

2. 数据处理:将采集到的数据传输至PLC控制器,经过处理后得出控制指令。

3. 控制执行:PLC控制器根据处理后的数据发出控制指令,通过执行器对污水处理设备进行控制。

4. 远程监控:通过通信模块将数据传输至远程监控中心,实现远程监控。

四、系统硬件设计系统硬件设计主要包括PLC控制器、传感器、执行器、通信模块等部分。

具体设计如下:1. PLC控制器:选用高性能的PLC控制器,具备高可靠性、高稳定性、易编程等特点。

2. 传感器:根据实际需求选择合适的传感器,如pH值传感器、COD传感器、氨氮传感器等。

3. 执行器:根据控制需求选择合适的执行器,如污水泵、搅拌器、曝气器等。

4. 通信模块:选用可靠的通信模块,实现与远程监控中心的通信。

五、系统软件设计系统软件设计主要包括PLC控制程序、数据采集与处理程序、远程监控程序等部分。

具体设计如下:1. PLC控制程序:根据实际需求编写PLC控制程序,实现生活污水的自动化控制。

PLC污水处理系统设计

PLC污水处理系统设计PLC污水处理系统是一种基于集成化自动控制技术、人机交互界面、数据处理、通讯技术、电子技术等领域的高科技产品。

随着人们对环境保护意识的不断增强,PLC污水处理系统在市场上得到了广泛的应用。

本文将详细介绍PLC污水处理系统的设计。

一、技术方案PLC污水处理系统的设计采用了以下技术方案:1.采用PLC控制器,实现控制系统的自动化。

2.采用人机交互界面,通过触摸屏等人机交互界面,方便对控制系统进行操作。

3.采用工业以太网通讯技术,实现控制系统与远程监控中心的高速通讯。

4.采用数据采集分析软件,对处理过程的数据进行收集和分析,对系统进行优化和改进。

二、系统流程PLC污水处理系统设计的流程如下:1.污水预处理首先对进水污水进行过滤、除油、除渣等预处理工作,保证后续处理的效果。

2.厌氧处理将预处理的污水送入厌氧生化池进行处理,通过厌氧菌的代谢作用,将污水中的有机物质分解为沼气和有机酸。

3.好氧处理经过厌氧生化池处理后的污水进入好氧生化池中,好氧菌分解有机物,消耗氧气,同时产生一定量的污泥。

4.污泥处理收集好氧处理过程产生的污泥,通过加碱、减少污泥体积及干燥、焚烧等方式进行二次污泥处理。

5.再生水处理及管道输送好氧反应后的水经净化处理达到国家标准后,可以用于农业、工业和城市供水等。

此环节有多种处理方式,如滤净、反渗透等,满足不同要求的水质处理。

三、实现步骤1.采购设备根据需要,购买相应的PLC控制器、触摸屏、传感器、执行器、服务器和各类配件等设备。

2.安装对采购来的设备进行安装,并进行电气布线,保障设备的安全可靠。

3.程序编写进行PLC程序和界面程序的编写,建立控制系统的控制策略。

4.调试进行设备的调试,并进行工艺参数调整,使设备的操作达到最佳效果。

5.运行监测运行实验,对PLC污水处理系统进行监测,实时记录系统的性能指标。

四、安全保障PLC污水处理系统设计过程中,必须考虑到设备运行时出现的异常情况,加入安全控制措施,确保系统的安全运行。

PLC电气控制设计污水处理系统

.电气控制设计——某污水处理控制系统设计专业:电气工程及其自动化班级:学号:姓名:指导教师:完成日期:目录1.1 研究目的和意义 (3)1.2 课题主要设计的内容 (4)2. 1信号输入 (4)2. 2控制输出信号 (5)3.1主要组成部分 (6)3.2电气控制系统 (6)3.3工业污水处理系统的工作原理 (6)3.3.1控制系统总体框图 (6)3.3.2工作过程 (7)3.3.3工业污水处理系统主电路设计 (8)3.4 PLC选型 (10)3.5 PLC的I/O资源配置 (10)3.5.1数字量输入部分 (10)3.5.2数字量输出部分 (11)3.5.3模拟量输入部分 (12)3.5.4 模拟量输出部分 (12)4.1总体流程设计 (13)4.1.1手动模式 (14)4.1.2自动模式 (14)参考文献 (21)附录Ⅰ控制程序 (22)附录Ⅱ部分主电路图 (24)附录Ⅲ硬件接线图 (25)绪论1.1 研究目的和意义1号磁滤器的滤水工艺流程见图。

1号磁滤器的I/O分配表见图(以三菱系列PLC为例)。

2号和3号磁滤器的I/()分配表与1号相同,只是将输入地址编号X0~X5改为X400~X405和X500~X505,将输出地址编号Y30~Y35改为Y430 ~Y435和Y530~Y535。

按下启动按钮AN1,使X0接通。

“电源信号”是输出端“电源通断”Y30的反馈信号,当PLC的Y30正常接通,则接入电源通路中的控制接点导通,使Xl接通,滤水工艺顺利运行下去。

同理,“进水阀信号”是输出端“进水阀通断”接通时的反馈信号。

这种控制方式提高系统的可靠性,若有某个输出信号不正常,就会立刻停止滤水工序。

本系统要求:三台或二台滤水器应能各自按滤水工艺流程并行工作;反洗时,只能单台工作,其他需反洗者必须等待;在滤水时,只要出现“管压差高”的信号,则立即停止滤水工序,自动进入反洗工序。

1.2 课题主要设计的内容本课题主要设计的内容是工业污水处理工艺及工业污水处理系统的组成和PLC控制系统设计,主要由以下内容组成:(1)介绍了工业污水处理的基本内容,包括工业污水处理的发展现状以及工业污水处理的工艺流程;(2)介绍了PLC的基本结构和工作原理,并对工业污水处理控制系统进行设计分析;(3)具体分析设计工业污水处理的硬件系统;(4)具体分析设计工业污水处理的软件系2. 1信号输入工业污水处理系统信号输入检测方面主要涉及四类信号的监测,主要包括:按钮的输入检测、液位差的输入检测、液位高低的输入检测,以及曝气池中含氧量的输入检测。

基于PLC的污水处理控制系统设计

基于PLC的污水处理控制系统设计基于PLC的污水处理控制系统设计一、引言污水处理是现代城市环境绿色发展的重要组成部分,它对于保护水资源、改善环境质量具有重要意义。

污水处理控制系统的设计是实现高效处理污水的关键。

本文将介绍基于PLC的污水处理控制系统的设计。

二、PLC技术在污水处理控制中的应用PLC(Programmable Logic Controller)是一种高性能、多功能、可编程的控制器,被广泛应用于工业自动化控制系统中。

对于污水处理控制系统来说,PLC可以实现控制、监测、调节等功能,提高处理效率和稳定性。

三、系统设计方案1. 系统架构设计基于PLC的污水处理控制系统主要包括传感器/仪表、PLC、执行器设备以及人机界面。

传感器/仪表用于监测污水处理过程中的各项参数,将数据传输给PLC。

PLC作为控制主机,接收传感器数据后进行逻辑运算和控制命令的产生,并通过数据通信方式控制执行器设备完成相应动作。

人机界面用于操作者对系统的监控和操作。

2. 传感器及仪表选择污水处理过程中需要监测的参数包括流量、浊度、pH值、温度等。

传感器/仪表的选择应考虑其测量准确度、可靠性和抗干扰能力,并能与PLC进行数据通信。

3. PLC程序设计PLC程序设计是污水处理控制系统设计的关键环节。

根据实际控制需求,编写逻辑程序,实现对传感器数据的处理和分析,以及对执行器设备的控制。

4. 执行器设备选择根据污水处理控制系统的需求,选择合适的执行器设备,如泵、阀门等。

执行器设备应能与PLC进行数据通信,实现远程控制。

5. 人机界面设计人机界面主要通过触摸屏或者计算机软件实现。

操作者可以通过界面进行对系统的监控和操作,如参数设定、报警显示等。

四、系统优势基于PLC的污水处理控制系统具有以下优势:1. 高效稳定:PLC具有高速、高精度的数据处理能力,可以实时响应控制命令,提高处理效率和稳定性。

2. 自动化控制:PLC可以实现各种逻辑控制和自动化操作,降低人工干预,提高处理效率。

PLC下的污水处理控制系统设计

PLC下的污水处理控制系统设计提纲:1. PLC控制系统介绍2. 污水处理系统概述3. PLC在污水处理过程中的应用4. PLC污水处理系统的设计与优化5. PLC污水处理系统故障分析与处理分析:1. PLC控制系统介绍PLC控制系统是当今工业生产中应用极广的一种自动化控制系统。

它具有操作灵活、可靠度高、响应速度快、易于维修等特点,可以对各种自动化设备进行控制,并且具有很好的扩展性与兼容性。

2. 污水处理系统概述污水处理是人类处理生活生产废水的过程,主要是为了减少废水对环境和生态造成的破坏。

污水处理过程主要包括预处理、初级处理、中级处理和高级处理四个阶段,每个阶段的处理方式不同,但都需要通过自动化控制系统来实现。

3. PLC在污水处理过程中的应用PLC在污水处理过程中的应用非常广泛,主要包括沉淀池、滤池、生化池、滤饼浓缩、管道控制等方面。

PLC通过不同的传感器、执行器和控制面板对污水进行实时监测和控制,以保证污水处理的效率和质量。

4. PLC污水处理系统的设计与优化PLC污水处理系统的设计需要考虑到实际应用环境、设备的品质和成本、程序的稳定性和兼容性等方面。

同时,还需要通过不断的数据分析和优化,来提高污水处理过程的效率和节约资源的要求。

5. PLC污水处理系统故障分析与处理PLC污水处理系统故障的原因可能来自机器设备的质量问题、软件的问题、传感器和执行器的问题等方面。

这时,需要通过调用备件、重新调整程序、更换设备等措施来处理故障,以保证污水处理的顺畅进行。

案例:1. 海德农业集团的污水处理项目海德农业集团的污水处理项目采用了全自动化、人性化的PLC污水处理系统。

系统可以实现多重防护、安全稳定运行,并且可以通过网络实时监视和远程控制整个污水处理过程。

2. 美丽城市的污水处理系统美丽城市的污水处理系统采用了多参数控制技术,可以针对不同的污水水质和要求,实现多种处理方式。

这个系统建立了完整的数据存档和分析体系,实现了对污水处理数据和结果的科学管理和评估。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

校园生活污水处理PLC电气控制系统设计一、校园生活污水处理电气控制系统设计任务书1.校园生活污水处理工艺的技术要求SBR废水处理技术是一种高效废水回用的处理技术,采用优势菌技术对校园生活污水进行处理,经过处理后的中水可以用来浇灌绿地、花木、冲洗厕所及车辆等,从而达到节约水资源的目的。

SBR废水处理系统方案要充分考虑现实生活中校园生活区较为狭小的特点,力求达到设备体积小,性能稳定,工程投资少的目的。

废水处理过程中环境温度对菌群代谢产生的作用直接影响废水处理效果,因此采用地埋式砖混结构处理池以降低温度对处理效果的影响。

同时,SBR废水处理技术工艺参数变化大,硬件设计选型与设备调试比较复杂,采用先进的PLC控制技术可以提高SBR 废水处理的效率,方便操作和使用。

SBR废水处理系统分别由污水处理池、清水池、中水水箱、电控箱以及水泵、罗茨风机、电动阀门和电磁阀等部分组成,在污水处理池、清水池、中水水箱中分别设置液位开关,用以检测水池与水箱中的水位。

SBR废水处理系统示意图如图11-1所示。

图11-1 SBR废水处理系统示意图污水处理的第一阶段:当污水池中的水位处于低水位或无水状态时,电动阀会自动开起纳入污水。

当污水池纳入的污水至正常高水位时,电动阀自动关闭,污水池中污水呈微氧和厌氧状态。

污水处理的第二阶段:采用能降解大分子污染物的曝气法,可使污水脱色、除臭、平衡菌群的pH值并对污染物进行高效除污,即好氧处理过程。

整个好氧(曝气)时间一般需要6~8h。

在曝气管路上安装了排空电磁阀,当电动阀门自动关闭后,排空电磁阀开起,罗茨风机延时空载起动,然后排空电磁阀关闭,污水池开始曝气。

当曝气处理结束后,排空电磁阀再次开起,罗茨风机空载停机,然后排空电磁阀延时关闭。

曝气风机在无负荷条件下起动和停止,能起到保护电动机和风机的作用。

经过0.5h的水质沉淀,PLC下达起动1#清水泵指令,将沉淀后的水泵入到清水池。

当清水池中的水位升至正常高水位时,1#清水泵自动停止运行。

这时2#清水泵自动起动向中水箱泵水,当水箱内达到正常高水位时,2#清水泵自动停止运行,这时中水箱内的水全部完成处理过程。

如上所示,当中水箱内水位降至低水位时,2#清水泵又自动起动向中水箱泵水。

当污水池中的水位降至低水位时,电动阀门会自动打开继续向污水池纳入污水。

如此循环往复。

SBR废水处理技术针对污水水质不同选用生物菌群不同,工艺要求要求有所不同,电气控制系统应有参数可修正功能,以满足废水处理的要求。

2.SBR废水处理系统动力设备SBR废水处理系统中所使用的动力设备(水泵、罗茨风机、电动阀),均采用三相交流异步电动机,电动机和电磁阀(AC220V选配)选配防水防潮型。

1#清水泵:立式离心泵LS50-10-A,扬程10m,流量29m3/h,1kW。

2#清水泵:立式离心泵LS40-32.1,扬程30m,流量16m3/h,3kW。

曝气罗茨风机:TSA-40,0.7m3/min,1.1kW。

电动阀:阀体D97A1X5-10ZB-125mm,电动装置LQ20-1,AC380V,60W。

3.SBR废水处理电气控制系统设计要求1) 控制装置选用PLC作为系统的控制核心,根据工艺要求合理选配PLC机型和I/O接口。

2) 可执行手动/自动两种方式,应能按照工艺要求编辑程序并可实时整定参数。

3) 电动阀上驱动电动机为正、反转双向运行,因此要在PLC控制回路加互锁功能。

4) PLC的接地应按手册中的要求设计,并在图中表示或说明。

5) 为了设备安全运行,考虑必要的保护措施,入如电动机过热保护、控制系统短路保护等。

6) 绘制电气原理图:包括主电路、控制电路、PLC硬件电路,编制PLC的I/O接口功能表。

7) 选择电器元件、编制元器件目录表。

8) 绘制接线图、电控柜布置图和配线图、控制面板布置图和配线图等。

9) 采用梯形图或指令表编制PLC控制程序。

二、SBR废水处理电气控制系统总体设计过程1.总体方案说明1) SBR废水处理系统控制对象电动机均由交流接触器完成起、停控制,电动阀电动机要采用正、反转控制。

2) 污水池、清水池、中水水箱水位检测开关,在选型时考虑抗干扰性能,选用电极考虑耐腐蚀性。

3) 电动阀上驱动电动机,其内部设有过载保护开关,为常闭触点,作为电动阀过载保护信号,PLC控制电路考虑该信号逻辑关系。

4) 1#清水泵、2#清水泵、罗茨风机电动机、电动阀电动机分别采用热继电器实现过载保护,其热继电器的常开触点通过中间继电器转换后,作为PLC的输入信号,用以完成各个电动机系统的过载保护。

5) 罗茨风机的控制要求在无负载条件下起动或停机,需要在曝气管路上设置排空电磁阀。

6) 主电路用断路器,各负载回路和控制回路以及PLC控制回路采用熔断器,实现短路保护。

7) 电控箱设置在控制室内。

控制面板与电控箱内的电器板用BVR型铜导线连接,电控箱与执行装置之间采用端子板连接。

8) PLC选用继电器输出型。

9) PLC自身配有24V直流电源,外接负载时考虑其供电容量。

PLC接地端采用第三种接地方式,提高抗干扰能力。

2.SBR废水处理电气控制原理图设计(1) 主电路设计SBR废水处理电气控制系统主电路如图11-2所示。

图11-2 SBR废水处理电气控制系统主电路1) 主回路中交流接触器KM1、KM2、KM3分别控制1#清水泵M1、2#清水泵M2、曝气风机M3;交流接触器KM4、KM5控制电动阀电动机M4,通过正、反转完成开起阀门和关闭阀门的功能。

2) 电动机M1、M2、M3、M4由热继电器FR1、FR2、FR3、FR4实现过载保护。

电动阀电动机M4控制器内还装有常闭热保护开关,对阀门电动机M4实现双重保护。

3) QF为电源总开关,既可完成主电路的短路保护,又起到分断三相交流电源的作用,使用和维修方便。

4) 熔断器FU1、FU2、FU3、FU4分别实现各负载回路的短路保护。

FU5、FU6分别完成交流控制回路和PLC控制回路的短路保护。

(2) 交流控制电路设计SBR废水处理系统交流控制电路如图11-3所示。

N图11-3 SBR废水处理系统交流控制电路1) 控制电路有电源指示HL。

PLC供电回路采用隔离变压器TC,以防止电源干扰。

2) 隔离变压器TC的选用根据PLC耗电量配置,可以配置标准型、变比1:1、容量100V A隔离变压器。

3) 1#清水泵M1、2#清水泵M2、曝气风机M3分别有运行指示灯HL1、HL2、HL3,由KM1、KM2、KM3接触器常开辅助触点控制。

4) 4台电动机M1、M2、M3、M4的过载保护,分别由4个热继电器FR1、FR2、FR3、FR4实现,将其常闭触点并联后与中间继电器KA1连接构成过载保护信号,KA1还起到电压转换的作用,将220V交流信号转换成直流24V信号送入PLC完成过载保护控制功能。

5) 上水电磁阀YA1和指示灯HL1、排空电磁阀Y A2,分别由中间继电器KA2和KA3触点控制。

(3) 主要参数计算1) 断路器QF脱扣电流。

断路器为供电系统电源开关,其主回路控制对象为电感性负载交流电动机,断路器过电流脱扣值按电动机起动电流的1.7倍整定。

SBR废水处理系统有3kW负载电动机一台,起动电流较大,其余三台为1.1kW以下,起动电流较小,而且工艺要求4台电动机单独起动运行,因此可根据3kW电动机选择自动开关QF脱扣电流I QF:I QF=1.7I N=1.7×6A=10.2A≈10A,选用I QF=10A的断路器。

2) 熔断器FU熔体额定电流I FU。

以曝气风机为例,I FU≥2I N=2×2.5A=5A,选用5A的熔体。

其余熔体额定电流的选择,按上述方法选配。

控制回路熔体额定电流选用2A。

3) 热继电器的选择请参考有关技术手册,自行计算参数。

(4) PLC控制电路设计包括PLC硬件结构配置及PLC控制原理电路设计。

请各位同学设计PLC电气控制系统!3.SBR废水处理系统电气工艺设计按设计要求设计绘制电气装置总体配置图、电器板电器元器件平面图、控制面板电器平面图及相关电气接线图。

1) 先根据控制系统要求和电气设备的结构,确定电器元器件的总体布局以及电控箱内装配板与控制面板上应安装的电器元件。

本系统除电控箱外,在污水处理设备现场设计安装的电器元件和动力设备有:电磁阀、水位开关、电动机、电动阀(含阀位控制器)等。

电控箱内电器板上安装的电器元件有:断路器、熔断器、隔离变压器、PLC、接触器、中间继电器、热继电器和端子板等。

在控制面板上设计安装的电器元件有:控制按钮、旋钮开关、各色指示灯等。

2) 依据用户要求满足操作方便、美观大方、布局均匀对称等设计原则,绘制电控箱电器板元件布置图、电器面板元件布置图、电气接线图等,如图11-7~图11-8所示。

进出引线采用接线端子板连接,接线图略。

3) 依据电器元件布置图及电器元器件的外形尺寸、安装尺寸,绘制电器板(绝缘板、镀锌铁板或架)、控制面板(有机玻璃板、铝板或铁板等)、垫板(有机械强度的绝缘板或镀锌板)等零部件加工图。

图中应注明外形尺寸、安装孔径、定位尺寸与公差、板材厚度以及加工要求等。

本设计所涉及的钣金加工技术图从略。

4) 依据电器安装板、控制面板尺寸设计电控箱,绘制电控箱安装图。

本设计从略。

至此,基本完成了SBR废水处理系统要求的电气控制原理设计和工艺设计任务。

图11-7 电控箱电器板元件布置图图11-8 电控箱电器面板元件布置图4.编写设计说明书、使用说明书和项目设计小结1) 依据原理设计的过程,编写设计说明书,说明书包括如下主要内容:①总体设计方案的选择说明。

②原理电路的设计说明,各控制要求如何实现。

③电气系统中主要参数的计算,主要元件的选择及说明,编制元件明细表。

④附上原理图及规定完成的工艺图。

2) 依据原理设计图及控制要求编写使用说明书,说明书包括如下主要内容:①本设备的实际用途、功能特点。

②系统工作原理简介。

③使用与维护注意事项。

5.设计用参考资料①工厂电气控制设备②电气控制与可编程序控制器③电气工程手册④三菱微型可编程序控制器手册⑤工厂常用电气设备手册⑥其他有关产品使用手册SBR污水处理法参考资料SBR是序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。

与传统污水处理工艺不同,SBR技术采用时间分割的操作方式替代空间分割的操作方式,非稳定生化反应替代稳态生化反应,静置理想沉淀替代传统的动态沉淀。

它的主要特征是在运行上的有序和间歇操作,SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。

相关文档
最新文档