一元三次方程求根公式

合集下载

没有二次项的一元三次方程求根公式

没有二次项的一元三次方程求根公式

没有二次项的一元三次方程求根公式一元三次方程是指形如ax^3+bx^2+cx+d=0的方程,其中a不等于0。

这种方程的根是非常难以求解的,因为它没有一个通用的公式来求解它的根。

然而,如果这个方程没有二次项,那么我们可以使用一些特殊的技巧来求解它的根。

首先,我们可以将这个方程写成如下形式:x^3+px+q=0其中p和q是常数。

接下来,我们需要找到一个特殊的数r,使得r^3+pr+q=0。

一旦我们找到了这个数,我们就可以将原方程写成如下形式:(x-r)(x^2+rx+(r^2+p))=0现在我们可以使用二次方程的求根公式来求解x^2+rx+(r^2+p)=0的根。

然而,我们还需要求解x-r=0的根,这个根很容易得到,它就是r。

因此,我们可以得到原方程的三个根:x1=rx2=(-r+sqrt(3)r*i)/2x3=(-r-sqrt(3)r*i)/2其中i是虚数单位,即i^2=-1。

这个公式也可以写成如下形式: x1=rx2=-r/2+sqrt(3)(r/2)ix3=-r/2-sqrt(3)(r/2)i现在让我们来看一个具体的例子。

假设我们要求解方程x^3-3x+2=0的根。

首先,我们可以将它写成如下形式:x^3+0x^2-3x+2=0这个方程没有二次项,因此我们可以使用上面的方法来求解它的根。

我们需要找到一个数r,使得r^3-3r+2=0。

这个方程的解是r=1,因为1^3-3(1)+2=0。

现在我们可以将原方程写成如下形式:(x-1)(x^2+x+2)=0我们可以使用二次方程的求根公式来求解x^2+x+2=0的根。

这个方程的判别式是-7,因此它没有实数根。

然而,它有两个共轭复数根: x2=(-1+sqrt(7)i)/2x3=(-1-sqrt(7)i)/2因此,原方程的三个根是:x1=1x2=(-1+sqrt(7)i)/2x3=(-1-sqrt(7)i)/2总之,没有二次项的一元三次方程的根可以使用特殊的技巧来求解。

一元三次求根公式方法

一元三次求根公式方法

一元三次求根公式方法一、一元三次方程概述1.定义及符号表示一元三次方程是指只含有一个未知数、未知数的最高次数为三次的方程。

通常用字母x表示未知数,方程一般形式为:ax+bx+cx+d=0。

2.基本性质一元三次方程有以下几个基本性质:(1)一元三次方程有三个解(实根或复根);(2)一元三次方程的解可能有两个实根,一个虚根;(3)一元三次方程的解可能有一个实根,两个虚根;(4)一元三次方程的解可能三个都是虚根。

二、一元三次求根公式推导1.公式推导过程一元三次方程的求根公式由意大利数学家卡尔丹(Cardano)于16世纪首次推导出来。

求根公式为:x1,2,3 = [-b ± √(b-3ac)] / (3a)2.公式含义及适用范围该公式适用于一元三次方程ax+bx+cx+d=0(a≠0),通过该公式可以求得一元三次方程的三个解。

三、一元三次方程的解法1.直接开平方法直接开平方法适用于一元三次方程ax+bx+cx+d=0(a≠0,且a、b、c、d为实数),通过直接开平可以求得一元三次方程的解。

2.公式法利用一元三次方程的求根公式,可以求得一元三次方程的三个解。

公式法适用于一元三次方程ax+bx+cx+d=0(a≠0)。

3.图像法通过绘制一元三次函数的图像,观察与x轴的交点个数,可以判断一元三次方程的解的个数。

图像法适用于直观地了解一元三次方程的解的情况。

4.数值法利用数值方法(如牛顿法、二分法等)求解一元三次方程,适用于需要求解实数解的情况。

四、一元三次方程实际应用案例1.数学建模中的应用在数学建模中,一元三次方程常用于构建复杂数学模型,如人口增长模型、经济模型等。

2.物理、工程领域的应用一元三次方程在物理、工程领域中有广泛应用,如振动系统的动力方程、电磁场的麦克斯韦方程等。

五、一元三次方程求根公式的优缺点1.优点(1)公式具有普遍性,适用于各种一元三次方程;(2)求解过程较为简便,计算量较小;(3)可以求得实根、复根,以及虚根。

一元三次方程求根公式

一元三次方程求根公式

一元三次方程求根公式一元二次ax^2 +bx+c=0可用求根公式x= 求解,它是由方程系数直接把根表示出来的公式。

这个公式早在公元9世纪由中亚细亚的阿尔·花拉子模给出。

南宋数学家秦九韶至晚在1247 年就已经发现一元三次方程的求根公式,欧洲人在400 多年后才发现,但在中国的课本上这个公式仍是以那个欧洲人的名字来命名的。

(《数学九章》等)一元三次方程ax^3 +bx^2 +cx+d=0的求根公式是1545年由意大利的卡当发表在《关于代数的大法》一书中,人们就把它叫做“卡当公式”。

可是事实上,发现公式的人并不是卡当本从,而是塔塔利亚(Tartaglia N.,约1499~1557).发现此公式后,曾据此与许多人进行过解题竞赛,他往往是胜利者,因而他在意大利名声大震。

医生兼数学家卡当得知塔塔利亚总是获胜的消息后,就千方百计地找塔塔利亚探听他的秘密。

当时学者们通常不急于把自己所掌握的秘密向周围的人公开,而是以此为秘密武器向别人挑战比赛,或等待悬赏应解,以获取奖金。

尽管卡当千方百计地想探听塔塔利亚的秘密,但是在很长时间中塔塔利亚都守口如瓶。

可是后来,由于卡当一再恳切要求,而且发誓对此保守秘密,于是塔塔利亚在1539年把他的发现写成了一首语句晦涩的诗告诉了卡当,但是并没有给出详细的证明。

卡当并没有信守自己的誓言,1545年在其所著《重要的艺术》一书中向世人公开了这个解法。

他在此书中写道:"这一解法来自于一位最值得尊敬的朋友--布里西亚的塔塔利亚。

塔塔利亚在我的恳求之下把这一方法告诉了我,但是他没有给出证明。

我找到了几种证法。

证法很难,我把它叙述如下。

"从此,人们就把一元三次方程的求根公式称为卡当公式。

塔塔利亚知道卡当把自己的秘密公之于众后,怒不可遏。

按照当时人们的观念,卡当的做法无异于背叛,而关于发现法则者是谁的附笔只能被认为是一种公开的侮辱。

于是塔塔利亚与卡当在米兰市的教堂进行了一场公开的辩论。

一元三次方程的求根公式及其推导

一元三次方程的求根公式及其推导

一元三次方程的求根公式及其推导有三个实数根。

有三个零点时,当有两个实数根。

有两个零点时,当有唯一实数根。

有唯一零点时,当。

,有两实根,为,则方程若有唯一实数根。

有唯一零点有一实根,则方程若有唯一实数根。

有唯一零点没有实根,则方程若实数根的个数。

点的个数即方程零即方程则设实数根的判定:程即可。

因此,只需研究此类方的特殊形式即公式化为均可经过移轴三次方程由于任一个一般的一元0)()(0)1281(811)()(0)()(0)1281(811)()(0)()(0)1281(811)()(33:0)(0)3(0)()(0)(,0).2(0)()(0)(',0).1(0)(,00)(,)(.1,0,0)2792()3)(39()3(0)3272()3)(3()3(032323221''3333233232323=⇔<+=∙=⇔=+=∙=⇔>+=∙--==-===<=⇔===⇔=>=++=++=++==++=+-++-++=+-++-++=+++x F x F p q F F x F x F p q F F x F x F p q F F px p x x F p x F x F x F p x F x F x F p q px x x F q px x x F q px x x F q px x D A ABC B B Ax AB AC B Ax D A BC AB A B x A BC A B x AD Cx Bx Ax βαβαβαβα33233232323323233231322321323232333333333333333333333332332332323212811210861128112108610)1281(811)27(41281121086112811210861181281918128190)1281(811)27(402727,3)(300)(33)(3)(.1.200128100128100128112810)1281(8110)0.(0.p q q p q q x p q p q p q q a B p q q a A B A p q q a p q q a p q p q p qa a B A q B A p B A q B A p AB q B A p AB q px x B A ABx x ABx B A B A AB B A B A x B A x B A B A B A x q px x p q q px x p q q px x p q p q p q p q p q p +--+++-=≤+=--⎪⎩⎪⎨⎧+--==++-==⎪⎪⎩⎪⎪⎨⎧+--=++-=>+=--=-+⎪⎩⎪⎨⎧-=+-=⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧-=+-==+-=-=++=+--++=+++=+=+=+==++<+=∆=++=+=∆=++>+=∆+=∆>+≥式,为:实数根的方程的求根公上方法只能导出有一个)。

一元三次方程求根公式推导过程

一元三次方程求根公式推导过程

一元三次方程求根公式推导过程一元三次方程的求根公式是一个非常重要的数学知识,它可以应用到许多不同的场景中。

一元三次方程的求根公式可以通过某种方法从复平面到实数空间来进行求解。

接下来,我们就来通过一步一步的推导,来介绍了这种求根公式的推导过程。

一元三次方程的标准方程形式一般为ax^3+bx^2+cx+d=0,其中a,b,c,d均为实数,而x为未知数。

既然有了一元三次方程的标准形式,那我们就可以对它进行实际求解了。

比如说,如果有 ax^3+bx^2+cx+d=0 这样的一元三次方程,那么我们就需要将该方程式化为其他形式。

我们首先可以将该方程式转化为[(x-x1)(x-x2)(x-x3)=0]的形式,然后令 y=x-x1,于是可以得到 y(x-x2)(x-x3)=0,将这两边同时除以 (x-x2)(x-x3) 即可转化为y=0 的形式。

我们将令 y=0 的形式代入到原方程中,得到方程式 ax^3+(b-a*x2)x^2+(c-a*x3)x+d-a*x1*x2*x3=0, 进一步分解可得 ax^3+(b-a*x2)x^2+(c-a*x3)x+(d-a*x1-a*x2*x3)=0,再变换一下可得ax^3+(b+a*x2)*x^2+(c+a*x3)*x=a*x1*x2*x3,将左右两边乘以 -1 变换可得 -ax^3 + (b+a*x2)*x^2 + (c+a*x3)*x - a*x1*x2*x3 = 0。

最后,我们将上面得出的一元三次方程代入通用公式 x=(-b+-√[b^2-4ac])/2a 中,得出它的三个根 x1,x2,x3,最终可以通过回代法得出其值,从而求得一元三次方程的求根公式。

因此,一元三次方程的求根公式的求导过程采用了从复平面到实数空间的方法,具体推导过程是将一元三次方程进行化简成y=0的形式,通过变换形式得到可以代入通用公式求解的一元三次方程,最终得出一元三次方程的求根公式。

一元三次方程求根公式推导

一元三次方程求根公式推导

一元三次方程求根公式推导方程是数学中的一个重要概念,它是用字母和数字表示的关系式,其解即为使得这个关系式成立的数值。

而三次方程则是一类特殊的方程,其形式为ax³+bx²+cx+d=0。

对于一元三次方程,我们希望能够求出它的根,即解量。

求根公式的推导有多种方法,本文介绍其中之一——卡尔丹羽公式。

卡尔丹羽公式通过将三次方程化为一个二次方程和一个一次方程,从而求解出方程的三个根。

首先,我们以一元三次方程ax³+bx²+cx+d=0为例,学习卡尔丹羽公式的推导过程。

我们的目标是将这个三次方程化为一个二次方程和一个一次方程的形式,而且让它们的解与原方程的解相同。

因此,我们可以先假设其中一个根为z。

接下来,我们将原方程除以(z-x)。

由于z为方程根,因此 (z-x) 是方程的一个因式。

通过这一除法,我们得到了一个二次方程m×x²+n×x+p=0,其中m、n、p是已知的数,且满足:m = an = b + azp = c + bz + az²此时,我们需要通过求解这个二次方程,得到方程的另外两个根。

为了求解这个二次方程,我们可以利用二次方程的求根公式:x = (- b ±√(b²-4ac)) /2a将其应用到我们的二次方程中,得到x₁ = (- n + √(n²-4mp)) /2mx₂ = (- n - √(n²-4mp)) /2m现在,我们已经求出了方程的两个根。

接下来,我们需要在解得z的前提下,构造出这两个根所对应的解。

为此,我们令x₁= z,然后将其代入原方程中,得到另外一个一次方程kx + l=0,其中k和l都是已知的数。

我们再通过求解这个一次方程,求得x₂,此时,我们就得到了原方程的三个根。

具体地,我们有:z = x₁ = (- n + √(n²-4mp)) /2m然后,令x = z,我们可以将原方程写为:(x-z)(ax² + (b + az)x + c + bz + az²) = 0展开括号,得到:ax³ + (b - az + m×z²)x² + (c - nz + pz²)x + lp = 0于是,我们可以得出:k = b - az + m×z², l = c - nz + pz²然后,我们就可以利用一次方程的求根公式来求解 x₂了:x₂ = - l / k最后,我们就得到了求根公式:z = x₁ = (-b/(3a)) - (T+U) + Sx₂ = (-b/(3a)) + ((T-U) - iV ) / 2x₃ = (-b/(3a)) + ((T-U) + iV ) / 2其中,T、U、S、V的具体表达式为:T = (b²-3ac)/(9a²)U = (2b³-9abc+27a²d)/(54a³)S = √((U²-4/3T³))V = (U²-4/3T³)^(1/3)综上,通过卡尔丹羽公式的推导,我们成功地求解了一元三次方程的根。

一元三次方程复数根求根公式

一元三次方程复数根求根公式

一元三次方程复数根求根公式一元三次方程是指形如ax^3+bx^2+cx+d=0的方程,其中a、b、c、d为实数且a≠0。

如果该方程没有实数根,则它一定有一对共轭复数根。

下面我们来介绍一元三次方程的复数根求根公式。

设一元三次方程ax^3+bx^2+cx+d=0的三个根分别为α、β、γ,由于它们是复数,因此可以表示为:α = p + qiβ = r + siγ = u + vi其中,p、q、r、s、u、v均为实数。

根据复数的定义,α、β、γ满足方程:(ax^2+bx+c)(x-α)(x-β)(x-γ) = 0将x=α、x=β、x=γ代入上式,可得:(ax^2+bx+c)(p-α)(p-β)(p-γ) = 0(ax^2+bx+c)(r-α)(r-β)(r-γ) = 0(ax^2+bx+c)(u-α)(u-β)(u-γ) = 0将上述三个式子相加,得到:(ax^2+bx+c)[(p-α)(p-β)(p-γ)+(r-α)(r-β)(r-γ)+(u-α)(u-β)(u-γ)] = 0因为ax^2+bx+c≠0,所以有:(p-α)(p-β)(p-γ)+(r-α)(r-β)(r-γ)+(u-α)(u-β)(u-γ) = 0对上式进行展开,得到:pqr + pqs + prs + qru + qsu + rsu - (p^2s + p^2u + q^2r + q^2u + r^2p + r^2s + s^2p + s^2u + u^2q + u^2r + v^2p + v^2q + v^2r + v^2s + v^2u) = 0移项后,得到:(pq + pr + qr + qu + rs + su) - (p^2 + q^2 + r^2 + s^2 + u^2 + v^2) + i(ps - qr) = 0因为α、β、γ是一对共轭复数根,所以它们的实部相等,虚部互为相反数,即:p + r + u = -b/aq + s + v = 0ps = qr代入上式,得到:3pq - b/a(p+q) + c/a = 0将ps = qr代入ax^3+bx^2+cx+d=0,得到:a(x-α)(x^2+px+q) = 0因为α是原方程的一个根,所以x=α代入上式应该成立,即: a(α-α)(α^2+pα+q) = 0即:α^2 + pα + q = 0同理,β、γ的方程分别为:β^2 + pβ + q = 0γ^2 + pγ + q = 0将α、β、γ的式子代入ps = qr,得到:(p+q)(r+s)(u+v) - 3(pq+rs+uv) = 0即:(p+q+r+s+u+v)^2 - 3(p^2+q^2+r^2+s^2+u^2+v^2) = 0 所以,解得:p+q+r+s+u+v = 0p^2+q^2+r^2+s^2+u^2+v^2 = (b^2-3ac)/a^2综上所述,一元三次方程的复数根求根公式为:p、q、r、s、u、v分别为:p = -(b/a)/3 + (2/3)√[(b^2-3ac)/a^2]q = -(b/a)/3 - (1/3)√[(b^2-3ac)/a^2]r = -(b/a)/3 - (1/3)√[(b^2-3ac)/a^2]s = -(b/a)/3 + (1/3)√[(b^2-3ac)/a^2]cos(θ)u = -(b/a)/3 + (1/3)√[(b^2-3ac)/a^2]cos(θ+2π/3) v = -(b/a)/3 + (1/3)√[(b^2-3ac)/a^2]cos(θ-2π/3) 其中,θ为任意角度。

一元三次方程求根公式推导

一元三次方程求根公式推导

一元三次方程求根公式推导推导一元三次方程的求根公式可以基于维尔斯特拉斯方程,该方程是一个带参数的三次方程,具有一根已知解。

我们将在推导的过程中应用维尔斯特拉斯方程。

下面是详细的推导步骤:1.令y=x-α,其中α是一个待定常数。

将y代入原一元三次方程,并进行变形,得到新的方程a(y+α)^3+b(y+α)^2+c(y+α)+d=0。

展开并对y进行整理,得到a(y^3+3αy^2+3α^2y+α^3)+b(y^2+2αy+α^2)+c(y+α)+d=0。

2. 对表达式进行分组,得到 (ay^3 + by^2 + cy + d) + 3α(ay^2 + by + c) + 3α^2(ay + b) + α^3a + α^2b + αc + d = 0。

3. 根据原一元三次方程的定义,ay^3 + by^2 + cy + d = 0,因此第一项为 0,可以消去。

4. 对剩下的表达式控制进行整理,得到3α(ay^2 + by + c) +3α^2(ay + b) + α^3a + α^2b + αc + d = 0。

5. 接下来,我们需要选择α 的值,使得3α(ay^2 + by + c) +3α^2(ay + b) + α^3a + α^2b + αc + d = 0 中的二次项系数为 0。

令3α(ay^2 + by + c) + 3α^2(ay + b) = 0,消去α,并整理表达式,得到ay^2 + (2aα + b)y + α(ay + b) + c = 0。

6.根据二次项系数为0的条件,2aα+b=0,解得α=-b/(2a)。

7. 将α 的值代入到原一元三次方程中,得到a(y+α)^3 +b(y+α)^2 + c(y+α) + d = 0,展开并整理表达式,得到 a y^3 + (3αa + c)y^2 + (3α^2a + 2αc + d)y + (α^3a + α^2c + αd) = 0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元三次方程求根公式
三次方程新解法——盛金公式解题法
三次方程应用广泛。

用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。

范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。

盛金公式(Shengjin's Formulas)
一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。

重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd,
总判别式:Δ=B^2-4AC。

当A=B=0时,盛金公式①:
X1=X2=X3=-b/(3a)=-c/b=-3d/c。

当Δ=B^2-4AC>0时,盛金公式②:
X1=(-b-(Y1)^(1/3)-(Y2)^(1/3))/(3a);
X2,X3=(-2b+(Y1)^(1/3)+(Y2)^(1/3))/(6a)±3^(1/2)((Y1)^(1/3)-(Y2)^(1/3))i/(6a),
其中Y1,Y2=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。

当Δ=B^2-4AC=0时,盛金公式③:
X1=-b/a+K;X2=X3=-K/2,
其中K=B/A,(A≠0)。

当Δ=B^2-4AC<0时,盛金公式④:
X1=(-b-2A^(1/2)cos(θ/3))/(3a);
X2,X3=(-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a),
其中θ=arccosT,T= (2Ab-3aB)/(2A^(3/2)),(A>0,-1<T<1)。

相关文档
最新文档