八年级数学因式分解
初二数学-八年级数学-因式分解的思维导图知识点结构图

初二数学-八年级数学-因式分解的思维导图知识点结构图因式分解的思维导图初二数学-八年级数学-因式分解的思维导图知识点目录:因式分解知识结构导图因式分解是数学中重要的一部分,它是一种将一个多项式分解成两个或多个多项式的方法。
因式分解可以帮助我们更好地理解和解决各种数学问题。
因式分解的基本概念因式分解的基本概念包括最大公因数、最小公倍数和质因数分解。
最大公因数是指两个或多个整数共有的约数中最大的一个;最小公倍数是指两个或多个整数公有的倍数中最小的一个;质因数分解是将一个正整数分解成质数的乘积。
因式分解的方法因式分解的方法包括提公因式法、分组分解法、差平方公式、和差平方公式和配方法等。
这些方法可以帮助我们更好地进行因式分解,从而解决各种数学问题。
因式分解的应用因式分解在数学中有着广泛的应用,例如解方程、求最大公因数、最小公倍数、约分、通分等。
因式分解还可以帮助我们更好地理解和解决各种数学问题,例如分数的运算、多项式的运算等。
因式分解的思维导图可以帮助我们更好地理解因式分解的基本概念、方法和应用。
通过研究因式分解的思维导图,我们可以更好地掌握因式分解的知识,从而在数学研究中取得更好的成绩。
因式分解是代数学中的一个重要概念,它指的是将一个多项式拆分为若干个乘积的形式。
这个过程可以帮助我们更好地理解多项式的乘法,并且在解决各种数学问题时也非常有用。
在进行因式分解时,一般需要遵循以下三个步骤:1.一提取公因数,将多项式进行因式分解。
2.二用分组分解法、十字相乘法、提取公因式法等常用方法进行因式分解。
3.三验证因式分解是否正确,可以通过乘回去验证。
常用的因式分解方法包括公式法、分组分解法、十字相乘法和提取公因式法等。
这些方法都有其适用的范围和特点,需要根据具体情况进行选择。
因式分解的意义在于,它可以将一个复杂的多项式化简为简单的乘积形式,从而更加方便地进行计算和分析。
同时,因式分解也是整式乘法的逆变形,可以帮助我们更好地理解整式乘法的本质。
八年级数学因式分解12种常见方法整理

八年级数学因式分解12种常见方法整理1.提公因式法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
如,和的平方、差的平方3.分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)4.十字相乘法(经常使用)对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
7.换元法有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。
8.求根法令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )9.图像法令y=f(x),做出函数y=f(x)的图象,找到函数图象与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )10.主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
11.利用特殊值法将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。
12.待定系数法首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)

= −(4 ∙ 6 2 − 4 ∙ 3 + 4 ∙ 7)
= −4(6 2 − 3 + 7).
易错注意:1.公因式要提尽;
2.公因式是某项时剩余的系数1别忘;
错误
提公因式后括号里少了一项.
正确解:原式=3x·
x-6y·
x+1·x
=x(3x-6y+1)
请你判断小明的解法有误吗?
因式分解: - x2+xy-xz.
解:原式= - x(x+y-z).
错误
提出负号时括号里的项
没变号
正确解:原式= - (x2-xy+xz)
=- x(x-y+z)
探索新知
巩固练习 将下列各式分解因式
项式的各项变号;
2.公因式的系数是多项式各项__________________;
系数的最大公约数
相同的字母
3.字母取多项式各项中都含有的____________;
4.相同字母的指数取各项中最小的一个,即 最低次幂
_________.
合作探究
因式分解:a(x-3)+2b(x-3)
(1)多项式的公因式是什么?
B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)
C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)
D.3x(x+y)-(x+y)2=(x+y)(2x+y)
4.用提公因式法因式分解:
(1)6p(p+q)-4q(p+q);
解:6p(p+q)-4q(p+q)
=2(p+q)(3p-2q).
A.x4
B.x3+1
C.x4+1
D.x3-1
北师大版八年级数学下册说课稿1因式分解

为促进学生的参与和合作,我计划设计以下师生互动和生生互动环节:
1.师生互动:在讲解知识点时,通过提问、解答疑问等方式,关注学生的反馈,及时调整教学进度和策略。
2.生生互动:
a.分组讨论:将学生分成小组,针对某一问题进行讨论,培养学生的合作意识和交流能力。
b.小组竞赛:组织小组间的竞赛,激发学生的竞争意识,提高学习积极性。
(五)作业布置
课后作业布置如下:
1.基础作业:布置一些具有代表性的基础题,帮助学生巩固因式分解的基本方法。
2.提高作业:设置一些拓展题,让学生在课后进行思考和探索,提高学生的应用能力。
3.作业目的:通过课后作业,让学生进一步巩固所学知识,培养独立解决问题的能力,同时为下一节课的学习打下基础。
五、板书设计与教学反思
在教学过程中,要注重引导学生通过观察、分析、归纳,发现数学规律,培养学生的思维能力。同时,结合实际例题,让学生在练习中掌握因式分解的方法和技巧,提高解决问题的能力。
二、学情分析导
(一)学生特点
本节课面向的是八年级学生,他们正处于青春期,精力充沛,好奇心强,具备一定的独立思考能力。在认知水平上,学生已经掌握了整式的乘法运算,但对于因式分解这一逆运算,可能还需要一定的引导和练习。在学习兴趣方面,多数学生对数学抱有热情,但部分学生可能对理论学习感到枯燥。在学习习惯上,部分学生缺乏自主学习能力,依赖教师的讲解和引导。
2.根据学生的接受程度,调整教学进度和方法,确保教学内容的难易适度。
3.定期与学生交流,了解他们的学习需求,不断优化教学策略,提高教学质量。
3.递进式教学:从简单的例子入手,逐步增加难度,让学生在理解的基础上掌握因式分解的方法。
(三ቤተ መጻሕፍቲ ባይዱ巩固练习
人教版八年级数学上册教学设计14.3 因式分解

人教版八年级数学上册教学设计14.3 因式分解一. 教材分析因式分解是八年级数学上册的教学内容,主要目的是让学生掌握因式分解的基本方法和技巧。
教材通过引入多项式的乘法,让学生理解因式分解的实质,进而学习提公因式法、公式法等因式分解方法。
本节课的内容在数学知识体系中具有重要的地位,为学生深入学习代数运算和方程求解打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备一定的代数基础。
但因式分解作为一种独立的解题方法,对学生来说较为抽象,需要通过实例分析、动手操作、小组讨论等方式,让学生逐步理解和掌握。
三. 教学目标1.知识与技能:使学生掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2.过程与方法:培养学生观察、分析、归纳的能力,提高学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的合作意识,使学生感受到数学的内在美。
四. 教学重难点1.重点:因式分解的方法和技巧。
2.难点:如何引导学生发现和运用提公因式法、公式法等进行因式分解。
五. 教学方法采用问题驱动法、实例分析法、小组合作法、引导发现法等,以学生为主体,教师为主导,充分调动学生的积极性,提高学生的学习兴趣。
六. 教学准备1.准备相关教学PPT和教学素材。
2.设计好教学问题和练习题。
3.准备好黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一个实际问题引出因式分解的必要性,激发学生的学习兴趣。
例如:已知二次函数的图像,求其解析式。
2.呈现(10分钟)呈现因式分解的定义和基本方法,引导学生观察、分析、归纳因式分解的规律。
通过PPT展示提公因式法、公式法等具体的因式分解方法。
3.操练(10分钟)让学生动手操作,尝试运用所学的因式分解方法解决实际问题。
教师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)设计一些练习题,让学生运用所学的因式分解方法进行解答。
教师选取部分学生的答案进行讲解和评价,及时巩固所学知识。
八年级数学下册《因式分解》常见题型例析(含答案)

《因式分解》常见题型例析因式分解是中学数学的重要内容之一,是学习分式、根式、和一元二次方程的重要基础,是解决许多数学问题的重要“工具”,也是各级考试的一个热点,现将关于这部分知识的常见题型介绍如下。
题型一:分解因式的意义此类考题多数以选择题的形式出现。
解决此类问题需要对分解因式的概念正确的理解。
例1 下列从左到右的变形是分解因式的是( )(A )(x-4)(x+4)=x 2-16 (B)x 2-y 2+2=(x+y)(x-y)+2(C)2ab+2ac=2a(b+c) (D)(x-1)(x-2)=(x-2)(x-1).分析:根据多项式分解因式的概念:把一个多项式化成几个整式积的形式,叫做分解因式.所以要判断从左道右的变形是否是分解因式,关键是看左边是否是多项式,右边是否是整式的积.解:选(C).练习:下面由左边到右边的变形中,是分解因式的是( ).(A)a(x-y)=ax-ay (B)x 2-2x+4=(x-1)2+3(C)8x 2-4x=4x·2x (D)y 2-y+41=(y-21)2 答案: (D)题型二、直接提公因式分解此类题大多以选择或填空题的形式出现,其中找出公因式是关键。
求解时应按照提公因式法则将公因式提出即可。
例2 分解因式2a(b-c)-3c(b-c).分析:把(b-c)看作一个整体,则(b-c)就是此多项式的公因式.解: 2a(b-c)-3c(b-c)=(b-c)(2a-3b).练习:分解因式: (2x-3y)(a+b)+(a+b)(3x-2y).答案:5(a+b)(x-y).题型三、直接利用公式因式分解求解此类题掌握所学的几个公式的特点是关键,求解时应根据题目的特点选择合适的公式求解。
例3、分解因式:a 2-1=_______.析解:本题符合平方差公式的特点,故可直接利用平方差公式求解。
其结果为:(a -1)(a +1).练习:分解因式:224x y -=________.答案:(x -2y )(x+2y )题型四、提公因式后再用公式此类题大多以填空或选择题的形式出现,求解时应首先将公因式提出,再选择有关公式求解。
鲁教版(五四学制)八年级数学上册课件:1.1因式分解 (共15张PPT)
教学目标
1.理解因式分解的概念。 2.理解因式分解与整式乘法的关系
预习诊断
1.下列各式中,是因式分解的是(
A、a(m-6)+b(m-6)=(m-6)(a+b) B、(a-b)(3-a)=3a-a2-3b+ab C、(x+y)(x-y)=x2-y2 D、(a+b)2=a2+2ab+b2
) (2)ma+mb-m=( ) (4)y2-6y+9=(
)( )( )
)
因式分解
两 者 关 系
1.因式分解与整式乘法互为逆运算 2.因式分解的结果必定是乘积的形式.
随堂练习
连 一 连
x2 + 4x + 4 x2 - 2x + 1 4x2 - 1 x2 - 1 x2 - 4
(x + 2)(x - 2) (x - 1)(x + 1) (x - 1)2 (x + 2)2 (2x - 1)(2x + 1)
延伸探究
整式的乘法
计算下列各式: (1)3x(x-1)=________________ (3)(m+4)(m-4)=______________ 完成下面算式的填空: (1)3x2-3x=( )( (3) m2-16=( )(
(2)m(a+b+c)=_______________ (4)(y-3)2 =________________
乘法的关系Leabharlann 当堂达标见导学案。
布置作业
课本P4: 习题1.1
合作探究
探究一:因式分解的概念
观察得知:a3-a=a(a+1)(a-1),am+bm+cm=m(a+b+c), x2+2x+1=(x+1)2,都是把一个多项式化成几个整式的积的形
初二数学因式分解50道题及答案
初中因式分解50题及答案学校:___________姓名:___________班级:___________考号:___________一、解答题1.因式分解(1)22363ax axy ay +﹣(2)()44m m -+.2.(1)计算:()3222x x x ⋅⋅- (2)计算:()()3223x x +-(3)因式分解:32x xy -(4)因式分解:244a b ab b -+3.(1)计算:2(3)(2)(4)(4)a a a a -+-+-;(2)分解因式:229()4()a x y b y x -+-;4.因式分解:244x y xy y -+.5.因式分解(1)22312x y -;(2)29124m m -+.6.分解因式:(1)22x xy xy -+(2)()222224a b a b +- (3)()()269x y x y ---+7.因式分解:(1)39x x -(2)244m m -+-8.分解因式(1)21236x x -+;(2)32312a ab -.9.因式分解(1)224a a -(2)22169mn m n -+10.因式分解(1)()222224x y x y +- (2)22369xy x y y --11.分解因式(1)3228a ab -.(2)()()269b a a b ---+.12.分解因式:(1)2269m n n -+-(2)()226(2)714x y x x y x x y +++--. 13.分解因式:22944a ab b -+-.14.因式分解:(1)3223242x y x y xy -+-;(2)()()222211a b b b -+-.15.因式分解:(1)282abc bc -;(2)()()26x x y x y +-+;16.在实数范围内分解下列因式:(1) 4265y y -+;(2) 211x -;(3) 23-+a ;(4)252x -.17.分解因式∶(1)26mx my -;(2)222510m mn n -+(3)()()229a x y b y x -+-.18.把下列多项式分解因式.(1)329a ab -;19.分解因式:(1)22364m n -(2)22(()())x x y x y x y x ----+.20.分解因式(1)216x -(2)3a a -(3)24(2)4(2)1a b a b +-++;(4)2221y y x ++-21.将下列各式因式分解:(1)24xy xy -.(2)4224816x x y y -+.(3)()()222x x y y x -+-.22.因式分解:(1)()()2222x a y a -+-(2)()()22211216x x x x -+-+ 23.因式分解:()()22254a x y b y x -+-.24.分解因式(1)32x xy -(2)(2)(4)1x x +++25.分解因式:(1)323812a b ab c +(2)22344ab a b b --.26.分解因式.(1)2()4()a x y y x -+-;(2)()222221664x y x y +-. 27.分解因式(2)22()()x a x b +--(3)22(32)(27)x x --+28.分解因式:(1)2344x x x --;(2)2(2)(3)(2)x y x y x y -+--;(3)22222()4x y x y +-.29.分解因式:(1)22338124a b ab a b -+-(2)()()24a x y y x -+-30.分解因式2812x x -+:.31.分解因式:()()229x y z x y z -++--.32.因式分解(直接写出结果)(1)2()()y x y x y ---=_________;(2)41x -=_____________;(3)2(1)4x x +-=____________.33.把下列各式分解因式:(1)()()26a x y b y x ---;(2)()()2221619y y ---+ 34.分解因式:(1)2961x x ++(2)322321218x y x y xy -+35.分解因式:()()()111xy x y xy ++++36.因式分解(1)3x y xy -;(2)()()21449x y x y -+++-.37.分解因式:(1)22363a ab b -+-;(2)()()2294a x y b y x -+-.38.因式分解:(1)24ab a -;(2)()()22258516x x +--+. 39.分解因式:(1)29x -(2)222050x x -+40.分解因式:2(()9)x m n n m -+-41.把下列各式因式分解:(1)323812a b ab c +;(2)2231212x xy y -+;(3)()()229+4a x y b y x --;(4)44x y -+;(5)292)(2a x y x y +--.42.因式分解(1)22862ab a b ab -+-; (2)214x x -+;(3)()22214x x +-. 43.把下列各式因式分解:(1)()222416a a +-. (2)()()229m n m n +--.(3)222232448a x a x a -+-.44.分解因式(1)2221a b a --+;(2)3-a b ab .45.分解因式:(1)2ax a -;(2)2363x y xy y -+.46.把下列多项式分解因式:(1)34x x -(2)2292a b ab +-+47.因式分解(1)32m mn(2)22288x xy y -+48.因式分解:(1)29x -;(2)232a a a -+;(3)()()22258516x x +--+. 49.分解因式:223242x y xy y ++.50.分解因式:(1)321510x x +;(2)269x y xy y -+;(3)22()4()a x y b y x -+-.参考答案:1.(1)()23-a x y(2)()22m -【分析】(1)先提公因式,再运用完全平方公式即可作答;(2)先去括号,再运用完全平方公式即可作答.【详解】(1)223-63ax axy ay +()2232a x xy y =-+()23a x y =-; (2)()44m m -+244m m =-+()22m =-.【点睛】本题考查因式分解,用到了提公因式法与公式法,解题的关键是注意如果多项式的各项含有公因式,必须先提公因式.2.(1)98x -(2)2656x x --(3)()()x x y x y +-(4)()22b a -【分析】(1)根据积的乘方,同底数幂的乘法运算法则计算即可;(2)根据多项式乘多项式的法则计算即可;(3)先提取公因式,再利用平方差公式分解因式;(4)先提取公因式,再利用完全平方公式分解因式;【详解】(1)解:原式()268x x x =⋅⋅- 98x =-;(2)解:原式26946x x x =-+-2656x x =--;(3)解:原式()22x x y =-()()x x y x y =+-;(4)解:原式()244b a a =-+ ()22b a =-. 【点睛】本题考查了积的乘方,同底数幂的乘法,多项式乘多项式,综合提公因式和公式法分解因式,熟练掌握运算法则是解题的关键.3.(1)23228a a --(2)()()()3232x y a b a b -+-【分析】(1)先去括号,再合并同类项即可;(2)先提取公因式,然后利用平方差公式分解即可.【详解】解:(1)原式()22221216a a a =----22221216a a a =---+23228a a =--;(2)原式()()2294a x y b x y =---()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题主要考查整式的乘法以及乘法公式,因式分解,掌握因式分解的方法,整式运算的法则是解题的关键.4.2(21)y x -【分析】先提取y ,再根据公式法分解因式即可.【详解】原式2(441)y x x =-+2(21)y x =-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 5.(1)()()322x y x y +-(2)()232m -【分析】(1)先提取公因式,再用平方差公式;(2)用完全平方公式.【详解】(1)解:22312x y -()2234x y =- ()()322x y x y =+-(2)29124m m -+()2232322m m =-⨯⨯+ ()232m =-【点睛】本题主要考查了公式法与提公因式法因式分解;熟练掌握平方差公式与完全平方公式的特征是解题的关键.6.(1)()21x y -(2)()()22a b a b +-(3)()23x y --【分析】(1)先提取公因式x ,再利用完全平方公式进行因式分解即可;(2)先利用平方差公式分解为()()222222a b ab a b ab +++-,再利用完全平方公式分解因式即可;(3)把()x y -看作整体利用完全平方公式进行因式分解即可.【详解】(1)22x xy xy -+()212x y y =-+()21x y =-.(2)()222224a b a b +-()()222222a b ab a b ab =+++-()()22a b a b =+-. (3)()()269x y x y ---+ ()23x y =--.【点睛】此题考查了因式分解,注意因式分解要彻底,熟练掌握因式分解并灵活选择方法是解题的关键.7.(1)()()33x x x +-;(2)()22m --.【分析】(1)先提取公因式x ,再用平方差公式继续分解;(2)先提取公因式1-,再用完全平方公式继续分解.【详解】(1)解:()3299x x x x -=- ()()33x x x =+-;(2)解:244m m -+-()244m m =--+()22m =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 8.(1)()26x -(2)()()322a a b a b -+【分析】(1)式利用完全平方公式分解即可;(2)先提取公因式,再利用平方差公式分解即可.【详解】(1)解:21236x x -+22266x x =-⨯⋅+()26x =-(2)解:32312a ab - ()2234a a b =-()2232a a b ⎡⎤=-⎣⎦()()322a a b a b =-+【点睛】本题考查了提公因式法与公式法的综合运用,灵活选择合适的因式分解方法是解本题的关键.9.(1)()22a a -(2)()231mn -【分析】(1)直接提取公因式2a 即可得到答案;(2)利用完全平方公式分解因式即可.【详解】(1)解:224a a -()22a a =-;(2)解:22169mn m n -+()231mn =-.【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.10.(1)()()22x y x y +-(2)()23y x y --【分析】(1)先利用平方差公式因式分解,再利用完全平方公式进行因式分解,即可求解;(2)先提公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:()222224x y x y +- ()()222222x y xy x y xy =+++-()()22x y x y =+-(2)解:22369xy x y y --()2296y x xy y =--+()23y x y =--【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.11.(1)()()222a a b a b +-(2)()23a b --【分析】(1)先提出公因式2a ,再用平方差公式进行求解即可,(2)先将()()269b a a b ---+转化为()()269a b a b ---+,再利用完全平方公式进行求解即可.【详解】(1)3228a ab - ()2224a a b =-()()222a a b a b =+-(2)()()269b a a b ---+()()269a b a b =---+()23a b =-- 【点睛】本题主要考查因式分解,解题的关键是掌握因式分解的方法——提公因式法和公式法,要注意分解要彻底.12.(1)()()33m n m n +--+(2)()()()271x y x x ++-【分析】(1)通过添括号,将2269m n n -+-转化为()2269m n n --+,再利用平方差公式进行分解因式即可求解.(2)将()226(2)714x y x x y x x y +++--转化为()()226(2)72x y x x y x x y +++-+,先提出公因式,再利用十字相乘法进行分解因式即可求解.【详解】(1)2269m n n -+-()2269m n n =--+()223m n =-- ()()33m n m n =+--+(2)()226(2)714x y x x y x x y +++--()()226(2)72x y x x y x x y =+++-+()()2267x y x x =++-()()()271x y x x =++-【点睛】本题考查分解因式的方法,解题的关键是掌握提公因式法,公式法和十字相乘法. 13.()()3232a b a b +--+【分析】先将多项式分组为()22944a ab b --+,再分别利用完全平方公式和平方差公式分解即可.【详解】解:22944a ab b -+-()22944b a a b =--+()292a b =--()()3232a b a b =+---⎡⎤⎡⎤⎣⎦⎣⎦()()3232a b a b =+--+.【点睛】本题考查了因式分解-分组分解,熟练掌握完全平方公式和平方差公式,能根据多项式特点进行适当分组是解题关键.14.(1)()22xy x y --(2)()()()()11a b a b b b ++--【分析】(1)先提取公因式2xy -,再利用完全平方公式继续分解即可;(2)先对原式变形,再利用平方差公式进行分解即可.【详解】(1)解:原式()2222xy x xy y =--+()22xy x y =--;(2)解:原式()()222211a b b b =--- ()()2221b a b =--()()()()11a b b b b a =++--.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.因式分解必须分解到每个因式都不能再分解为止.15.(1)()24bc a c -(2)()()23x y x +-【分析】(1)用提公因式法解答;(2)用提公因式法解答.【详解】(1)解:原式()24bc a c =-(2)解:原式()()23x y x =+-【点睛】此题考查了因式分解——提公因式法,熟练掌握提取公因式的方法是解本题的关键.16.(1)()()(11y y y y +-(2)(x x(3)(2a(4)【分析】(1)原式先利用十字相乘法分解后,再利用平方差公式“()()22a b a b a b -=+-”分解即可;(2)原式利用平方差公式分解即可;(3)原式利用完全平方公式“()2222a ab b a b ±+=±”分解即可;(4)原式利用平方差公式分解即可.【详解】(1)解:原式()()2215y y --= ()()(11y y y y =+-;(2)解:原式22x =- (x x =;(3)解:原式(2a =;(4)解:原式=. 【点睛】本题考查了在实数范围内因式分解,掌握因式分解的方法是解决本题的关键. 17.(1)()23-m x y(2)()25m n -(3)()()()33x y a b a b +--【分析】(1)直接提公因式2m 即可分解;(2)利用完全平方公式分解即可;(3)先提公因式x y -,再利用平方差公式分解.【详解】(1)解:26mx my - ()23m x y =-;(2)222510m mn n -+()25m n =-;(3)()()229a x y b y x -+- ()()229a b x y =--()()()33y a b a b x +-=-【点睛】本题考查的是因式分解,在解答此类题目时要注意乘法公式的运用.18.(1)()()33a a b a b -+(2)23(2)x y -【分析】(1)先提公因式,再用公式法分解因式即可;(2)先提公因式,再用公式法分解因式即可.【详解】(1)解:329a ab -()229a a b =- ()()33a a b a b =-+;(2)解:2231212x xy y -+()22344x xy y =-+23(2)x y =-. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.19.(1)()()433m n m n +-(2)()()21x y x --【分析】(1)直接根据平方差公式因式分解即可得到答案;(2)先提取公因式,再利用完全平方公式分解即可得到答案.【详解】(1)解:原式22(6)(2)m n =- ()()6262m n m n =+-()()433m n m n =+-;(2)解:原式22(())()x x y x y x x y =--+-+()()221x y x x =--+()()21x y x =--.【点睛】本题考查因式分解,解题的关键是熟练掌握有公因式先提取公因式,再看符不符合公式,利用公式法分解.20.(1)()()44x x +-(2)()()11a a a +-(3)()2421a b +-(4)()()11y x y x -+--【分析】(1)根据平方差公式进行因式分解即可求解;(2)先提公因式a ,然后根据平方差公式进行因式分解即可求解;(3)根据完全平方公式进行因式分解即可求解;(4)先分组,然后根据完全平方公式与平方差公式因式分解即可求解.【详解】(1)解:216x - ()()44x x =+-;(2)解:3a a -()21a a =-()()11a a a =+-;(3)解:24(2)4(2)1a b a b +-++()2221a b =+-⎡⎤⎣⎦()2421a b =+-; (4)2221y y x ++-()2221y y x ++-=()221y x =-- ()()11y x y x =-+--.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.21.(1)(4)xy y -(2)22(2)(2)x y x y -+(3)2()(1)(1)x y x x --+【分析】(1)提取公因式即可.(2)先利用完全平方公式进行因式分解,再利用平方差公式进行因式分解.(3)先提取公因式,再把剩下的部分提取2后,按照平方差公式展开.【详解】(1)解:原式(4)xy y =-(2)解:原式()22222224(4)x x y y =-⋅⋅+ 222(4)x y =-22(2)(2)x y x y =-+(3)解:原式2()(22)x y x =--2()2(1)x y x =-⋅⋅-2()(1)(1)x y x x =--+【点睛】本题考查的是因式分解,解题的关键是要识别出可以使用平方差公式和完全平方公式之处,分解彻底.22.(1)()()()2a x y x y -+- (2)412x ⎛⎫- ⎪⎝⎭【分析】(1)先变形,然后提取公因式,再利用平方差公式因式分解即可;(2)利用完全平方公式进行因式分解即可.【详解】(1)解∶原式()()2222x a y a =---()()222a x y =--()()()2a x y x y =-+-;(2)解:原式2214x x ⎛⎫=-+ ⎪⎝⎭2212x ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 412x ⎛⎫=- ⎪⎝⎭. 【点睛】本题主要考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.()(52)(52)x y a b a b --+【分析】将()y x -变形为()x y --,提取公因式,运用平方差公式即可求解.【详解】解:()()22254a x y b y x -+-()()22254a x y b x y =---()22(254)x y a b =--()(52)(52)x y a b a b =--+.【点睛】本题主要考查因式分解,掌握提取公因式,乘法公式进行因式分解是解题的关键. 24.(1)()()x x y x y +-(2)2(3)x +【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【详解】(1)解:原式22()()()x x y x x y x y =-=+-;(2)解:原式269x x =++2(3)x =+.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.25.(1)()22423ab a bc +;(2)()22--b a b .【分析】(1)提取公因式24ab ,即可求解;(2)先提取公因式b -,再利用完全平方公式继续分解即可.【详解】(1)解:323812a b ab c +()22423ab a bc =+;(2)解:22344ab a b b --()2244b ab a b =--++ ()22b a b =--.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 26.(1)()()()22a a x y +--(2)()()2244x y x y +-【分析】(1)原式提取公因式,再利用平方差公式分解;(2)原式利用平方差公式变形,再利用完全平方公式分解.【详解】(1)解:2()4()a x y y x -+- ()()24a x y =--()()()22a a x y =+--;(2)解:()222221664x y x y +- ()()2222168168x y xy x y xy =+++-()()2244x y x y =+-【点睛】此题考查了因式分解—提公因式法,以及公式法,熟练掌握因式分解的方法是解本题的关键.27.(1)()2xy x y -(2)()()2x a b a b +-+(3)()()519x x +-【分析】(1)先提取公因式,再用完全平方公式分解;(2)用平方差公式分解即可;(3)先用平方差公式分解,再提取公因式.【详解】(1)32232x y x y xy -+()222xy x xy y =-+()2xy x y =- (2)22()()x a x b +--[][]()()()()x a x b x a x b =++-+--()()x a x b x a x b =++-+-+()()2x a b a b =+-+(3)22(32)(27)x x --+[][](32)(27)(32)(27)x x x x =-++--+()()32273227x x x x =-++---()()559x x =+-()()519x x =+-【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解答本题的关键.因式分解常用的方法有:∶提公因式法;∶公式法;∶十字相乘法;∶分组分解法.28.(1)2(2)x x --(2)5(2)y x y -(3)22()()x y x y +-【分析】(1)先提公因式x -,再利用完全平方公式即可;(2)先提公因式(2)x y -,再合并同类项即可;(3)先利用平方差公式,再利用完全平方公式进行计算即可.【详解】(1)解:(1)原式2(44)x x x =--+2(2)x x =--;(2)解:原式(2)[(3)(2)]x y x y x y =-+--(2)(32)x y x y x y =-+-+5(2)y x y =-;(3)解:原式22222()4x y x y =+-2222(2)(2)x y x y xy y x ++=+-22()()x y x y =+-.【点睛】本题考查因式分解,掌握提公因式法和公式法是解题的关键.29.(1)()22423ab a b a b --+(2)()()()22x y a a -+-【分析】(1)提取4ab -,即可求解;(2)提取()x y -,再根据平方差公式继续分解即可求解.【详解】(1)解:22338124a b ab a b -+-()22423ab a b a b --+=;(2)解:()()24a x y y x -+-()()24x y a =-- ()()()22x y a a =-+-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 30.()()26x x --【分析】根据十字相乘法,进行因式分解即可.【详解】解:()()281226x x x x -+=--.【点睛】本题考查因式分解.熟练掌握十字相乘法因式分解,是解题的关键.31.()()4222x y z x y z ++++【分析】利用平方差公式先将原式进行分解因式得到()()422244x y z x y z ++++,再提取公因式2即可得到答案.【详解】解:()()229x y z x y z -++-- ()()()()33x y z x y z x y z x y z =+++--++---⎡⎤⎡⎤⎣⎦⎣⎦()()333333x y z x y z x y z x y z =+++--++-++()()422244x y z x y z =++++()()4222x y z x y z =++++.【点睛】本题主要考查了分解因式,正确利用平方差公式将原式分解成()()422244x y z x y z ++++是解题的关键.32.(1)()(2)x y y x --(2)()21(1)(1)x x x ++-(3)2(1)x -【分析】(1)提取公因式()x y -;(2)利用平方差公式分解;(3)先展开多项式,再利用完全平方公式.【详解】(1)解:原式()[1()]x y x y =---()(1)x y x y =--+;故答案为:()(1)x y x y --+;(2)解:原式22(1)(1)x x =+-2(1)(1)(1)x x x =++-;故答案为:2(1)(1)(1)x x x ++-;(3)解:原式2214x x x =++-221x x =-+2(1)x =-.故答案为:2(1)x -.【点睛】本题考查了整式的因式分解,掌握因式分解的提公因式法、公式法是解决本题的关键.33.(1)()()23a b x y +-(2)()()2222+-y y【分析】(1)利用提取公因式法分解因式;(2)利用完全平方公式和平方差公式分解因式.【详解】(1)解:()()26a x y b y x --- ()()26a x y b x y =-+-()()26a b x y =+-()()23a b x y =+-;(2)解:()()2221619y y ---+ ()2213y =-- ()2222y =- ()()2222y y =+-.【点睛】本题考查因式分解,属于基础题,掌握提取公因式法和公式法是解题的关键. 34.(1)()231+x(2)()223xy x y -【分析】(1)利用完全平方公式进行因式分解,即可求解;(2)先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】(1)解:2296131x x x ; (2)解:322321218x y x y xy -+22269xy x xy y()223xy x y =-.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法——提公因式法、公式法、十字相乘法、分组分解法,并会结合多项式的特征,灵活选用合适的方法是解题的关键.35.(1)(1)xy x xy y ++++【分析】先展开原式,得()()11xy xy x y xy +++++,令1xy a +=,式子变形为:()2xy a x y a xy a ax ay +++=+++,再根据十字相乘法,即可.【详解】()()()()()11111xy x y xy xy xy x y xy ++++=+++++,令1xy a +=,∶()()()111xy x y xy ++++()xy a x y a =+++2xy a ax ay =+++()2a a x y xy =+++()()a x a y =++,把1xy a +=代入()()a x a y ++,∶()()()()11a x a y xy x xy y ++=++++,∶()()()()()11111xy x y xy xy x xy y ++++=++++.【点睛】本题考查因式分解的知识,解题的关键是把1xy +看成一个整体,熟练掌握因式分解-十字相乘法的运用.36.(1)()()11xy x x -+(2)()27x y -+-【分析】(1)先提取公因式,再用平方差公式展开即可(2)直接用完全平方公式即可【详解】(1)解:3x y xy -()21xy x =-()()11xy x x =-+(2)解:()()21449x y x y -+++-()()21449x y x y ⎡⎤=-+-++⎣⎦ ()27x y =-+-【点睛】本题考查了用平方差公式和完全平方公式因式分解,熟练掌握公式是解决问题的关键37.(1)()23a b --;(2)()()()3232x y a b a b -+-.【分析】(1)先提公因式,再利用完全平方公式分解因式,即可;(2)先提公因式,再利用平方差公式分解因式,即可.【详解】(1)解:原式()2232a ab b =--+ ()23a b =--;(2)解:原式()()2294a x y b x y =--- ()()2294x y a b =--()()()3232x y a b a b =-+-.【点睛】本题考查了因式分解,掌握提公因式与公式法分解因式是解题的关键. 38.(1)()()22a b b +-(2)()()2233+-x x【分析】(1)先提取公因式a ,再利用平方差公式分解因式即可;(2)利用完全平方公式和平方差公式分解因式即可.【详解】(1)解:24ab a -()24a b =-()()22a b b =+-;(2)解:()()22258516x x +--+ ()2254x ⎡⎤=--⎣⎦ ()229x =- ()()2233x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.39.(1)()()33x x +-;(2)225x -().【分析】(1)根据平方差公式直接分解因式;(2)先题公因式,在用完全平方差公式分解.【详解】(1)解:29x -()()33x x =+-;(2)222050x x -+()221025x x =-+225x =-(). 【点睛】本题考查因式分解,熟练运用提公因式法和公式法进行因式分解是解题的关键. 40.()()()33m n x x -+-【分析】先提公因式()m n -,然后根据平方差公式因式分解即可求解.【详解】解:2(()9)x m n n m -+-()()29x m n m n =---()()29m n x =--()()()33m n x x =-+-.【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.41.(1)224(23)ab a bc +(2)23(2)x y -(3)()(32)(32)x y a b a b -+-(4)()()()22x y x y y x ++-(5)(2)(31)(31)x y a a ++-【分析】(1)原式提取公因式即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式变形后,提取公因式,再利用平方差公式分解即可;(4)原式利用平方差公式分解即可;(5)原式变形后,提取公因式,再利用平方差公式分解即可.【详解】(1)解:原式224(23)ab a bc =+;(2)解:原式223(44)x xy y =-+23(2)x y =-;(3)解:原式229()4()a x y b x y =---22()(94)x y a b =--()(32)(32)x y a b a b =-+-;(4)解:原式()()2222x y y x =+-()()()22x y x y y x =++-;(5)解:原式292)(2)(a x y x y =+-+22)(91)(x y a =+-(2)(31)(31)x y a a =++-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解决本题的关键.42.(1)()2431ab b a --+(2)212x ⎛⎫- ⎪⎝⎭ (3)()()2211x x +-【分析】(1)提取公因式2ab -进行分解因式即可;(2)利用完全平方公式分解因式即可;(3)利用平方差公式和完全平方公式分解因式即可.【详解】(1)解:22862ab a b ab -+-()2431ab b a =--+ (2)解:214x x -+212x ⎛⎫=- ⎪⎝⎭; (3)解:()22214x x +- ()()221212x x x x =+++-()()2211x x =+-. 【点睛】本题主要考查了分解因式,熟知分解因式的方法是解题的关键.43.(1)()()2222a a +-(2)()()422m n m n ++(3)()2234a x --【分析】(1)首先利用平方差公式分解因式,然后利用完全平方公式分解因式;(2)首先利用平方差公式分解因式,然后利用提公因式法分解因式;(3)首先利用提公因式法分解因式,然后利用完全平方公式分解因式.【详解】(1)()222416a a +- ()()224444a a a a =+++-()()2222a a =+-;(2)()()229m n m n +-- ()()3333m n m n m n m n =++-+-+()()4224m n m n =++()()422m n m n =++;(3)222232448a x a x a -+-()223816a x x =--+()2234a x =--. 【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.44.(1)())11(a b a b -+--(2)()()11ab a a +-【分析】(1)根据平方差公式和完全平方公式,分解因式即可;(2)先提公因式,然后用平方差公式分解因式即可.【详解】(1)解:2221a b a --+2221a a b =-+-()221a b =-- ()()11a b a b -+--=;(2)解:3-a b ab()21ab a =-()()11ab a a =+-.【点睛】本题主要考查了因式分解,解题的关键是熟练掌握平方差公式和完全平方公式. 45.(1)()()11a x x +-(2)()231y x -【分析】(1)首先提取公因式,再利用平方差公式,即可分解因式;(2)首先提取公因式,再利用完全平方公式,即可分解因式.【详解】(1)解:2ax a -()21a x =- ()()11a x x =+-(2)解:2363x y xy y -+()2321y x x =-+()231y x =-【点睛】本题考查了因式分解的方法,熟练掌握和运用因式分解的方法是解决本题的关键. 46.(1)()()22-+x x x ;(2)()()33a b a b +++-.【分析】(1)先提取公因式,再利用平方差公式即可得到结果;(2)原式利用完全平方公式与平方差公式分解即可得到结果.【详解】(1)解:34x x - ()24x x =-()()22x x x =-+;(2)解:2292a b ab +-+()2229a b ab =++-()29a b =+- ()()33a b a b =+++-.【点睛】此题考查了因式分解,提公因式法和运用公式法,熟练掌握完全平方公式是解本题的关键.47.(1)()()m m n m n -+(2)22(2)x y -【分析】(1)提取公因式m ,运用平方差公式即可得;(2)提取公因数2,运用完全平方公式即可得.【详解】(1)解:原式=22()m m n -=()()m m n m n -+;(2)解:原式=222(44)x xy y -+=22(2)x y -.【点晴】本题考查了因式分解,解题的关键是掌握因式分解,平方差公式,完全平方公式. 48.(1)()()33x x +-(2)21a a -()(3)()()2233x x +-【分析】(1)直接运用平方差公式因式分解即可;(2)先提取有公因式,然后运用完全平方公式进行因式分解即可;(3)先提取有公因式,然后运用完全平方公式,再运用完全平方公式进行因式分解即可.【详解】(1)解:29x - ()()33x x =+-,(2)解:232a a a -+=212a a a -+()=21a a -()(3)解:()()22258516x x +--+ =()()22258516x x ---+=()2254x -- ()()2233x x =+- 【点睛】本题考查因式分解,熟练掌握因式分解的方法是解题的关键.49.()22y x y +【分析】先提出公因式,再利用完全平方公式进行因式分解,即可求解.【详解】解:223242x y xy y ++()2222y x xy y =++()22y x y =+ 【点睛】本题考查了提取公因式与公式法分解因式,熟练掌握因式分解的方法是解题的关键.50.(1)()2532x x +(2)()23y x -(3)()()()22x y a b a b -+-【分析】(1)直接提取公因式即可求解;(2)先提取公因式y ,然后利用完全平方公式分解因式即可;(3)先提取公因式x y -,然后利用平方差公式分解因式即可.【详解】(1)321510x x + ()2532x x =+(2)269x y xy y -+()269y x x =-+()23y x =-(3)22()4()a x y b y x -+-22()4()a x y b x y =--- ()22()4x y a b =--()()()22x y a b a b =-+-【点睛】本题主要考查了因式分解,解题的关键是熟知因式分解的方法.。
5 因式分解技巧与方法 八年级数学
五 添项、拆项法
例6 :x 3x 4 3 2 x 1 3x 3
3 2
拆项
( x 1) 3( x 1)
3 2
( x 1)(x x 1) 3( x 1)(x 1)
2
( x 1)(x 2 x 1 3x 3)
( x 1)(x 4x 4)
练习:分解因式
(1) x3-8y3 (2) a5-a3b2+a2b3-b5 (3)a2+b2+c2-2bc+2ca-2ab (4) -2x5n-1yn+4x3n-1yn+2-2xn-1yn+4
四 待定系数法
将要分解的式子变换成方程,想办法找出方程的解。
例5:x2+x-2
变换得方程,x2+x-2=0。该方程有一解为x=1 那么x2+x-2必有一因式为(x-1) 结合多项式展开原理,另一因式的常数必为2。
练习:分解因式
1) x3-x2+x-1
2) xy+6-2x-3y
3) 5ax+5bx-3ay-3by 4) x2-7xy-5x+35y 5) 18a2-32b2-18a+24b 6) 3a3b2c-6a2b2c2+3ab2c3
练习:分解因式 1) a x 6ax 9
2 2
2) a 2 2ab b 2 c 2 3 2 2 3 3) x x y xy y 4) 4a x 4a y b x b y
3 3 2 2 a -b =(a-b)(a +ab+b )
把一个多项式化成几个整式积 的形式,这样的式子变形叫把这 这个多项式因式分解,也叫把这 个多项式分解因式。 例:x2-1=(x+1)(x-1)
人教版八年级下册数学专题复习及练习(含解析):因式分解
专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= __________ •【例题2]把多项式4子-1分解因式,结果正确的是( )A. (4M1) (4a-1) B・(2M1) (2”1)C. (2a- 1) 2D・(2亦1) 2【例题3]分解因式3/ - 27/= __________ .【例题4】分解因式:xf - 2xy^x= _________ .【例题5】因式分解:/-9= _________ .【例题6】分解因式:_________________ ・一.选择题1.a'b - 6a'bTa:b分解因式得正确结果为( )A. a"b (a* - 6a+9) B・ a-b (a - 3) (a+3) C・ b (a" - 3) D・ a"b (a - 3)2.把多项式x2 - 6x+9分解因式,结果正确的是()A・(x - 3 ) 2 B・(x - 9)=C・(x+3) ( x - 3 ) D・(x+9) ( x - 9)3.多项式77x: - 13x - 3 0可因式分解成(7 x+a ) ( bx+c儿其中a > b、c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 224.已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为X3- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19 B・ 2x - 19 C・ 2x+15 D・ 2x - 155.把8a'-8a:+2a进行因式分解,结果正确的是( )A. 2a ( 4a: - 4a+l) B・ 8a: ( a - 1)C. 2a ( 2a - 1) 2 D・ 2a (2a+l) 26.多项式77x" - 13x - 30可因式分解成(7x-ra ) ( bx+c ),其中a. b c均为整数,求a+b + c之值为何?( )A. 0 B・ 10 C・ 12 D・ 227.已知甲、乙、丙均为x的一次多项式,且英一次项的系数皆为正整数.若甲与乙相乘为x c- 4,乙与丙相乘为x=+15x - 34,则甲与丙相加的结果与下列哪一个式子相同?( )A. 2x+19B. 2x - 19 C ・ 2x+15 D. 2x・ 158.把多项式亍+ax+b分懈因式,得(x+1) (x-3)则a, b的值分别是( )A. a=2t b=3 B・ a= - 2, b二・3 C・ a= - 2, b=3 D・ a=2, b= - 39.分解因式:16-丘二( )A. (4 - x) (4+x) B・(x - 4) (x+4) C. (8+x) (8 - x) D. (4 - x):10.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a" - 1 B・ a"+a C・ a"+a - 2 D・(a+2) " - 2 (a+2) +1二、填空题11.分解因式:1-¥= _________ .12.分解因式:3a'b十6卅二__ ・13.分解因式X3—9x= _____1 0 114•已知实数x满足x+_=3,则x2 + —的值为___________ -X X15•因式分解:£・6a+9二____ ・16.分解因式:2^2 - 8/= ______________ .17.因式分解:a2 -2a = _________ .18.分解因式:x2 +x-2 = __________ ・19.分解因式.4丘一9二 _____ ・20.分解因式:a^b —ab= _______ ・21.分解因式:ax= - ay== ______________ .22.分解因式:a-16a= ________________ ・23.把多项式9a5 - ab:分解因式的结果是__________ .24._______________________________________ •把多项式ax:+2a*a'分解因式的结果是.25.分解因式3m l - 48= ____________ ・26・分解因式:ab 1 - 4ab:+4ab:= ______________ ・27.分解因式:(m+1) (m- 9) +8m二__________ ・28•将/ (x-2) +加(2-.Y)分解因式的结果是________________三、解答题29•已知a+b二3, ab=2,求代数式a5b+2aV+ab3的值.专题14.3因式分解1.因式分解把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.2.因式分解方法(1)提公因式法:找岀最大公因式.(2)公式法:①平方差公式:a2-b2=(a+b)(a-b) ②完全平方公式:a2±2ab+b2=(a±b)23.分解因式的一般步骤若有公因式,先提公因式;然后再考虑用公式法(平方差公式:孑一歹=(a+b)(a-2>),完全平方公式: /±2曰b+F=(a±bF)或英它方法分解;直到每个因式都不能再分解为止.【例题1】因式分解:ab-a= ___________•【答案】a (6-1).【解析】提公因式a即可.ab- a=a (.b ■ 1 )・【点拨】本题考査了提取公因式法因式分解.关键是求岀多项式里各项的公因式,提公因式.【例题2】把多项式4/ - 1分解因式,结果正确的是( )A. (4亦1) (4a- 1)B. (2M1) (2”1)C. (2a- 1) 2D・(2M1) 2【答案】B【解析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:=(a+6) (a- b)i完全平方公式:a:±2aM6:= (a±b) 5:4a:- 1= (2a+l) (2a- 1),【点拨】本题考査了分解因式,熟练运用平方差公式是解题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(3)原式= x 4 2 x 2 1 2 x( x 2 1) x 2
( x 2 1) 2 2 x( x 2 1) x 2 ( x 2 x 1) 2
首项变正:(1)原多项式的首项为正;(2)分 解后的各个因式的首项也必须是正的. 3.商的系数变为整数 4.结果化成最简因式:(1)每个因式中有两类项 则合并(2)分解要彻底. 5.相同因式乘积写成乘方形式. 6.单项式乘积写在前面.
x x6
(2Βιβλιοθήκη x 2 7 x 10 (3)x 2 7 x 10 (4) x 2 2 x 3
对结构比较复杂的多项式,若把其中某些部分看 成一个整体,用新字母代替(即换元),则能使 复杂问题简单化、明朗化,在减少多项式项数, 降低多项式结构复杂程度等方面有独到作用。
(5)原式= ( x y ) 2 2( x y ) 2 xy( x y ) 4 xy ( xy) 2 2 xy 1
( x y xy) 2 2( x y xy) 1 ( x y xy 1) 2 ( x 1) 2 ( y 1) 2
a b c 3abc (a b c)(a b c ab bc ac)
3 3 3 2 2 2
对二次三项式的系数进 行分解,借助直字交 叉图分解,即:
x ( p q) x pq ( x p)(x q)
2
例题:用十字相乘法分解 下列多项式: 2 (1)
下列变形中,属于因式分解的是: a b+c) =ab+ac; ( 1) (
2 (2)x 3 + 2 x 2 -3=x (x+ 2) -3; 2 2 a b =(a+b) (a -b) . ( 3)
把一个多项式化为几个最简整式的乘 积的形式,这种变形叫做把这个多项 式因式分解
一、提公因式法; 二、公式法; 三、十字相乘法; 四、换元法; 五、分组分解法; 六、拆项、添项法;
(3)设x+y=a,xy=b,则原式 =a(a+2b)+(b+1)(b-1) = a 2 2ab b 2 1
(a b 1)(a b 1)
(4)原式=
1999x 2 1999x 2 x 1999 1999x( x 1999 ) ( x 1999 ) (1999x 1)(x 1999 )
(1)形如:am+an+bm+bn=(am+an)+(bm+bn) =a(m+n)+b(m+n) =(a+b)(m+n) (2)形如:
x2 y2 2x 1 ( x 2 2 x 1) y 2 ( x 1) 2 y 2 ( x y 1)(x y 1)
设:x (1)解:
2
5x a
则原式=(a 2)(a 3) 12
a 2 5a 6 (a 6)(a 1)
(2)解:原式(= x
2
7 x 6)(x 2 5 x 6) x 2
( x 2 6 x 6 x)(x 2 6 x 6 x) x 2 ( x 2 6 x 6) 2
解法四:添加两项
x x
2
2
分解因式: 6 (1) 9 (2) 2 2
x x x 3
3
(m 1)(n 1) 4mn
把一个式子或一个式子的部分写成完全平 方式或几个完全平方式的和的形式,这种 方法叫配方法。配方法的关键是通过拆项 或添项,将原多项式配上某些需要的项, 以便得到完全平方式 ,然后在此基础上分 解因式。 4 2 x 7x 1 例题:(1) (2) x 4 x 2 2ax 1 a 2 (3) x 4 2 x 3 3x 2 2 x 1
x 2 y y 2 z z 2 x x 2 z y 2 x z 2 y 2xyz
例题2(重庆市竞赛 题)分解因式: 2
4x 4x y 4 y 3
2
解:原式= (4 x 2 4 x 1) ( y 4 y 4)
2
(2 x 1) 2 ( y 2) 2 (2 x y 3)(2 x y 1)
( x y)(x y 2 xy) ( xy 1)(xy 1) (3) 2 2 (4) 1999x (1999 1) x 1999
2 (5) ( x y 2xy)(x y 2) ( xy 1) (6) (2x 3 y)3 (3x 2 y)3 125( x y)3
( x x 4)(x x 3) 10
4 2
4
2
x x a 解:设 (a 4)(a 3) 10 原式= 2
4 2
a a2 (a 2)(a 1)
2 2 ( x 5 x 2 )( x 5x 3) 12 (1)
2 ( x 1 )( x 2 )( x 3 )( x 6 ) x (2)
把多项式适当的分组,分组后能够有公因式或能运 用公式,这样的因式分解的方法叫分组分解法。
分组除具有尝试性外,还具有目的性,或者分组后能出 现公因式,或者能运用分式。分组分解法是因式分解的 基本方法,体现了化整体为局部,又有全局的思想。如 何分组是解题的关键。常见的分组方法有: (1)按字母分组:把相同的字母的代数式写在一起; (2)按次数分组:把多项式写成某一个字母的降幂排列, 再分组; (3)按系数分组:把系数相同的项写在一起进行分组。 在分组分解法时有时要用到拆项、添项的技巧。
(1)解:原式= x4 7x2 1
x4 2x2 1 9x2 ( x 2 3x 1)(x 2 3x 1)
(2)原式=
x 4 2 x 2 1 x 2 2ax a 2 ( x 2 1) 2 ( x a) 2 ( x 2 x 1 a)(x 2 x a 1)
3 3
a b (a b)(a 2 ab b2 )
a b (a b)(a ab b )
2 2
五、常用到的式子: ab b a 1 (a 1)(b 1)
a 4 4 (a 2 2a 2)(a 2 2a 2)
a2 b2 c 2 2ab 2ac 2bc (a b c) 2
因式分解是多项式乘法的逆运算。在多项式乘法 运算时,整理、化简将几个同类项合并为一项, 或将两个仅符号相反的同类项相互抵消为零。在 对某些多项式分解因式时,需要恢复那些被合并 或相互抵消的项,即把多项式中的某一项拆成两 项或多项,或者在多项式中添上两个仅符号相反 的项,前者称为拆项,后者称为添项。
例题1(上海市竞赛题)多项式 因式分解后的结果是 解:将原式重新整理成关于x的二次三项式, 则 原式=
( y z ) x 2 ( y 2 z 2 2 yz) x ( zy 2 z 2 y ) ( y z )[x 2 ( y z ) x yz] ( y z )(x y )(x z )
这是因式分解的首选方法。也是最基本的方法。 在分解因式时一定要首先认真观察等分解的代数 式,尽可能地找出它们的公因数(式)
a b (a b)(a b) 一、平方差公式: 2 2 2 二、完全平方公式: a 2ab b (a b)
2 2
三、立方和(差)公 式: 3 3
(6)原式= (2 x 3 y ) 3 (3 x 2 y ) 3 [5( x y )]3
(2 x 3 y ) 3 (3 x 2 y ) 3 [(2 x 3 y ) (3 x 2 y )]3 15( x y )(2 x 3 y )(3 x 2 y )
例题:分解因式: 3 解法一:将常数项8拆成-1+9 原式=
x3 9 x 1 9 ( x 3 1) 9( x 1) ( x 1)(x 2 x 1) 9( x 1) ( x 1)(x 2 x 8)
x 9x 8
解法二:将一次项-9x拆成-x-8x 3 3 3 解法三:将三次项 拆成 9 x 8 x x