2.6-运筹学应用实例汇总

合集下载

简单的运筹学实际应用案例

简单的运筹学实际应用案例

简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。

下面将介绍几个简单的运筹学实际应用案例。

1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。

公司希望通过优化生产线的调度,以达到最大的产出和利润。

运筹学可以通过数学模型和算法,对生产线进行优化调度。

例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。

2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。

运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。

例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。

3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。

运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。

例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。

4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。

运筹学可以通过数学模型和算法,帮助超市优化员工调度。

例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。

以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。

通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。

运筹学应用问题举例

运筹学应用问题举例

注: 本题结果不唯一, 例如还有如下的解.
星期一 星期二 星期三 星期四 星期五 星期六 星期日 200 200 200 200 200 200 200 7 0 6 2 4 0 3 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 4400 12 15 16 14 16 18 19 12 15 12 14 16 18 19
首先,问题可以自然地按时间分为五个阶段。
第一 年 第二 年 第三 年 第四 年 第五 年
5 6
5 6
5 6
5 6
5 6
7 8
7 8
7 8
7 8
7 8
第一 年
第二 年
2
第三 年
4
第四 年
5
第五 年
8
5
9 7 8
5
8
5
2
5
1
5 6
4
6
2 5
4
6
4 9
8
6
5 6
2
6
8 4
1
7 8
4 7
5
7 8
8 1 9
x3 x4 x5 x6 12 二、 x3 x4 x5 x6 x7 15 三、 x4 x5 x6 x7 x1 12 四、 x5 x6 x7 x1 x2 14 五、 x6 x7 x1 x2 x3 16 六、 x7 x1 x2 x3 x4 18 日、 x1 x2 x3 x4 x5 19
星期一 星期二 星期三 星期四 星期五 星期六 星期日

运筹学的应用简介及实例(lindo,lingo,ahp)[大全五篇]

运筹学的应用简介及实例(lindo,lingo,ahp)[大全五篇]

运筹学的应用简介及实例(lindo,lingo,ahp)[大全五篇]第一篇:运筹学的应用简介及实例(lindo,lingo,ahp)运筹学的应用简介及实例(lindo,lingo,ahp)一.运筹学可以用于物流中心选址:配送中心合理选址的目的是为了提高物流企业的服务质量,最大限度地增加物流企业的经济效益。

科学合理的选址不仅能够减少货物运输费用,大幅度地降低运营成本,而且能为客户带来方便快捷的服务。

二.运筹学可以用于路线选择:利用运筹学中的图论和线性规划方法,对已有的空运、水运、公路运输、管道运输、铁路运输组成的交通网,根据不同的决策目标制定不同的调运方案,可以是最短时间的运输路线、最少费用的运输路线或是最大运输量最低运费的运输线路等,从而达到降低物流成本的目的。

三.运筹学中排队论在物流中应用:排队论主要研究具有随机性的拥挤现象,在物流中有许多问题涉及,诸如机场跑道设计和机场设施数量问题, 如何才能既保证飞机起降的使用要求, 又不浪费机场资源又如码头的泊位设计和装卸设备的购置问题, 如何达到既能满足船舶到港的装卸要求, 而又不浪费港口资源等等。

四.运筹学中库存论在物流中应用:库存论主要是研究物资库存策略的理论, 即确定物资库存量、补货频率和一次补货量。

合理的库存是生产和生活顺利进行的必要保障, 可以减少资金的占用, 减少费用支出和不必要的周转环节, 缩短物资流通周期, 加速再生产的过程等。

在物流领域中的各节点如工厂、港口、配送中心、物流中心、仓库、零售店等都或多或少地保有库存。

五.运筹学中对策论在物流中应用:对策论研究有利害冲突的双方在竞争性的活动中是否存在自己制胜对方的最优策略, 以及如何找出这些策略等问题。

在这些问题中, 把双方的损耗用数量来描述, 并找出双方最优策略。

对策论的发展, 考虑有多方参加的竞争活动, 在这些活动中, 竞争策略要通过参加者多次的决策才能确定。

参考文献:[1] 左元斌.运筹学在物流配送中心的应用研究[J].商场现代化,2006(458):125-127.[2] 李宇鸣.浅谈运筹学在物流管理中应用与发展[J].吉林工商学报,2007(4):55-56.[3] 田进波.运筹学在管理物流管理中的应用[J].石油工程建设,2010(36):153-155.LINDO求解目标规划:题目:一个小型的无线电广播台考虑如何最好地来安排音乐、新闻和商业节目时间。

运筹学在工业领域的应用案例

运筹学在工业领域的应用案例

运筹学在工业领域的应用案例运筹学是一门研究如何通过数学模型和优化方法来解决实际问题的学科。

它广泛应用于工业领域,帮助企业提高生产效率、优化资源利用以及优化决策。

本文将以一些实际案例来展示运筹学在工业领域的应用。

案例一:物流调度在现代物流中心,卡车调度是一个重要而复杂的问题。

一家物流企业面临着如何合理安排卡车的运输路线以及如何将货物分配给不同的卡车的问题。

运筹学通过建立数学模型和优化算法,可以帮助企业快速找到最佳的调度方案。

通过考虑货物的重量、体积、运输距离等因素,运筹学能够帮助企业节省时间和成本,提高物流效率。

案例二:生产计划在工业生产中,合理的生产计划对企业的运营至关重要。

运筹学可以通过建立生产计划的数学模型,考虑原材料、人力资源、设备利用率等因素,制定最优的生产计划。

这种方法可以帮助企业合理安排生产任务、减少生产成本,并确保产品按时交付。

案例三:库存管理有效的库存管理对于企业的正常运营非常重要。

过多的库存会增加企业的成本,而库存不足则会导致订单无法及时完成。

运筹学可以利用数学模型和优化算法,预测需求并制定合理的库存策略。

通过运筹学的方法,企业可以实时调整库存水平,减少库存成本,同时确保生产进度和客户需求之间的平衡。

案例四:供应链优化供应链优化是一个复杂的问题,涉及到多个环节和多个参与者之间的协调。

运筹学可以帮助企业建立供应链的数学模型,考虑供应商、生产商、分销商等各个环节的需求和约束,通过优化算法找到最佳的供应链配置方案。

通过运筹学的方法,企业可以提高供应链的响应速度和灵活性,降低整体成本,提供更好的服务。

案例五:设备维护与优化在工业领域,设备的维护和优化是保证生产连续性和降低成本的关键。

运筹学可以利用数据分析和模型建立,制定设备的维护计划和优化方案。

通过预测设备故障、制定维护策略和排班方案,运筹学可以帮助企业降低设备故障率,最大限度地提高设备利用率,进而提高生产效率和降低成本。

综上所述,运筹学在工业领域有着广泛的应用。

运筹学分析方法及应用案例

运筹学分析方法及应用案例

运筹学分析方法及应用案例运筹学是一门研究如何通过使用数学、统计学和计算机科学等工具来解决决策问题的学科。

其应用领域广泛,包括生产、物流、供应链管理、交通网络优化、人员调度等。

运筹学分析方法可以通过建立数学模型,优化决策方案,并通过模拟和数据分析来评估方案的效果。

下面将介绍运筹学分析方法及其应用案例。

一种常见的运筹学分析方法是线性规划。

线性规划可以用于在给定约束条件下优化目标函数的值。

一个典型的应用是生产计划问题。

假设一个公司有多个产品和多个生产资源,线性规划可以帮助确定如何安排生产以最大化利润或最小化成本。

举个例子,一个公司生产产品A和产品B,有两个生产线和一定数量的原材料。

每生产一个单位的A需要2个单位的原材料和2个单位的生产时间,每生产一个单位的B需要1个单位的原材料和4个单位的生产时间。

每个生产线每天的工作时间为8个小时,而每天的原材料供应量为10个单位。

公司希望确定每个产品在每个生产线上的产量以最大化总利润。

我们可以建立一个线性规划模型来解决这个问题。

假设x1和x2分别代表在两个生产线上生产产品A的产量,y1和y2分别代表在两个生产线上生产产品B的产量。

目标函数为最大化总利润,可以表示为:Maximize 3x1 + 4x2 + 2y1 + 3y2约束条件包括每个生产线的工作时间和原材料供应量:2x1 + x2 ≤82x1 + 4x2 ≤82y1 + 3y2 ≤10并且x1、x2、y1、y2都不能小于零。

通过求解这个线性规划模型,我们可以得到最优解,即在每个生产线上生产产品A和产品B的最佳产量,从而实现最大利润。

除了线性规划,运筹学还有其他分析方法,如整数规划、动态规划、网络优化等。

这些方法可以应用于不同的决策问题,解决实际的运营和管理挑战。

另一个应用案例是供应链网络优化。

供应链管理面临的一个关键问题是如何确定最优的物流网络来实现成本最小化和服务水平最大化。

运筹学可以帮助优化供应链网络的设计和运作。

生活中运筹学案例分析

生活中运筹学案例分析

生活中运筹学案例分析生活中的许多情境都可以运用运筹学的理念和方法来进行分析和优化。

下面我将通过几个生活中的案例来说明运筹学在实际生活中的应用。

首先,我们来看一个日常生活中的例子,早晨出门上班。

在早晨高峰期,许多人都面临着上班迟到的问题。

这时候我们可以运用运筹学的方法来优化出行路线。

比如,我们可以提前规划好最佳的出行路线,避开交通拥堵的路段,选择合适的出行工具,比如地铁、公交等,以最快的速度到达目的地,从而减少出行时间,提高效率。

其次,我们来看一个生产管理中的案例,生产调度。

在工厂的生产中,如何合理安排生产任务和生产资源是一个重要的问题。

我们可以借助运筹学的方法,通过对生产任务的分析和排程,合理安排生产顺序和生产线的利用率,从而提高生产效率,降低生产成本。

再次,我们来看一个物流配送中的案例,快递配送。

在快递行业中,如何合理安排快递的配送路线和时间是一个关键问题。

我们可以利用运筹学的方法,通过对快递订单的分析和规划,合理安排配送路线和配送顺序,以最短的时间和最低的成本完成配送任务,提高配送效率,提升客户满意度。

最后,我们来看一个市场营销中的案例,促销活动。

在市场营销中,如何制定合适的促销策略是至关重要的。

我们可以运用运筹学的方法,通过对市场需求和产品销售情况的分析,制定合理的促销策略和销售计划,最大限度地提高销售额,实现市场目标。

通过以上几个案例的分析,我们可以看到运筹学在生活中的广泛应用。

无论是日常生活、生产管理、物流配送还是市场营销,都可以通过运筹学的方法来优化资源配置,提高效率,降低成本,实现最佳的决策和规划。

希望大家在生活和工作中能够更多地运用运筹学的理念和方法,从而取得更好的效果。

运筹学在生活中的例子

运筹学在生活中的例子

运筹学在生活中的例子
运筹学是一门研究如何做出最佳决策的学科,它在各个领域都有着广泛的应用。

从日常生活中的时间管理到复杂的商业运营决策,都可以看到运筹学的身影。

下面我们就来看看运筹学在生活中的一些例子。

首先,让我们来看看日常生活中的时间管理。

每天我们都需要面对各种各样的
任务和活动,如工作、家务、社交等。

如何合理安排时间,让每一件事情都能得到充分的安排,就需要运用运筹学的方法。

比如,我们可以利用时间表来规划每天的活动,将重要的任务优先安排,避免时间的浪费和碎片化,从而提高工作效率。

另一个例子是在商业领域中的供应链管理。

在现代商业运营中,供应链管理是
非常重要的一环。

通过运筹学的方法,可以帮助企业优化供应链的运作,降低成本、提高效率。

比如,利用运筹学的方法可以帮助企业确定最佳的库存水平,避免过多或过少的库存,从而降低库存成本和避免缺货现象的发生。

此外,运筹学还可以应用在交通规划中。

比如,城市交通拥堵是一个普遍存在
的问题,如何合理规划交通路线,减少拥堵,提高交通效率,就需要运用运筹学的方法。

通过分析交通流量、优化信号灯控制、调整道路规划等方式,可以帮助城市降低交通拥堵,提高交通效率。

总的来说,运筹学在生活中有着广泛的应用,它可以帮助我们合理安排时间、
优化商业运营、改善交通状况等。

通过运用运筹学的方法,我们可以做出更加理性和科学的决策,从而提高效率,降低成本,改善生活质量。

因此,我们应该更加重视运筹学的学习和应用,让它成为我们生活中的得力助手。

运筹学应用实例分析word精品

运筹学应用实例分析word精品

运筹学课程设计实践报告第一部分小型案例分析建模与求解 (2)案例1.杂粮销售问题 (2)案例2.生产计划问题 (3)案例3. 报刊征订、推广费用的节省问题 (6)案例4.供电部门职工交通安排问题 (7)案例5.篮球队员选拔问题 (9)案例6. 工程项目选择问题 (10)案例7.高校教职工聘任问题(建摸) (12)案例8.电缆工程投资资金优化问题 (14)案例9.零件加工安排问题 (15)案例10.房屋施工网络计划问题 (16)第二部分:案例设计 (18)问题背景: (18)关键词: (18)一、问题的提出 (18)二、具体问题分析和建模求解 (19)三、模型的建立对于N个应聘人员M个用人单位的指派是可行的。

(24)第一部分小型案例分析建模与求解案例1.杂粮销售问题一贸易公司专门经营某种杂粮的批发业务,公司现有库容5011担的仓库。

一月一日,公司拥有库存1000担杂粮,并有资金20000元。

估计第一季度杂粮价格如下所示:一月份,进货价 2.85元,出货价3.10元;二月份,进货价 3.05元,出货价3.25元;三月份,进货价2.90元,出货价2.95元;如买进的杂粮当月到货,需到下月才能卖出,且规定“货到付款”。

公司希望本季度末库存为2000担,问应采取什么样的买进与卖岀的策略使三个月总的获利最大,每个月考虑先卖后买?解:设第i月出货X i0担,进货X i1担,i=1,2,3;可建立数学模型如下:目标函数:Max z=3.1O*X1o 3.25* X20 2.95* X30 -2.85* X11 - 3.05* X21 - 2.90* X31约束条件:\10乞1000x20乞1000 - X10 Xu乞1000 _ X10_ X20 X211000 —x10+ 兰5011』1000 _ x10+ _ x20+ x21兰5011x31= 20002.85x1^2000^3.10x103.05x21兰20000+3.10x10+3.25x20—2.85x“2.90X31兰20000+3.10x10+3.25X20 -2.85x“ —3.05X21x i1,x i^0且都为整数利用WinSQB 求解(x1,x2,x3,x4,x5,x6 分别表示x10,x11,x21,x21,x30,x31):案例1杂粮销售问题Variable —>XI X2X3X斗X5X6Direction R. 1 [. S.Maximi/je二⑴285 3.25-3.052,95-2.90Cl1<=1000 C21-11c=IOOO' C31J1-I1<=1000 C4-11<=4011C5■ 11-11<=4011 C6-3,10 2.85<=20000 C7-340 2.85-3.25 3.05<= 2 mod C8P 2.85-3 25「 3 05「-2.95 2.9020000 LowerBoiind000002000UpperBound100050115011501150112000Variable Jtiteger Integer Integer Imcgcr Integer IntegerCombined Report for案例1杂粮销售问题1月份卖出1000担,进货5011担;2月份卖出5011担,不进货;3月份不出货,进货2000担。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、生产计划问题例:某工厂拥有A、B、C三种类型的设备,生产甲、乙、丙、丁四种产品。

每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备每月可利用的时数如下表所示,求使总利润最大的月度生产计划。

建模思路■用线性规划制订使总利润最大的生产计划。

■设变量X1为第i种产品的生产件数(i=1, 2, 3, 4),目标函数z为相应的生产计划可以获得的总利润。

在加工时间以及利润与产品产量成线性关系的假设下,可以建立如下的线性规划模型:建模max z= 5.24X1 +7.30x2 +8.34x3 +4.18x4目标函数1.5Xj +1.0x2+2.4X3+1.0X4<2000LOX1 +5.0X2+1.0X3+3.5X4<8000 约束条件1・5X] +3.0X2+3.5X3+1.0X4<5000Xp X2, X3, X4 >0 变量非负约束练习:某公司面临一个是外包协作还是自行生产的问题。

该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。

甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。

数据如下表。

问:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?甲 .乙丙资源限制铸造工时(小时/件)51078000机加工工时(小时/件)64812000装配工时(小时/件)32210000自产铸件成本(兀/件)354外协铸件成本(兀/件)56一机加工成本(元/件)213装配成本(元/件)322产品售价(元/件)231816解:设孙孙寺分别为三道工序都由本公司加工的甲、乙、丙三种产品的件数,同,幅分别为由外协铸造再由本公司加工和装配的甲、乙两种产品的件数。

求占的利润:利润二售价-各成本之和产品甲全部自制的利润产品甲铸造外协,其余自制的利润产品乙全部自制的利润产品乙铸造外协,其余自制的利润产品丙的利润可得到毛(i = 1,2, 3,4,5)的利润分别为15、10、7、13、9=23-(3+2+3)=15 =23-(5+2+3)=13 =18-(5+1+2)=10 =18-(6+1+2)=9 =16-(4+3+2)=7通过以上分析,可建立如下的数学模型:目标函数:Max 15百+ 10电+ 7两+ 13题+ 9不约束条件:5为+ 10西+ 7玛<80006为+ 4出+ 8^ + 6々+ 4不3百+ 2X2 + 2均+ 3局+ 2不毛,演,传,演,与12000 10000二、混合配料问题例:某工厂要用四种合金T1, T2, T3和T4为原料,经熔炼成为一种新的不锈钢G。

这四种原料含元素倍(Cr), 镒(Mn)和镖(Ni)的含量(%)、四种原料的单价以及新的不锈钢材料G所要求的Cr, Mn和Ni的最低含量(%) 如下表所示,求生产100公斤G总成本最小的配料方案。

建模思路:■设熔炼时重量没有损耗,要熔炼成100公斤不锈钢G,应选用原料T2, T3和T4各多少公斤,使总成本最小。

■设选用原料T2, T3和T4分别为X1, X,2X3, X4公斤,根据条件,可建立相应的线性规划模型。

模型min z=I'+97x?+82X3+76X40.0321X1+0.0453x?+0.0219x3+0.0176X4>3.200.0204xj+0.0112x7+0.0357乂3+0.0433乂4>2.100.0582X]+0.0306x?+0.0427x3+0.0273x4>4.30x i+X2+X3+x4=100x0X?,X3,X4>0练习:某厂使用某种7.4m长圆钢下料,制造100套钢架, 一套钢架由直径相同而长度不等(长度分别为2.9、2.1. 1.5m)的三种钢料各一个组成,采用什么样的下料方案可以使用料最少?考虑下料方案,如下表所示假设4口=7.2…即为上面第i种方案下料的原材料根数,建立如下的数学模型:目标函数:minZ= Xj + x2+x3+x4 +x5 + x6+x7+x8约束条件:f2xj + x2 + x3 + x4>100 (2.9m)2X2+X3+3X5+2X6+X7> 100 (2.1m)+ “3 + 3X4+2X6+3X7+4X8 > 100 (1.5m)=1,2 (8)■注意:在建立此类型数学模型时,约束条件用大于等于号比用等于号要好。

因为有时在套用一些下料方案时可能会多出一根某种规格的圆钢,但它可能是最优方案。

如果用等于号,这一方案就不是可行解了。

三、背包问题例:一只背包最大装载重量为50公斤。

现有三种物品,每种物品数量无限。

每种物品每件的重量、价值如下表所示,要在背包中装入这三种物品各多少件,使背包中的物品价值最高。

物品1物品2物品3重量(公斤/件)10 41 20价值(元/件)17 72 35建模思路•设装入物品1,物品2和物品3各为X1,、2,X3 件,由于物品的件数必须是整数,因此背包问题的线性规划模型是一个整数规划问题。

16max z=17Xj +72x0 +35x3st Wxj +41X2+2OX3 <50X1, X2, X3 >0, X], X2, X3是整数四、运输问题例:设某种物资从两个供应地A1,A2运往三个需求地B P B2, B V 各供应地的供应量、各需求通的需求量、每个供应地到每个需求地的单位物资运价如下表所示,求满足各地需求量和供应量的最小运输成本。

20建模思路•这个问题也可以用图解表示,其中节点A1、A2表示 发地,节点B1、B2、B3表示收地,从每一发地到每 一收地都有相应的运输路线,共有6条不同的运输路线•设xij 为从供应地Ai 运往需求地Bj 的物资数量(i=1,2; j=1,2,3) , z 为总运费,则总运费最小的线 性规划模型为模型minz=2X]i+3x l?+5XI3 +4X2]4-7X 22 +8x”s.t.xn+X[2+X]3二35X2]+X22+X23二25xn+X21=10X12+X22二30XI3+X23二20乂胫五、人力资源分配问题某昼夜服务的公交线路每天各时间段内所需司 乘人员数如下:设司乘人员在各时 间段一开始时上班, 并连续工作8小时, 怎样安排既能满足 工作需要,又使需 要配备的司乘人员 人数最少?解:设M 表示第i 班次时开始上班的司机和乘务人员 数,这样可以建立如下的数学模型:目标函数:Min Z = Xj + x 2+x 3+x 4+x 5+x 6约束条件:(X 1+X 6>60»x 2+x 2 > 70 x 2+x 3 >60 J x 3+x 4 >50 x 4+x 5 >20 x 5+x 6 >30Xi>0(i=l,2...6)且为整数练习:一家中型的百货商场,它对售货员的需求经过统计分析如下表所示。

为了保证售货人员充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的。

问应该如何安排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少?解:设毛(i=1,2,…,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型目标函数:Min 约束条件:s. t.的弱豌国+++++++X2为西不X2++++++为为豌西不演百+++++++4-匹豌西西+++++++维演均应毛,x»演,鸟,诟,/,x72N222152425193128六、广告投资问题■例:某企业要在本地电台做广告节目,分早、中、晚三次播出,广告目标是对老年人和青少年宣传, 一次早上广告需20元,估计有300位老年人和200 位青少年听,一次下午广告需10元,估计有100 位老年人和100位青少年听,一次晚上广告需28 元,估计有100位老年人和200位青少年听,该企业广告节目要求每天至少有2000位老年人和3000 位青少年听,如何安排广告节目的配合比,使之达到上述要求,又能使广最小?■解:设早上、下午、晚上广告次数为9、X2、X3,广告费为Z。

可建立如下的数学模型:minZ=20xi+l 0冷+284300苞+ 100X2 + !00X s > 2000 S/ < 200X, + 100X2 + 200X3 > 3000 x > 0 L ■例:■直海卫视为改版后的“花儿朵朵”栏目播放两套旦传片。

■其中宣传片甲播映时间为3分钟30秒,广告时间为30秒,收视观众为60万;宣传片乙播映时间为1分钟,广告时间为1分钟,收视观众为20万。

广告公司规定每周至少有3.5分钟广告,而电视台每周只能为该栏目宣传片提供不多于16分钟的节目时间。

■电视台每周应搔映两套宣传片各多少次,才能使得收视观众最笑?■市场营销(广告预算和媒介选择,竞争性定价,新产品开发,制定销售计划)■生产计划制定(合理下料,配料,“生产计划、库存、劳力综合”)■库存管理(合理物资库存量,停车场大小,设备容量)■运输问HjEf■财政、会计(预算,贷款,成本分析,投资,证券管理)■人事(人员分配,人才评价,工资和奖金的确定)■设备管理(维修计划,设备更新)■城市管理(供水,污水管理,服务系统设计、运用)28。

相关文档
最新文档