有源钳位正激电源变换器的工作原理及优势
有源钳位正激变换器的理论分析和设计方法,有源钳位,正激变换器.

有源钳位正激变换器的理论分析和设计方法,有源钳位,正激变换器,零电压软开关1引言单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的基本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变1引言单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的基本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt大,EMI问题难以处理。
为了克服这些缺陷,文献[1][2][3]提出了有源钳位正激变换器拓扑,从根本上改变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了dv/dt和di/dt,改善了电磁兼容性。
因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。
然而,有源钳位正激变换器并非完美无缺,零电压软开关特性也并非总能实现。
因而,在工业应用中,对该电路进行优化设计显得尤为重要。
本文针对有源钳位正激变换器拓扑,进行了详细的理论分析,指出了该电路的局限性,并给出了一种优化设计方法。
2正激有源钳位变换器的工作原理如图1所示,有源钳位正激变换器拓扑与传统的单端正激变换器拓扑基本相同,只是增加了辅助开关Sa(带反并二极管)和储能电容Cs,以及谐振电容Cds1、Cds2,且略去了传统正激变换器的磁恢复电路。
有源钳位正激电路的分析设计

有源箝位正激变换器电路分析设计1.引言有隔离变换器的DC/DC变换器按照铁芯磁化方式,可分为双端变换器和单端变换器。
和双端变换器比较,单端变换器线路简单、无功率管共导通问题、也不存在高频变换器单向偏磁和瞬间饱和问题,但由于高频变换器工作在磁滞回线一侧,利用率低。
因此,它只适用于中小功率输出场合。
单端正激变换器是一个隔离开关变换器,隔离型变换器的一个根本特点是有一个用于隔离的高频变压器,所以可以用于高电压的场合。
由于引入了高频变压器极大的增加了变换器的种类,丰富了变换器的功能,也有效的扩大了变换器的使用范围。
单端正激变换器拓扑以其结构简单、工作可靠、成本低廉而被广泛应用于独立的离线式中小功率电源设计中。
在计算机、通讯、工业控制、仪器仪表、医疗设备等领域,这类电源具有广阔的市场需求。
当今,节能和环保已成为全球对耗能设备的基本要求。
所以,供电单元的效率和电磁兼容性自然成为开关电源的两项重要指标。
而传统的单端正激拓扑,由于其磁特性工作在第一象限,并且是硬开关工作模式,决定了该电路存在一些固有的缺陷:变压器体积大,损耗大;开关器件电压应力高,开关损耗大;dv/dt和di/dt大等。
为了克服这些缺陷,提出了有源钳位正激变换器拓扑,从根本上变了单端正激变换器的运行特性,并且能够实现零电压软开关工作模式,从而大量地减少了开关器件和变压器的功耗,降低了dv/dt和di/dt,改善了电磁兼容性。
因此,有源钳位正激变换器拓扑迅速获得了广泛的应用。
本文主要介绍Flyback 型有源箝位正激变换器的稳态工作原理与电路设计。
2. 有源箝位正激变换器电路的介绍有源箝位正激变换器由有源箝位支路和功率输出电路组成。
有源箝位支路由箝位开关和箝位电容串联组成,并联在主开关或变压器原边绕组两端。
利用箝位电容及开关管的输出电容与变压器绕组的激磁电感谐振创造主开关和箝位开关的Z VS工作条件,并在主开关关断期间,利用箝位电容的电压限制主开关两端的电压基本保持不变,从而避免了主开关过大的电压应力;另一方面,在正激变换器中采用有源箝位技术还可实现变压器铁芯的自动磁复位,并可以使激磁电流沿正负两个方向流动,使其工作在双向对称磁化状态,提高了铁芯的利用率。
变压器正激有源钳位的选择及误区介绍

变压器正激有源钳位的选择及误区介绍变压器正激有源钳位,对设计人员来说主要青睐的就是它的简捷、性能和效率,现得到广泛应用。
采用正激结构的电源变换器是高效率、大功率应用(50W 至 500 W范围)的出色选择。
在高功率密度模块电源中,同步整流技术成了必须的选择,而正激有源钳位其主要的性能优势在于为绕组自驱的同步整流提供了非常理想的驱动波形,绕组自驱动同步整流电路简单、器件少、为设计者节约了布板空间和产品成本,因此被主流的模块电源厂家普遍接受应用。
正激有源钳位的种类和选择:钳位管上钳位拓扑和钳位管下钳位拓扑,上钳位电路采用N MOS管,下钳位电路采用PMOS管,那么在实际的设计中我们如何选择呢?我们看上钳位MOS管和变压绕并联,和开关管串联,而下钳位管是和开关管并联,和变压器绕组串联,绕组电压要低于开关电压,所以在实际设计中高压的PMOS管不容易找,根据这个特点,在高输入电压中如200V以上的设计中我们要考虑使用上钳位,但是上钳位因为MOS管的S脚是接在浮动点上,所以驱动电路必须设计成隔离驱动,这个驱动增加了成本和电路复杂,所以在低压的模块电源应用中,大多数都是采用PMOS管下钳位电路,因为其PMOS管电压不高,而且驱动电路简单。
正激有源钳位的原理和误区:钳位管被关断后,开关管还没有导通的死区时间里,反向流动的谐振电流被钳位开关强制关断,而根据电感电流惯性作用,需要继续向电感流动,这时将抽取存储在开关管结电容里的能量,而结电容要远远小于钳位电容,存储的能量也非常小,所以结电容的电压迅速下降,也就是开关管的VDS电压迅速下降。
在理想状态下可以理解下降到零,但仪器仪表世界网称实际情况是,当VDS电压下降到Vin电压时,也就原边绕组电压下降到0V后,如果继续下降将造成原边绕组的电压变成上正下负的电压,这个电压被折算到副边,将导致副边的整流管导,副边绕组传输能量。
这个过程将产生一个上正下负的电流,而我们的谐振电流确是一个下负上正的电流,这个两个反向的电流将互相制衡,使得VDS电压维持在一个动态平衡的作用上。
有源钳位正激钳位电容工作原理

有源钳位正激钳位电容工作原理
有源钳位正激钳位电容是一种特殊的电容工作原理,它通过不断变化电路的工作状态来实现电容的正激。
下面是具体的工作原理:
1. 初始状态:在没有外部信号时,有源钳位正激钳位电容内部的电路处于关闭状态,电容两端电压为0。
2. 正激开始:当外部信号输入时,根据信号的变化,电容两端会产生相应的电压变化。
这个过程中,有源钳位正激钳位电容内部的电路会根据电压变化自动切换工作状态,以实现电容的正激。
3. 工作状态切换:根据输入信号的正负变化,有源钳位正激钳位电容会通过内部的开关电路,选择性地切换工作状态。
具体来说,当输入信号为正时,有源钳位正激钳位电容会选择性地将电容与电源相连,使其被正激。
反之,当输入信号为负时,有源钳位正激钳位电容会选择性地将电容与地相连,使其被反激。
4. 反激和正激:在工作状态切换的过程中,根据输入信号的变化,有源钳位正激钳位电容会不断地进行反激和正激。
这样,电容两端的电压就能随着输入信号的变化而正常响应。
总结起来,有源钳位正激钳位电容通过内部的开关电路,根据输入信号的变化,选择性地切换工作状态,从而实现电容的正
激。
这种工作原理使得有源钳位正激钳位电容能够有效地响应输入信号的变化,并将其转化为电压输出。
有源钳位DC/DC正激变换器硬件电路及参数的设计

有源钳位DC/DC正激变换器硬件电路及参数的设计摘要:开关稳压电源取代晶体管线性稳压电源已有30多年历史。
最初的开关电源一问世其电能转换效率就已经达到了60%-70%,转换效率可达到线性电源的一倍。
因此开关电源引起了人们的广泛关注。
随着社会进步,开关电源应用越来越广泛,对开关电源也提出新的要求。
开关电源要小型轻量,包括磁性元件和电容的体积重量要小。
此外要求开关电源效率要更高,性能更好,可靠性更高等。
DC-DC变换器是开关电源的主要组成部分,它是电能转换的核心,涉及到体积,转换效率等各方面的要求。
本文主要介绍有源钳位单端正激式DC/DC变换器的设计方法。
关键词:DC-DC变换器;有源钳位;设计;输入电压为28.5±5V,输出电压为12V,输出功率为50W。
一、占空比的设计当主开关管Q1开通时,变压器原方绕组所承受的电压为,Q1截止时,原方绕组承受的反向电压为钳位电容上的电压。
假设足够大,则在Q1截止期间,可以认为保持不变,则根据伏-秒积平衡可以得到:(5-1)则不难得到:(5-2)当主开关管Q1关断时,漏源电压应力为:(5-3)综合式(5-1)、(5-2)、(5-3)式可得(5-4)在相同的N、下,当输入电源电压增大时,占空比D减小。
从式(5-4)可以看出,当D变化时,开关管电压应力也随之变化。
当D=0.5左右变化时,的值变化不大,也就是说,当输入电压变化比较大时,开关管电压应力变化不大,因此有源钳位正激变换器特别适用于宽输入电源电压场合。
一般D最大可以取到0.75左右。
在设计开关电源时,应该合理选择占空比,使得当输入电压为最大和最小值,开关管的电压应力相等。
由式(4-4)可得:,(5-5)由式(5-2)可知,欲使得输入最大电压和最小电压时开关管电压应力相等,则须满足以下条件:(5-6)则可以算得=0.412,=0.588,N=1.15为了便于高频变压器的制作,取N=1,则根据式(4-4)可以得到:=0.358,=0.511二、主开关管的选择选择MOSFET的原则是:MOSFET的额定电压和电流值不小于变换器中MOSFET所承受的最大电压和最大电流,一般应该为两倍。
有源钳位正激变换器的分析与设计

有源钳位正激变换器的分析与设计电气持动1999年第1期有源钳位正激变换器的分析与设计南京航空航天大学陈道炼严仰光,,——一——————一T}2Ll,摘要:丰文论述了有源钳位正融变换器的原理与设计利用有源钳位电路宴现功率变压器对称磁复位.部分磁化能量用来对功率开关寄生电蒋放电到零,宴现零电压开关.有谅钳位技术增强了正激变换器性能实验证宴了理论分析的正确性关键词:毛器量皇茎苎登堂堡瓣AnalysisandDesignofanActiveClampedForwardConverter ChenDaolianYahYangguangAbstract:Theanalysisanddesign.fanactireclampedforwardcoHverterIspresentedinthispa perByulganactiveclampedcircuit1thepowertrans,"ormerisymmetricallymagneticreseted.andapar tofmagnetizingen—ergyisusedtodischarge:heparasiticcapachan.eofthepowerwitchtozeiardertOobtainzer.vo ltageswitchAclireclampedtechra[quec-nbancestorwardC0nverteperformanceandthetheorica lanalysisisverifiedbythee~perJmentalresultKeywords~rwardCo.vett~r…voltageswitchactiveclamped1概述由于正激DC/DC变换器具有电路拓扑简单,输入输出电气隔离.电压升,降范围宽,易于多路输出等优点,因此被广泛应用于中小功率电源变换场合然而,正激变换器的一个固有缺点是需要附加电路实现变压器磁复位采用磁复位绕组正激变换器--的优点是技术成熟可靠.磁化能量无损地回馈到直流电网中去.但附加的磁复位绕组使变压器结构复杂化.变压器漏感引起的关断电压尖峰需要RC缓冲电路来抑制,占空比d<0.5,功率开关承受的电压应力与输入电源电压成正比.RCD钳拉正激变换器的优点是磁复位电路简单,占空比d可以大于0.5,功率开关承受电压应力较低.但大部分磁化能量消耗在钳位电阻中,因此它一般适用于变换效率不高且价廉的电源变换场台.无损LCD缓冲网络正激变换器¨j的优点是磁化能量无损地回馈到电网中,占空比d>0.5当开关频率太于30kHz时,过大的LC谐振电流增加了功率开关的导通损耗,因而通常应用+本文为航空基础科学基金,较自进课题资助项目研究内容30在开关频率为20kHz的场合采用有源钳位支路实现正激变换器变压器磁复位,比上述3种传统的方法优越,主辅开关均可实现零电压通断,这是零电压转换ZVT—PWM技术在正激变换器中的具体应用.本文将详细论述这种变换器的工作原理和设计要点2工作原理在传统正激变换器电路拓扑基础上,增加由钳位开关Sc与钳位电容Cc串联构成的有源钳位支路,便得到了有源钳位正激变换器,如图l所示.钳位开关Sc与主功率开关S的驱动信号互补.由变压器原边绕组伏秒积平衡原理可知,图1a电路钳位电压为式中d——占空比式(1)与Flyback变换器相似,称之为单端反激式Flybaek钳位(简称Flyback钳位).圈lb电路钳位电压为电气传动1999年第1期1bJ囤1有潍钳位正敲变换器(&)F[yback钳位<b)Boost钳位1U=U.(2)』I^式(2)与Boost变换器相似,称之为升压式Boost 钳位(简称Boost钳位).这两种钳位电路工作原理基本相同,只是回馈到输人电源中的电流谐波不同.本文以Flyback钳位电路为研究对象,其研究结论同样适用于Boost钳位电路.假设输出滤波电感L和钳位电容C足够大.因此可将其分别作为电流源和电压源处理,简化电路及其原理波形如图2所示(L为变压器磁化电感).每个PWM周期可分为7个区间,每个区间等效电路如图3a~g所示7个区间的电路变化过程叙述如下.to~l:t.时刻,S开通,Dl导通,D2截止,如图3a所示.t.~t:t时刻,S关断,负载折算到原边的电流』./Ⅳ对Cs充电,如图3b所示.t2~:t£时刻.U上升到『,,Dl关断,D2开通,L上能量对Cs充电即二者谐振,使Ud上升, 如图3c所示.t~:t时刻,U上升到钳位电压U与fJT.之和,Dc开通,设开关频率,s>>1/(2n _——,/LC,),即钳位电压U基本不变,如图3d所示. t~£::t时刻,磁化电流i为零,随后i变负,钳位开关Sc导通,Sc实现了零电压ZVS开通,如图3e所示.t=~t6:ts时刻,Sc关断…I.与C开始谐振,C以负值磁化电流放电,能量回馈到电网及转移到工中.如图3f所示.t6~(c):tB时刻,U下降到.D开通.D.与D共同导通期间为i在副边续流提供了路径,t时刻S再次开通,开始另一PWM周期,如图3g所示.欲获得功率开关S的ZVS开通,可用两种方法实现一种方法是变压器铁心加气晾,降低L增大磁化电流,当Sc在t时刻关断的磁化电流大于负载折算电流/N,则这两个电流的差值将使得C在t时刻之后继续放电.或者说磁化电流除了支持输出电流之外.剩余电流将用来使C放电,即将C上电荷抽尽.这种方法消除了功率开关S的容性开通损耗,但却增加了变压器铁损.另一种方法是在副边整流二极管D.中串联一饱和电抗器,延缓D.的开通时刻,即饱和电抗器暂时将变压器和负载断开.整个磁化电流将全部用来对C放电,但高频时饱和电抗器损耗较大fh)圉2简化电路丑其原理波形(a)简化电路(b)原理渡形3lⅢ电气持动1999年第1期图3每十等效电路f),~ifb"f~fJ~(d)~f)~ffJ,~6(g)~3关键参数设计3.1功率变压器设计接通电源,经历若干PWM周期后.钳位电容自动充电到某一稳态值U=u,它可保证铁心双向对称磁化任何铁心双向不对称磁化因素都会导致£值适度的变化,从而迫使铁心双向对称磁化.设图2b中磁化电流渡形双向不对称, 即,的正向最大值太于负向最大值,则C的充电能量大于放电能量,因而十一/L十一i下降速率十一迫使.(即磁通)双向对称.有源钳位正激变换器的这一特点具有显着优点,克服了传统正激变换器变压器铁心利用率低的缺点, 进一步增强了正激变换器性能和工程应用价值, 较全桥,推挽变换器(存在单向偏磁现象)要优越得多.它同半桥变换器相似,具有抗磁不平衡能力,其根本原因是钳位电压或者说功率开关漏极电位具有浮动特陛.变压器原边绕组匝数为,'N一素等×10'(3)式中B一一铁心工作磁密S——铁心截面积t——功率开关导通时间由式(3)可知,绕组匝数是传统的复位绕组RCD正激变换器的一半,降低了铜损32占空比d设计功率开关S的电压应力为Ud,--U一一㈥32式中Ⅳ——变压器匝比变换器输出电压在相同的Ⅳ,U.下,当输^电源电压F增大时,占空比d减小,功率开关S电压应力变化不大.如图4所示.一般选取一一o75.该特点(可夫于0.5,但变化不大)使得它很适用于宽输入电源电压场合.例如,航空静止变流器输八电压U.一18~32V,选取有源钳位正激变换器作为DC/DC变换级最台适图4功翠开关电压应与占空比美系3.3钳位电容C设计钳位电容C值由钳位电压纹波3U:决定c越大.越小,功率开关S电压应力越小.但对电源电压或负载变化时的变换器状态响应速度也变慢设△:<<U,则在(1一d)丁区问内变压器磁化电流(钳位电容电流)近似按恒定斜率u./三下降,如图2b所示.由图2b可知,钳位电容电压纹波为1一Idt—I(1d)7';儿4C1()cJ式(5)中,J为t--t时磁化电流值.稳态时i即i的下降斜率为/L一J/寺(1一d)丁](6)由式(5),(6)可知,,/U为电气传动1999年第l期((=(1一d):T:/(8L(,1(7)由式c4)町知.功率开关电压应力纹渡己d,一.3U,因此虬一等=㈤按照d—d…最坏情况设计,取儿≤l0%或≤10%.3,4功率,钳位开关驱动延迟时间设计图2b原理波形示出r功率开关S与钳位开关S驱动信号延迟时间f:,合理没计r.与r:是实现有_碌钳位正激变换器的关键问题之一延迟时间过大.影响有效占空比延迟时间过小,满足不了要求S关断与S开通的时问间隔为r!≥一=2r,√L…C4(9)式(9)为l,C谐振电路的14谐振周期S关断与S开通的时间问隔为f一.<r<--t若忽略2一l,则3一l≈一t2='一.因此可得2ⅡLH<r<(i—d)71/!(10)式(9),式(10)按最坏情况(U.d—d…一U一)来调节RC延迟电路参数4实验航空静止变流器采用DC仁K二变换器和DC AC逆变器两级级联的电路拓扑结构DC/DC变换器将输入电压U.=18~32V,升高到稳定的l90VDC,仁K二AC逆变器再将190VDC逆变成115V400HzACDC/DC变换器,DC/AC逆变器各自构成闭环控制系统.考虑到输入电网电压变动范围大,且飞机交流用电负载与直流电网共地. 因而选用具有电气隔离且眭能优良的有源钳位正激变换器作为DC/DC变换级按上述理论设计的有源钳位正激变换器参数如下功率P.一100w,输A电源电压U.一18~32V.输出电压U一190V.开关频率一100 kHz.最大占宅比d一0.75.钳位电容c=60nF,延迟时间rl取600ns,r2取470ns原理实验测得不同输出功率时变换效率如图5所示l习j有源钳位正馓耍挽器教军曲线5结论本文论述了,有源钳位正激变换器的原理与设计,得出了如下结论(1)有_碌钳位正激变换器变压器铁心工作在双向对称磁化状态,提高了铁心利用率,减小了体积与重量.占空比>0,5.进一步增强lr其性能和工程实用价值,适用于宽输A电源电压场合. (2)有源钳位正激变换器实质E是零电压转换PWM变换器,兼有谐振技术与传统PwM技术两者之优点(3)提供r钳位电容C,驱动信号延迟时间r,r:等关键电路参数与其它参数间的定量关系(4)实验证实了有源钳位正激变换器具有优良的性能.参考文献11遭密电电于技术.航空工业出社1992:213~2142陈道炼RCD钳位正激变拽器的分析研究南京航空航元大学,1997(2):231~2353洗冬珍等.LCD无垌吸收网络的应用研究电力电子技术. 1995t4)35~:184LeuCSetⅡ,.ComparisonofForwardFopologieswirhV ari …ResetSchemes,VPECSeminarproceedings1991101~1n§藕百1丽丽i(上接第21页)KrausePC.Analy~isofElectricMachlnery.NewY ork:Mc G…Hi】l,1986jKane]lakopou[osI.KokorovicPVMarinoRAnExtended DlteetSchemefoiRobustAdaptlveNonlinearComro[.Auto一tca.1991.27(2)247~2j55MarinoRAnExample.fANonlinearRegula1.r1EEE T…sAutom,Contr,l984,29(3):276~2797MarinaR—PeresadaS.Va]igiPAdaptiveInput-outputLin- earizingControl.fInductionblotorsIEEETrans.AutomContr19§3,38(2):208~2218IsidoriANon]inearControlSystemsBetlinspringerV etlag19蚺9蔡自兴等译.应用非线性控制北京:国防工业出社, 199276~77面蓓百丽F而33。
有源钳位正激电源变换器的工作原理及优势

有源钳位正激电源变换器的工作原理及优势有源箝位正激电源变换器的工作原理及优势— Bob Bell, 美国国家半导体公司电源应用工程师对设计人员来说,有源箝位正激变换器有很多优点,现在正得到广泛应用。
采用正激结构的电源变换器是高效率、大功率应用(50W 至 500 W范围)的出色选择。
虽然正激结构的普及有各种各样的原因,但设计者主要青睐的是它的简捷、性能和效率。
正激变换器来源于降压结构。
两者之间的主要区别是:正激结构变压器的输入地和输出地之间是绝缘的,另外它还有降压或升压功能。
正激结构中的变压器不会象在对称结构(如推挽、半桥和全桥)中那样,在每个开关周期内进行自复位。
正激功率变换器中使用了一些不同的复位机制,它们各有自己的优点和挑战。
对设计者而言,有源箝位正激变换器具有诸多的优点,因此现在这个拓扑被广泛应用。
图1:降压和前向拓扑结构图 1 显示了降压和正激转换器之间的相似之处。
注意两种变换功能的唯一区别是在正激变换功能中,匝数比(Ns/Np)这一名词所包含的内容。
Ns 和 Np 分别为次级匝数和初级匝数,均绕在变压器磁芯上。
图2 显示了一个变压器模型,其中包括与初级绕组并联的“励磁电感”(Lm)。
这个励磁电感可以在次级绕组开路状态下在初级端子处测量。
励磁电感中的电流与磁芯中的磁通密度成正比。
确定尺寸的某种磁芯只能支持到某个磁通密度,然后磁芯就会进入饱和。
当磁芯饱和时,电感量会急剧下降。
变压器模型中另外一个部分是与初级绕组串联的“漏感”(LL)。
漏感可以在次级绕组短路情况下在初级端子处测量。
这一名称表示杂散的初级电感,它不会耦合到次级。
图2 转换模式有源箝位电路的工作图3a 图3b图3c图 3a 到 3c 表示了有源箝位正激电源转换器的主要工作步骤。
在时刻t0 时,主功率开关(Q1)导通,在变压器初级施加一个VIN。
变压器次级绕组电压为VIN x Ns/Np。
此时的初级电流包括两个部分:来自输出电感的映射电流(IL x Ns/Np);以及在激磁电感(Lm)中上升的电流。
有源箝位正激式电路的特点及其参数设计

Science &Technology Vision科技视界0引言在烟草工业电气设备中,各种电路板和模块上的大量集成电路,需要直流5V 电源供电,通常我们用高于5V 的直流电再通过DC-DC 三端稳压模块变换(一般压差为2V)得到稳定的5V 电源。
实验室用的电源电流一般只有5A,10A,且体积偏大,不适合安装。
有源钳位正激式拓扑电路适合中小功率开关电源的设计,而且结构简单,性能好,适合在烟草工业电气设备中使用。
1有源箝位正激式电路的特点图1有源箝位正激式模型电路有源钳位正激变换器拓扑与传统的单端正激变换器拓扑基本相同,只是增加了辅助开关Qc(带反并二极管)和储能电容Cc,且略去了传统正激变换器的磁恢复电路。
开关Q1和Qc 工作在互补状态。
为了防止开关Q1和Qc 共态导通,两开关的驱动信号间留有一定的死区时间。
采用有源箝位的正激变换器的特点是:变压器是双向对称磁化的,工作在B-H 回线的第一和第三象限,变压器得到了充分利用,因此占空比可以大于0.5,而且开关管的电压应力低,适合与输入电压范围比较宽的应用场合,箝位开关管是零电压开关的,励磁能量和漏感能量全部回馈到电网。
2参数设计2.1功率变压器的设计1)工作频率的设定开关频率的提高有助于开关电源的体积减小,重量减轻。
开关频率提高又增加了开关损耗和磁芯损耗。
本方案通初步确定工作频率和最大占空比如下:工作频率f=170kHz 最大占空比=75%2)根据设计输出功率选择磁芯P O =7.5×20=150(W)考虑有20%裕量和效率,取η=80%,则150×1.2×1.25=225瓦,选择一个传递功率可达300瓦的磁芯,通过Ferroxcube 公司的磁芯手册,选材料代号为3F3的锰锌铁氧体磁芯,材料的损耗曲线如图2所示。
比损耗为100Mw/cm 3对应磁通密度摆幅为0.09T。
这里是第一次选择磁通密度摆幅。
图2比损耗与频率和峰值磁感应关系T=100℃应用面积粗略估计公式:AP=A e A w =P OK ΔBf T()4/3cm4其中:P O ———输出功率(W);ΔB ———磁通密度变化量(T);f T ———变压器工作频率(Hz);K ———0.014(正激变换器)得到AP=2720.014×0.08×170×103()4/3=1.2cm4假定选择磁芯EE32/6/20,查阅手册得到A w =130mm 2A e =130mm 2V e =5380mm 3l e =41.4mm 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有源箝位正激电源变换器的工作原理及优势
— Bob Bell, 美国国家半导体公司电源应用工程师
对设计人员来说,有源箝位正激变换器有很多优点,现在正得到广泛应用。
采用正激结构的电源变换器是高效率、大功率应用(50W 至 500 W范围)的出色选择。
虽然正激结构的普及有各种各样的原因,但设计者主要青睐的是它的简捷、性能和效率。
正激变换器来源于降压结构。
两者之间的主要区别是:正激结构变压器的输入地和输出地之间是绝缘的,另外它还有降压或升压功能。
正激结构中的变压器不会象在对称结构(如推挽、半桥和全桥)中那样,在每个开关周期内进行自复位。
正激功率变换器中使用了一些不同的复位机制,它们各有自己的优点和挑战。
对设计者而言,有源箝位正激变换器具有诸多的优点,因此现在这个拓扑被广泛应用。
图1: 降压和前向拓扑结构
图 1 显示了 降压 和正激转换器之间的相似之处。
注意两种变换功能的唯一区别是在正激变换功能中,匝数比(Ns/Np)这一名词所包含的内容。
Ns 和 Np 分别为次级匝数和初级匝数,均绕在变压器磁芯上。
图 2 显示了一个变压器模型,其中包括与初级绕组并联的“励磁电感”(Lm)。
这个励磁电感可以在次级绕组开路状态下在初级端子处测量。
励磁电感中的电流与磁芯中的磁通密度成正比。
确定尺寸的某种磁芯只能支持到某个磁通密度,然后磁芯就会进入饱和。
当磁芯饱和时,电感量会急剧下降。
变压器模型中另外一个部分是与初级绕组串联的“漏感”(LL)。
漏感
可以在次级绕组短路情况下在初级端子处测量。
这一名称表示杂散的初级电感,它不会耦合到次级。
图2 转换模式
有源箝位电路的工作
图3a 图3b
图3c
图 3a 到 3c 表示了有源箝位正激电源转换器的主要工作步骤。
在时刻 t0 时,主功率开关(Q1)导通,在变压器初级施加一个 VIN。
变压器次级绕组电压为 VIN x Ns/Np。
此时的初级电流包括两个部分:来自输出电感的映射电流(IL x Ns/Np);以及在激磁电感(Lm)中上升的电流。
复位开关 Q2 关断,箝位电容(Cc)已被预先充电到电压 VIN/(1-D),这个在后面再作解释。
这段时间为供能阶段,能量从初级传送到次级。
供能阶段的大致时间为 Ts x VOUT / VIN,其中 Ts 为开关周期。
在时刻 t1 时,主功率开关(Q1)关断,复位开关(Q2)导通。
励磁电流从Q1转移到流过箝位电容和 Q2。
由于箝位电容电压高于 VIN,与供能阶段 t0 相比,变压器初级上的电压反向。
由于激磁电感上的电势反向,伴随着励磁电感中储存的能量被传送给箝位电容,励磁电流也逐渐减小。
在此期间,箝位电容上的电压有轻微的上升,并在励磁电流到零时达到它的峰值。
在时刻 t2 时,励磁电感中的电流降到零,并开始沿相反方向建立电流。
电流来源于箝位电容,通过复位开关(Q2)和励磁电感(Lm),再流回电源(VIN)。
当箝位电容将前面从激磁电感中获得的能量重新释放出来时,电流持续沿相反方向建立起来。
稳定状态需要箝位电容电压回到起始电位,而复位时间结束时的磁化电流幅度要达到与复位时间开始电流相同的水平(极性相反)。
在 t2 结束时,由控制器振
荡周期确定的开关周期结束。
复位开关关断,从箝位电容流过的电流终止。
图4: 有源箝位的波形图
图 4 显示了几个主要的电路波形。
最上面的波形是调幅器的斜坡波形以及决定主开关导通时间的误差信号波形。
中间波形是主开关的漏极电压波形,当开关导通时为低,当开关关断时上升至箝位电容电势。
下方波形中的红线表示励磁电流,它在复位期间流经箝位电容(蓝色波形)。
正如期望的那样,两个电流在零线取得平衡。
有源箝位复位的优点
用有源箝位复位可以减少各种开关损耗。
在栅极驱动足够快的情况下,Q1 的关断几乎是无损的。
为实现这一目标,Q1 必须在漏极电压有可能上升时立即关断(电流不再流过)。
漏极电压的上升由于漏-源电容而被延迟,良好的栅极驱动器可以在漏极电压刚有明显上升时立即关断 Q1。
用 MOS 和双极器件组成的复合栅极驱动器,可以产生出很高的栅极峰值放电电流,以确保快速关断,降低开关损耗。
同时,通过适当选择开关延迟可以降低导通损耗,使主开关起动以前,漏极电压有下降时间。
为了能有稳定的工作状态,在整个周期中施加在励磁电感上的伏秒值必须为零。
当主开关导通时,伏秒值为 VIN x D x Ts,其中 D 是导通占空比,Ts 为开关周期。
关断周期定义为 (1-D) x Ts。
当主开关关断时,初级上的电压为 VC – VIN,其中 VC 是箝位电容电压。
在稳定工作状态下,伏秒值必须相等:
VINx D x Ts = (VC – VIN) x (1-D) x Ts
算出箝位电容电压:
VC = VIN /(1-D)
应记住,当 VIN 增加时,占空比(D)会减小。
箝位电容电压会适应变化的电路(VIN)状况,以保持这一等式成立。
这个重要的特性使各种条件下对主开关的电压要求降
低到最小,因此可以使用较低额定 V(BR)DSS 的器件。
较低额定 V(BR)DSS 的 MOSFET 有较小的导通电阻和较低的栅电荷,这样能够有更高的转换效率。
储存在漏感中的能量会进行循环,而不是耗散掉,占空比大于 50% 的可能性降低了对整流管电压的要求,进一步降低了损耗。
评估板
好几种 DC-DC 转换器演示板都采用了有源箝位复位技术,分别采用电压模式或电流模式进行控制。
输入电压范围为 36V 至 75V,额定输出为 3.3V 100W。
15A 负载时测得的峰值效率为 93%。
功率变压器的匝数比为 6:1。
初级绕组为 12 圈,次级绕组为 2 圈。
此处还采用了一种平面结构技术,初级线圈是做在一块多层电路板上。
大电流的次级绕组则做在绝缘的铜冲压件上。
LM5025、LM5026 和 LM5034 控制器可以直接驱动 N 沟道功率开关和一个 P 沟道复位开关。
每个开关的内部栅极驱动器大小不同。
复位开关只通过励磁电流,可以采用较小的栅极驱动。
主开关则需要较强的栅极驱动,以降低开关损耗。
在每个栅极驱动输出之间所需的时序延迟可以通过控制器进行编程。
输出整流用同步 MOSFET 来实现。
有源复位方法使同步整流易于实现,因为它们是自驱动的。
总结
概括而言,有源箝位技术可以使用较低额定电压的 MOSFET,简化自驱动同步整流的使用。
励磁能量与漏感能量可以回收并馈电给电源。
这些优点使得设计人员可以提高电源转换的效率。