静电场的环路定理

合集下载

9-5-静电场的环路定理解析

9-5-静电场的环路定理解析
•电势是标量,有正有负; •电势的单位:伏特 1V=1J.C-1; •电势具有相对意义,它决定于电势零点的选择。 在理论计算中,通常选择无穷远处的电势为零;
•在实际工作中,通常选择地面的电势为零。 •但是对于“无限大”或“无限长”的带电体, 只能在有限的范围内选取某点为电势的零点。
3、电势差
在静电场中,任意两点A和点B之间的电势之差, 称为电势差,也叫电压。
步骤:
(1)先算场强 (2)选择合适的路径L
(3) 积分(计算)
•2、利用点电荷的电势公式和电势的叠加原理
dq dV
4 0r
dq
V 4 0r
要求电荷的分布区域是已知的;
当电荷分布在有限的区域内,可以选择无穷
远点作为电势的零点的;而当激发电场的电荷分
布延伸到无穷远时,只能根据具体问题的性质,
在场中选择某点为电势的零点。
E
1
4 0
Q r2
er
B
Q
rB
r
rA
dr C r
A
dl
er
E
dW
1
4 0
Qq0 r2
er
dl
1
4 0
Qq0 r2
dr
rB
W
Qq0
dr Qq0 ( 1 1 )
rA 40r 2
40 rA rB
在点电荷的静电场中,电场力对试验电荷所作
的功与其移动时起始位置与终了位置有关,与
其所经历的路径无关。
V
p 3xy
Ey
y
4 0
x2 y2 5/2
-q
+q
电偶极子的延长线上 y 0
2p 1
E x 4 0 x 3

静电场的安培环路定理

静电场的安培环路定理

静电场的安培环路定理静电场的安培环路定理是电磁学中非常重要的一条定理,它描述了静电场中电流所沿路径的总和。

在这篇文章中,我们将会介绍什么是安培环路定理、它的应用以及如何使用它来解决问题。

什么是安培环路定理?安培环路定理是由法国物理学家安培提出的,它表明在任何一个闭合的回路中,电流的总和等于穿过该回路的磁通量的变化率。

这个定理的意义在于,它提供了一种计算电流的方法,尤其是在复杂的电路中。

安培环路定理可以简化电路分析的过程,因为它允许我们通过观察磁场的变化来推断电流的大小和方向。

应用安培环路定理在电路分析中有着广泛的应用。

在解决电路问题时,我们可以选择一个合适的回路并应用安培环路定理来计算电流。

这个回路可以是任何形状,只要它能够完全包括电流所通过的路径即可。

除了电路分析,安培环路定理还有其他应用。

例如,在磁感应强度不均匀的磁场中,我们可以通过应用安培环路定理来计算磁场的强度。

此外,它还可以用于分析电感器、变压器和电机等电磁设备。

如何使用安培环路定理?在使用安培环路定理时,首先需要选择一个合适的闭合回路。

然后,需要注意该回路中的电流方向。

如果电流方向与所选择的回路方向相同,则电流对于回路的贡献为正;如果电流方向与所选择的回路方向相反,则电流对于回路的贡献为负。

接下来,需要计算穿过回路的磁通量的变化率。

这个磁通量的变化率可以通过测量磁场强度和磁通量来计算。

如果磁场强度和磁通量之间的关系已知,则可以直接计算出磁通量的变化率。

否则,可以使用麦克斯韦方程组来计算。

将电流的总和与穿过回路的磁通量的变化率相等,即可得到安培环路定理的表达式。

总结安培环路定理是电磁学中非常重要的一条定理,它可以用于计算闭合回路中电流的总和。

它在电路分析、磁场计算以及电磁设备分析等方面有着广泛的应用。

在使用安培环路定理时,需要选择一个合适的回路并注意电流方向,计算穿过回路的磁通量的变化率,最后将电流的总和与磁通量的变化率相等。

静电场的环路定理

静电场的环路定理

例3、求均匀带电球面电场中电势的分布,已知 ,q 、求均匀带电球面电场中电势的分布,已知R 微元法) 微元法 解: 方法一 叠加法 (微元法
dq = σdS = σ 2πR2 sinθdθ π 任一圆环 dS = 2 RsinθRdθ
dq 1 σ 2πR sinθdθ du = = 4πε0l 4πε0 l
B A
1 1 dr = ( − ) 2 4πε0r 4πε0 RA RB RA
q
q
2.如图已知 、-q、R 如图已知+q 如图已知 、 移至c ①求单位正电荷沿odc 移至 ,电场力所作的功 求单位正电荷沿
d q −q A = uo − uc = 0−( ) + oc 4πε0 3R 4πε0R a b c q 0 +q −q = 6 0R πε R R R
方法二
定义法
∞ P
q 4 0r2 πε
由高斯定理求出场强分布 E =
r>R r<R
r r 由定义 u = ∫ E • dl
r<R R r r ∞r r u = ∫ E • dl + ∫ E • dl
r R
0
r>R
R

O∞θຫໍສະໝຸດ lP= 0+ ∫

q
4 0r πε R q = 4 0R πε
dr 2
u= ∫
r r uP = ∫ E • dl
P

♠由点电荷电势公式,利用电势叠加原理计算 由点电荷电势公式,
求电偶极子电场中任一点P的电势 例1 、求电偶极子电场中任一点 的电势
Y
由叠加原理
q(r2 − r1) uP = u1 + u2 = − = 4πε0r1 4πε0r2 4πε0r1r2 q q

静电场的环路定理表达式及其物理意义

静电场的环路定理表达式及其物理意义

静电场的环路定理表达式及其物理意义
静电场的环路定理是利用有限定义的电流环路来描述静电场中电场强度的一个重要定理。

这个定理有两个版本,即古典环路定理和现代环路定理。

环路定理的实质是说明了在有限的环路中,电流的大小和方向可以由电位差来确定,这个电位差是环路中电、电阻器及其他元件所产生的。

对于古典环路定理,它定义了环路中电位差与电流之间的关系,它可以用来求解电流环路中的电流大小和方向。

现代环路定理是由普朗克提出的,主要是为了求解电流环路中的电动势,它可以表达为:在有限的电流环路中,环路中定义的每个电和电阻器之间的电势差的积分,加上环路中的电动势,等于零。

环路定理的物理意义是,在有限的电流环路中,电流的大小和方向可以由电位差来确定。

电位差是指电和电阻器之间的电势差,这个电势差是由于环路中定义的电和电阻器所产生的。

环路定理的物理意义是,在有限的电流环路中,电流的大小和方向可以由电位差来确定,而电位差是指电和电阻器之间的电势差,这个电势差是由于环路中定义的电和电阻器所产生的。

古典环路定理和现代环路定理可以用来求解电流环路中的电流大小和方向,古典环路定理定义了环路中电位差与电流之间的关系,而现代环路定理描述了在有限的电流环路中,环路中定义的每个电和电阻器之间的电势差的积分,加上环路中的电动势,等于零。

环路定理是电路理论的基础,它可以用来解决复杂的电路问题,也可以用来研究复杂的电路系统。

环路定理可以用来描述复杂的静电场,电路中的电势差和电流的关系,从而有助于理解电路的工作原理,并且可以用来求解复杂的电路问题。

环路定理可以用来描述复杂的静电场,使用它可以更好地理解电路工作原理,并且可以用来求解复杂的电路问题。

10.4静电场环路定理

10.4静电场环路定理
V V V ( i j k) x y z
V Ez z
E
10-4 静电场的环路定理 V V V E ( i j k) x y z V的梯度: gradV 或
E gradV V
E 的方向与V的梯度反向.
10-4 静电场的环路定理

电场的环量
E dl E cos dl
l l
环量:场强沿闭合路径的线积分称为电场的环量
dl
l
F dl qLeabharlann E cos dll l
E
环量的意义:将单位正电荷沿闭合路径 移动一周电场力做的功。
10-4 静电场的环路定理
RB
q A qB qA 1 1 ( ) 4 0 R B 40 r RB
qA qB 40 r 40 RB
(3)r RA
U
RA r
10-4 静电场的环路定理
RB E dr E dr E dr RA RB 0
V
另一方面,由于场强沿法线方向 dV dV E V n E En n n dn dn 电势梯度是一个矢量,它的大小为电势沿等势面法线 方向的变化率(该方向电势的变化率最大),它的方 向沿等势面法线方向且指向电势增大的方向。
10-4 静电场的环路定理
静电场力的功 b Aab q E dl qUab q(U a U b )
a
原子物理中能量单位: 电子伏特eV
1 eV 1.6021019 J
10-4 静电场的环路定理
点电荷电场的电势
E q e 2 r 4 πε0 r

静电场的环路定理

静电场的环路定理

它是反映电场本身“能的属性”的物理量,与 场中是否存在电荷无关。 要注意,电势和电势能是两个不同的概念,不 能混为一谈。
Wa E dl 定义电势 ua q0 a
单位正电荷在该点 所具有的电势能

Wa q0 E dl
a

单位正电荷从该点到无穷远 点(电势零)电场力所作的功
三 电势
电势差
1、电势能 分析:当检验电荷 q 0 从a点移到b点,电 场力要做功,而功是能量转化的量度, 这说明 q 0 从a点移到b点有能量变化。不 管 q 0 从a点沿哪一条路径移到b点,电 场力对电荷 q 0 做的功都是相同的,这说 明电荷 q 0 在a﹑b两点的能量差是一定 的,其值由这两点的位置决定。这种由 电荷在电场中的位置决定的能量,叫做 电势能。显然,电势能是电荷 q 0 和电场 共同具有的。检验电荷在a﹑b两点的电 位能,分别用 W a ﹑W b 表示。
电势能
例2、求均匀带电圆环轴线 上的电势分布。 已知:R、q
解:方法一 微元法
Y
dl




r
x
P

Z
R
X
O


方法二 定义法 由电场强度的分布 qx E 2R 3 dl 2R 2 2 2 4 0 ( x R ) uP du 4 0 r 4 0 r 0 qxdx u Edx 3 q 2 2 2 xp x p 4 ( x R ) 0 2 2 4 0 R x
则ab电场力的功 Aab q0 E dl Wa Wb
b
取 W 0
注意
Wa Aa
q0 E dl

高等物理静电场环路定理

高等物理静电场环路定理

a
a 20

V Edl Edr pp
p
R
z
1q
y

4 0 r
xz

2 ) 定义法:

1
Vp

4 0r
dq
q

qx
x 40(R2x2)3/2dx

q 4
0
1 (R2 x2)1/2
x
o q

4 0 R2 x2
特例:
★若x = 0,
得:Vp

q
40R
W A B q 0 A B E d l E p A E p B ( E p B E p A )
试探电荷q o 在电场中某一点的静电势能在数值上等于 把试探电荷q o 由该点移到零势能点静电力所作的功。 若选 B 点为电势能零点,则
B
E P A q 0A E d l q 0A B E d l
E内 0
p
R
q
z
x
z

4 0 R2 x2
V 0
场强分布
电势分布
q
例题2均匀带电球面内外的电势分布。带电量为Q,球面半径为R

解∶由高斯定理得:
p
E外

1 4 0
Q r2
1 V
40
dV
r
1)对球内的一点P,其电势为:
r
r dWFdlq0Edl
Q
p

VEdr drrC

q0Q
1 (1)
20 20
4 0 r ra
2、电势、电势差 :
V dV (1)、定义:
电势的物理意义:

第10章静电学-3-静电场环路定理

第10章静电学-3-静电场环路定理

+q
11
(2)电荷分布如图所示, 将点电荷qo从a 经半圆b移到c的 过程中, 电场力对qo的功?
解 Aac qo (Ua Uc )
b
Ua
q
4o R
q
4o R
0
-q
a
+q R
o
c
Uc
q
4 o (3 R)
q
4o R
R
R
q
6o R
Aac
qqo
6o R
12
例10-14 一均匀带电直线段,长为L,电量为q ;取无穷远为电 势零点,求直线延长线上离一端距离为d 的P点的电势。
9
③对于电荷连续分布的带电体,可将其分割为无数多电荷元
dq,每个电荷元dq当作点电荷,其电势为
dU dq 4πε0r
根据电势叠加原理
U
V
dq
4 0r
dl dq dS
dV
积分遍及整个带电体,V是带电体的体积。
电势叠加原理也可以计算多个带电体所产生电场的总电 势,总电势应等于各带电体所产生电场的电势的代数和。
(3)电势差:
b
Uab Ua Ub E dl
a
静电场中a、b两点的电势差等于将单位正电荷由a沿任意路 径移至b过程中电场力做的功。
电势差是绝对量,与电势零点的选择无关。
6
由Wa
q
零势点 E
a
dl ,
得 Wa qUa
由Aab
q
b
E dl
a
Wa Wb ,
得 Aab q(Ua Ub )
(3)等于场强从该点沿任意路径到零势点的线积分。
说明:
(1)电势是相对量,要确定场中各点的电势必须选定电势零点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

静电场的环路定理是指在静电场中,电动势的环路积分为零。

电动势是指电荷在静电场中的势能,环路积分是指将一条路径折成若干线段后,对每一段求出它的电动势差,并将这些差的和加起来。

环路定理的数学公式表示为:
∮Edl=0
其中,E是静电场的电场强度,dl是在静电场中的路径的元素,∮表示环路积分。

静电场的环路定理有很多应用,例如在解决电荷分布问题时,可以使用环路定理来求解电荷分布情况。

此外,环路定理还可以用于验证电荷守恒定律,即电荷在任何情况下都是守恒的。

总的来说,静电场的环路定理是一个重要的物理定理,在电学领域有着广泛的应用。

相关文档
最新文档