神经网络11大常见陷阱及应对方法

神经网络11大常见陷阱及应对方法
神经网络11大常见陷阱及应对方法

深度学习的这些坑你都遇到过吗?神

经网络11 大常见陷阱及应对方法【新智元导读】如果你的神经网络不工作,该怎么办?本文作者列举了搭建神经网络时可能遇到的11个常见问题,包括预处理数据、正则化、学习率、激活函数、网络权重设置等,并提供解决方法和原因解释,是深度学习实践的有用资料。

如果你的神经网络不工作,该怎么办?作者在这里列出了建神经网络时所有可能做错的事情,以及他自己的解决经验。

1.忘记规范化数据

2.忘记检查结果

3.忘记预处理数据

4.忘记使用正则化

5.使用的batch太大

6.使用了不正确的学习率

7.在最后层使用了错误的激活函数

8.你的网络包含了Bad Gradients

9.初始化网络权重不正确

10.你使用的网络太深了

11.使用隐藏单元的数量不对

忘记规范化数据了

问题描述

在使用神经网络时,思考如何正确地规范化数据是非常重要的。这是一个无法改变的步骤——假如这一步骤没有小心、正确地做,你的网络就几乎不可能工作。由于这个步骤非常重要,在深度学习社区中也是众所周知的,所以它很少在论文中被提及,因此初学者常常在这一步出错。

怎样解决?

一般来说,规范化(normalization)的意思是:将数据减去均值,再除以其方差。通常这是对每个输入和输出特征单独做的,但你可能经常会希望对特征组做或特别主翼处理某些特征的规范化。

为什么?

我们需要对数据进行规范化的主要原因是大部分的神经网络流程假设输入和输出数据都以一个约是1的标准差和约是0的均值分布。这些假设在深度学习文献中到处都是,从权重初始化、激活函数到训练网络的优化算法。

还需要注意

未训练的神经网络通常会输出约在-1到1范围之间的值。如果你希望输出其他范围的值(例如RBG图像以0-255范围的字节存储)会出现一些问题。在开始训练时,网络会非常不稳定,因为比如说预期值是255,网络产生的值是-1或1——这会被大多数用于训练神经网络的优化算法认为是严重的错误。这会产生过大的梯度,可能导致梯度爆炸。如果不爆炸,那么训练的前几个阶段就是浪费的,因为网络首先学习的是将输出值缩小到大致是预期的范围。如果规范化了数据(在这种情况下,你可以简单地将数值除以128再减去1),就不会发生这些问题。

一般来说,神经网络中特征的规模也决定了其重要性。如果输出中的有一个特征规模很大,那么与其他特征相比它会产生更大的错误。类似地,输入中的大规模特征将主导网络并导致下游发生更大的变化。因此,使用神经网络库的自动规范化往往是不够的,这些神经网络库会在每个特征的基础上盲目地减去平均值并除以方差。你可能有一个输入特征,通常范围在0.0到0.001之间——这个特征的范围如此之小,因为它是一个不重要的特征(在这种情况下,你可能不想重新scale),或者因为与其他特征相比它有一些小的单元(在这种情

况下,你可能想重新scale)?类似地,要小心具有这样一个较小范围的特征,它们的方差接近或等于0,如果将它们规范化,则会导致NaN不稳定。仔细考虑这些问题很重要——考虑你的每个特征真正代表什么,并将所有输入特征的“units”相等,将这一过程视为规范化。这是我认为深度学习中人在这个loop中真正需要的几个方面之一。

你忘记检查结果了

问题描述

你已经训练了几个epochs的网络,也看到错误在减少。这是否意味着已经完成了?不幸地告诉你,几乎可以肯定你的代码中还有某些问题。在数据预处理、训练代码、甚至inference中都可能有bug。只是因为错误率下降了并不意味着你的网络在学习有用的东西。

怎样解决?

在流程的每个阶段都检查数据是否正确是非常重要的。通常,你需要找到一些可视化结果的方法。如果是图像数据,那么这很简单,动画数据也不需要很麻烦就能可视化。但如果是其他类型的数据,你必须找到能够检查结果的方法,以确保在预处理、训练和推断的每个流程都正确,并将结果与ground truth数据进行比较。

为什么?

与传统的编程不同,机器学习系统几乎在所有情况下都会悄悄地发生失败。传统编程过程中,我们习惯了计算机在发生错误时抛出错误,并将其作为信号返回去检查bug。不幸的是,这个过程不适用于机器学习,因此,我们应该非常小心,在每个阶段用人眼去检查流程,以便知道何时出现bug,何时需要返回并更彻底地检查代码。

还需要注意

有很多方法可以检查网络是否正常工作。一部分方法是为了确切地说明所报告的训练错误是什么意思。可视化应用于训练集的网络的结果——你的网络的结果与实践中的ground truth 相比较如何?你可能会在训练期间将错误从100降到1,但是如果1的错误仍然是不可接受的结果,那结果仍然无法使用。如果网络在训练集上工作,那就检查验证集——它仍然适用于以前没有见过的数据吗?我的建议是从一开始就习惯于可视化所有内容——不要

只在网络不工作时才可视化——要确保在开始尝试使用不同的神经网络结构之前,你已经检查过完整的流程。这是准确评估一些潜在的不同方法的唯一方法。

你忘记预处理数据了

问题描述

大多数数据是很棘手的——通常我们知道的数据是类似的,可以用非常不同的数字表示。以角色动画(character animation)为例:如果我们使用角色的关节相对于运动捕捉的studio 的中心的3D位置来表示数据,那么在某个位置或面向某个方向执行动作时,相较于在不同的位置、或不同的方向执行同一个动作,可能会产生大量不同的数字表示。那么我们需要以不同的方式表示数据——例如在一些局部reference框架(例如相对于角色的质量中心),

以便相似的动作有相似的数值表示。

怎样解决?

思考你的特征表示什么——是否有一些简单的transformation,可以确保表示相似东西的数据点总是得到相似的数值表示?是否有一个局部的坐标系统可以更自然地表示数据——或许是更好的颜色空间——不同的格式?

为什么?

对于作为输入的数据,神经网络仅作一些基本的假设,其中之一是数据所处空间是连续的——对于大部分空间来说,两个数据点之间的点至少有一些“mix”,两个相邻的数据点

某种意义上表示“相似”的东西。在数据空间中存在较大的不连续性(discontinuities),或存在表示同样事物的大量分离数据(separated data),将使得学习任务变得更加困难。

还需要注意

数据预处理的另一种方法是试着减少所需数据变化的组合爆炸。例如,如果在角色动画数据训练的神经网络必须在每个位置和每个方向学习相同的动作组合,那么网络有大量容量被浪费了,并且大部分的学习过程是重复的。

忘记使用正则化了

问题描述

正则化(Regularization)——通常以dropout、noise或网络随机过程的某种形式进行,是训练神经网络的另一个无法改变的方面。即使你认为你拥有比参数多得多的数据量,或过拟合不重要的情况,或没出现过拟合,你仍然应该添加dropout或其他形式的noise。

怎样解决?

正则化神经网络的最基本方法是在网络的每个线性层(卷积层或dense层)之前添加dropout。从中等到高的retainment probability开始,例如0.75或0.9。根据过拟合的可能性进行调整。如果你仍然认为不可能出现过拟合,那么可以将retainment probability设置到很高,例如0.99。

为什么?

正则化不仅仅是有关控制过拟合。通过在训练过程中引入一些随机过程,你在某种意义上是“平滑”(smoothing)了损失格局。这可以加快训练速度,帮助处理数据中的异常值,并防止网络的极端权重配置。

还需要注意

数据增强(data augmentation)或其他类型的noise也可以像dropout一样作为正则化的方式。虽然通常dropout被认为是将序偶多随机子网络的预测结合起来的技术,但也可以将dropout视为通过在训练过程中产生许多类似输入数据的变化来动态地扩展训练集大小的方法。而且我们知道,避免过拟合和提高网络准确性的最佳方式是拥有更多网络未见过的数据。

使用的Batch太大

问题描述

使用太大的batch可能会对网络在训练过程中的准确性产生负面影响,因为这样会降低梯度下降的随机性。

怎样解决?

找到在训练时你能接受的最小的batch。在训练时能够最大限度利用GPU并行性的批

量大小,对于准确性来说可能并不是最好的,因为在某些时候,更大的batch需要训练更多回(epoch)才能达到相同的准确度。不要担心从非常小的batch开始,比如16、8甚至是1。

为什么?

使用更小的batch生产更方便(choppier)、更随机的权重更新。这样做有两大好处。首先,能帮助训练“跳出”原本可能被卡住的局部最小值;其次,可以使训练在“更平坦”的最小值结束,一般而言,后者会代表更好的泛化性能。

还需要注意

数据中的其他元素有时也能像批量大小一样生效。例如,在处理图像时,将分辨率翻倍,可能会有把批量大小×4类似的效果。直观一点看,在CNN中,每个滤波器的权重更新将在输入图像的所有像素以及批处理中的每个图像上进行平均。将图像分辨率翻番,将产生超过四倍像素的平均效果,就像将批量大小提高了4倍一样。总之,重要的是考虑在每次迭代中最终的渐变更新将被平均多少,并在负面影响与尽可能多地利用GPU并行性之间保持平衡。

学习率不正确

问题描述

学习率可能会对网络好不好训练有很大的影响。如果你刚刚入行,在常见深度学习框架各种默认选项的影响下,几乎可以肯定你没有把学习率设置对。

怎样解决?

把梯度剪裁(gradient clipping)关掉。找到在训练时不会发生错误的最高的学习率的值。然后将学习率设置得比这个值低一点点——这很可能非常接近最佳学习率了。

为什么?

许多深度学习框架默认会启用梯度裁剪。这个选项可以防止训练过程中过度优化,它会在每个步骤中强制改变权重,让权重发生最大限度的改变。这可能有用,特别是当数据中含有许多异常值的时候,因为异常值会产生很大的错误,从而导致大的梯度和权重更新。但是,默认开启这个选项也会让用户很难手动找到最佳的学习率。我发现大多数深度学习的新手都

因为梯度裁剪的原因将学习率设得太高,使得整体训练行为变慢,也使改变学习率的效果不可预测。

还需要注意

如果你正确清理了数据,删除了大部分异常值并且正确设置学习率,那么你实际上并不需要梯度裁剪。在关闭梯度裁剪后,如果你发现训练错误偶尔会爆发,那么你完全可以重新打开梯度裁剪这个选项。但是,需要记住,训练错误频发的原因几乎总是表明你数据的一些其他异常——裁剪只是一种临时的补救方法。

在最后一层使用了错误的激活函数

问题描述

在最后一层使用激活函数,有时可能意味着你的网络无法产生所需的全部范围的值。最常见的错误是在最后一层使用ReLU,从而导致网络只能输出正值。

怎样解决?

如果你做一个回归,那么在绝大多数时候你不会想在最后一层使用任何类型的激活函数,除非你确切地知道你想要输出的值的种类是什么

为什么?

再想想你的数据值实际代表什么,以及它们在标准化以后的范围。最可能的情况是,你的输出值为unbounded正数或负数——在这种情况下,你不应在最终层使用激活函数。如果你的输出值只在某些范围内有意义,例如由0-1内的概率组成,那么最终层应该有使用特定的激活函数,例如Sigmoid激活函数。

还需要注意

在最后一层使用激活函数有许多需要注意的地方。也许你知道你的系统最终会将输出裁剪到[-1,1]。那么,将这个裁剪过程添加到最终层的激活当中就是有意义的,因为这将确保你的网络错误函数不会惩罚大于1或小于-1的值。但是,没有错误也意味着这些大于1

或小于-1的值也不会有梯度——这在某些情况下会使你的网络无法训练。或者,你可能会

尝试在最后一层使用tanh,因为这个激活函数输出的值的范围是[-1, 1],但这也可能带来

问题,因为这个函数的梯度在1或-1附近变得非常小,而为了产生-1或1可能使你的权重变得非常大。一般来说,最好保险起见,不要在最后一层使用激活函数。有时候聪明反被聪明误。

网络里有坏的梯度

问题描述

使用ReLU激活函数的深层网络通常会受所谓“死神经元”的影响,而后者是由不良梯度引起的。这可能会对网络的性能产生负面影响,在某些情况下甚至完全无法训练。

怎样解决?

如果你发现训练误差经过多个epoch后都没有变化,可能是使用了ReLU激活函数,让所有的神经元都死掉了。尝试切换到另一个激活函数,例如leaky ReLU或ELU,然后再看看是否还存在这样的情况。

为什么?

ReLU激活函数的梯度对于正值为1,负值为0。这是因为当输入小于0时,输入的一个很小变化不会影响输出。短期看,这可能不是一个问题,因为正值的梯度很大。但是,层与层可以叠在一起,负的权重可以将那些梯度很大的正值变为梯度为0的负值;通常情况下,一些乃至所有隐藏单元对于成本函数都具有零梯度,无论输入是什么。在这种情况下,我们说网络是“死的”,因为权重完全无法更新。

还需要注意

任何具有零梯度的运算(如裁剪、舍入或最大/最小),在被用于计算成本函数相对于权重的导数时,都将产生不良梯度。如果它们在符号图里有出现,那么一定要非常小心,因为它们往往会带来意外的问题。

没有正确地初始化网络权重

问题描述

如果你没有正确地初始化你的神经网络权重,那么神经网络根本就不太可能训练。神经网络中的许多其他组件都有某些正确或标准化的权重初始化,并将权重设置为零,或者使用

你自己的自定义随机初始化不起作用。

怎样解决?

“he”,“lecun”或“xavier”的权重初始化都是很受欢迎的选择,在几乎所有情况下都能很好地工作。你选一个就好(我最喜欢的是“lecun”),当你的神经网络正常运作以后,你也可以自由地进行实验呀。

为什么?

你可能已经知道,可以使用“小的随机数”初始化神经网络权重,但事情并没有那么简单。所有上述初始化都是使用复杂和详细的数学发现的,这些数学基础说明了它们为什么用起来最好。更重要的是,围绕这些初始化构建了其他神经网络组件,并根据经验使用它们进行测试——使用你自己的初始化可能会使其他研究人员的结果复现得更加困难。

还需要注意

其他层可能也需要仔细地进行初始化。网络biases被初始化为零,而其他更复杂的层(如参数激活函数)可能会带有自己的初始化,把这个弄对也同样重要。

你用的神经网络太深

问题描述

更深更好吗?嗯,情况并非总是如此……当我们拼命刷新基准,把某些任务的精度1%、1%地提升时,更深的神经网络一般来说更好。但是,如果你只有3~5层的小网络没有学习任何东西,那么我可以保证你用100层的也会失败,如果不是更糟糕的话。

怎样解决?

从3到8层的浅层神经网络开始。只有当你的神经网络跑起来学东西以后,再探索提升精度的方法,并尝试加深网络。

为什么?

在过去十年中,神经网络的所有改进都是小的fundamental的变化,这些改变只适用于较小型网络作为深层次的性能。如果您的网络不工作,除深度之外更有可能是其他的问题。

还需要注意

从小的网络开始也意味着训练速度更快,推理更快,迭代不同的设计和设置将会更快。

最初,所有这些事情都将对准确性产生更大的影响,而不仅仅是堆叠几层。

使用隐藏单元的数量不对

问题描述

在某些情况下,使用太多或太少的隐藏单元(hidden units)都可能使网络难以训练。隐藏单元太少,可能没有能力表达所需任务,而隐藏单元太多,可能会变得缓慢而难以训练,残差噪音很难消除。

怎样解决?

从256至1024个之间的隐藏单元开始。然后,看看类似应用的其他研究使用多少,并参考使用。如果其他研究人员使用的与你使用的数字非常不同,那么可能需要有一些具体的原因来解释。

为什么?

在决定隐藏单元的数量时,关键要考虑你认为对网络传递信息所需最少数量的真实值。你应该把这个数字弄大一点。对于使用更多冗余表示的网络,dropout可以。如果你要做分类,可以使用五到十倍的class的数量,而如果你做回归,可能需要使用输入或输出变量数量的两到三倍。当然,所有这些都是高度依赖于环境的,没有简单的自动解决方案——拥有很好的直觉对于决定隐藏单元数量是最重要的。

还需要注意

实际上,与其他因素相比,隐藏单元的数量通常对神经网络性能影响很小,而在许多情况下,高估所需隐藏单位的数量不会使训练变慢。一旦你的网络工作了,如果你仍然担心,只需尝试很多不同的数字,并测量准确性,直到找到最适合你的网络的数值。

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

前馈神经网络和反馈神经网络模型

前馈神经网络 前馈神经网络的结构一般包含输入层、输出层、及隐含层,隐含层可以是一层或多层。各神经元只接收前一层的输出作为自己的输入,并且将其输出给下一层,整个网络中没有反馈。每一个神经元都可以有任意多个输入,但只允许有一个输出。图1选择只含一个隐含层的前馈神经网络。其原理框图如图1所示。 图中,只有前向输出,各层神经元之间的连接用权值表示。设输入层有M 个输入信号,其中任一输入信号用i ()M i ,2,1 =表示;隐含层有N 个神经元,任一隐含层神经元用j ()N j ,2,1 =表示;输入层与隐含层间的连接权值为()n w ij , ()N j M i ,2,1;,2,1 ==;隐含层与输出层的连接权值为()n w j 。假定隐含层神 经元的输入为()n u j ,输出为()n v j ;输出层神经元的输入为()n o ,网络总输出为 ()n x ~。则此神经网络的状态方程可表示为: ()()()∑+-==M i ij j i n y n w n u 11 ()()[] ()()?? ? ???∑+-===M i ij j j i n y n w f n u f n v 11 ()()()∑==N j j j n v n w n o 1 ()()[]()()?? ????==∑=N j j j n v n w f n o f n x 1~ 图1 三层前馈神经网络结构图 输入层 隐含层 输出层 (y n (1y n -(1y n M -+

式中,()?f 表示隐含层、输出层的输入和输出之间的传递函数,也称为激励函数。 定义代价函数为瞬时均方误差: ()()()()[] ()()()2 12 2~?? ? ????? ????????-=-==∑=N j j j n v n w f n d n x n d n e n J 式中,()n d 为训练信号。 递归神经网络 对角递归神经网络 图2为典型的对角递归神经网络,它具有三层结构,分别为输入层,隐层和输出层,在隐层的权值叠加中,引入了输入的前一时刻的输出作为反馈控制信号。选用这种网络的优点是结构简单,易于实现,可以直观的体现反馈神经网络的结构模式和工作方式。 设输入层与隐层间的连接权值为()n w h ij ()k j m i ,2,1;,,1,0==,隐层与输 出层之间的权值为()n w o j ,递归层的权值为()n w d j 。设输入层的输入为()i n y -, 隐层的输入为()n u j ,输出为()n I j ,输出层的输入为()n v ,输出层的输出为()n x ~,则对角递归神经网络的状态方程为 ()()()()()10-+-=∑=n I n w i n y n w n u j d j m i h ij j 输入层 输出层 隐层 图2 对角递归神经网络的结构 ()y n ()1y n - ()1y n m -+ ()y n m - mj d

浅谈神经网络分析解析

浅谈神经网络 先从回归(Regression)问题说起。我在本吧已经看到不少人提到如果想实现强AI,就必须让机器学会观察并总结规律的言论。具体地说,要让机器观察什么是圆的,什么是方的,区分各种颜色和形状,然后根据这些特征对某种事物进行分类或预测。其实这就是回归问题。 如何解决回归问题?我们用眼睛看到某样东西,可以一下子看出它的一些基本特征。可是计算机呢?它看到的只是一堆数字而已,因此要让机器从事物的特征中找到规律,其实是一个如何在数字中找规律的问题。 例:假如有一串数字,已知前六个是1、3、5、7,9,11,请问第七个是几? 你一眼能看出来,是13。对,这串数字之间有明显的数学规律,都是奇数,而且是按顺序排列的。 那么这个呢?前六个是0.14、0.57、1.29、2.29、3.57、5.14,请问第七个是几? 这个就不那么容易看出来了吧!我们把这几个数字在坐标轴上标识一下,可以看到如下图形: 用曲线连接这几个点,延着曲线的走势,可以推算出第七个数字——7。 由此可见,回归问题其实是个曲线拟合(Curve Fitting)问题。那么究竟该如何拟合?机器不

可能像你一样,凭感觉随手画一下就拟合了,它必须要通过某种算法才行。 假设有一堆按一定规律分布的样本点,下面我以拟合直线为例,说说这种算法的原理。 其实很简单,先随意画一条直线,然后不断旋转它。每转一下,就分别计算一下每个样本点和直线上对应点的距离(误差),求出所有点的误差之和。这样不断旋转,当误差之和达到最小时,停止旋转。说得再复杂点,在旋转的过程中,还要不断平移这条直线,这样不断调整,直到误差最小时为止。这种方法就是著名的梯度下降法(Gradient Descent)。为什么是梯度下降呢?在旋转的过程中,当误差越来越小时,旋转或移动的量也跟着逐渐变小,当误差小于某个很小的数,例如0.0001时,我们就可以收工(收敛, Converge)了。啰嗦一句,如果随便转,转过头了再往回转,那就不是梯度下降法。 我们知道,直线的公式是y=kx+b,k代表斜率,b代表偏移值(y轴上的截距)。也就是说,k 可以控制直线的旋转角度,b可以控制直线的移动。强调一下,梯度下降法的实质是不断的修改k、b这两个参数值,使最终的误差达到最小。 求误差时使用累加(直线点-样本点)^2,这样比直接求差距累加(直线点-样本点) 的效果要好。这种利用最小化误差的平方和来解决回归问题的方法叫最小二乘法(Least Square Method)。 问题到此使似乎就已经解决了,可是我们需要一种适应于各种曲线拟合的方法,所以还需要继续深入研究。 我们根据拟合直线不断旋转的角度(斜率)和拟合的误差画一条函数曲线,如图:

神经网络分析应用

基于动态BP神经网络的预测方法及其应用来源:中国论文下载中心 [ 08-05-05 15:35:00 ] 作者:朱海燕朱晓莲黄頔编辑:studa0714 摘要人工神经网络是一种新的数学建模方式,它具有通过学习逼近任意非线性映射的能力。本文提出了一种基于动态BP神经网络的预测方法,阐述了其基本原理,并以典型实例验证。 关键字神经网络,BP模型,预测 1 引言 在系统建模、辨识和预测中,对于线性系统,在频域,传递函数矩阵可以很好地表达系统的黑箱式输入输出模型;在时域,Box-Jenkins方法、回归分析方法、ARMA模型等,通过各种参数估计方法也可以给出描述。对于非线性时间序列预测系统,双线性模型、门限自回归模型、ARCH模型都需要在对数据的内在规律知道不多的情况下对序列间关系进行假定。可以说传统的非线性系统预测,在理论研究和实际应用方面,都存在极大的困难。相比之下,神经网络可以在不了解输入或输出变量间关系的前提下完成非线性建模[4,6]。神经元、神经网络都有非线性、非局域性、非定常性、非凸性和混沌等特性,与各种预测方法有机结合具有很好的发展前景,也给预测系统带来了新的方向与突破。建模算法和预测系统的稳定性、动态性等研究成为当今热点问题。目前在系统建模与预测中,应用最多的是静态的多层前向神经网络,这主要是因为这种网络具有通过学习逼近任意非线性映射的能力。利用静态的多层前向神经网络建立系统的输入/输出模型,本质上就是基于网络逼近能力,通过学习获知系统差分方程中的非线性函数。但在实际应用中,需要建模和预测的多为非线性动态系统,利用静态的多层前向神经网络必须事先给定模型的阶次,即预先确定系统的模型,这一点非常难做到。近来,有关基于动态网络的建模和预测的研究,代表了神经网络建模和预测新的发展方向。 2 BP神经网络模型 BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。典型的BP算法采用梯度下降法,也就是Widrow-Hoff算法。现在有许多基本的优化算法,例如变尺度算法和牛顿算法。如图1所示,BP神经网络包括以下单元:①处理单元(神经元)(图中用圆圈表示),即神经网络的基本组成部分。输入层的处理单元只是将输入值转入相邻的联接权重,隐层和输出层的处理单元将它们的输入值求和并根据转移函数计算输出值。②联接权重(图中如V,W)。它将神经网络中的处理单元联系起来,其值随各处理单元的联接程度而变化。③层。神经网络一般具有输入层x、隐层y和输出层o。④阈值。其值可为恒值或可变值,它可使网络能更自由地获取所要描述的函数关系。⑤转移函数F。它是将输入的数据转化为输出的处理单元,通常为非线性函数。

2020年最新2020年整理BP神经网络监督控制系统设计

班级:控制5班 学号:2111504213 姓名:张睿 设计一个神经网络监督控制系统,被控对象为: 3 2 1000 ()s 87.35s 10470G s s =++ 采样时间1,输入信号为方波信号,幅值0.5,频率2。设计一个神经网络监督控制系统,并采用遗传算法进行神经网络参数及权值的优化设计,并进行仿真。需要说明控制系统结构,遗传算法优化网络的具体步骤,并对仿真结果做出分析。 解决过程及思路如下: 1 网络算法 以第p 个样本为例,用于训练的网络结构如图1所示。 图1 具有一个隐含层和输出层的神经网络结构 网络的学习算法如下: (1)信息的正向传播 隐含层神经元的输入为所有输入加权之和, j ij i i x w x =∑ 隐层神经元的输出'j x 采用S 函数激发j x ,则 ' 1 ()1j j j x x f x e -== + '''(1) j j j j x x x x ?=-? 输出层的神经元输出为 j k 输入层 隐含层 输出层 … j 'j x

'k jk j j x w x =∑ 网络输出与理想输出误差为 ()k k e k x x =- 误差性能指标函数为 2 1 1()2N p k E e k ==∑ 上式的N 表示网络输出层的个数。 (2)利用梯度下降法调整各层间权值的反向传播 对从第j 个输入到第k 个输出的权值有: '1 1 ()N N p k jk k j k k jk jk E x w e e k x w w η ηη==???=-==??∑ ∑ 其中,η为学习速率,[]0,1η∈。 1时刻网络权值为 (1)()jk jk jk w k w k w +=+? 对从第i 个输入到第j 个输出的权值有: 1 N p k ij k k ij ij E x w e w w η η=???=-=??∑ 式中,' ''' (1)j j k k jk j j i ij j j ij x x x x w x x x w x x w ????=??=??-????? 1时刻网络权值为 (1)()ij ij ij w k w k w +=+? 2.网络的监督控制系统结构 设计的网络监督控制系统结构如图2所示。

神经网络PID控制

基于神经网络PID控制算法在多缸电液伺服系统同步控制中的仿真 研究 丁曙光,刘勇 合肥工业大学,合肥,230009 摘要:本文介绍了神经网络控制原理,提出了神经网络PID算法,通过选定三层神经网络作为调节函数,经过Simulink仿真确定了神经网络PID控制器的参数,设计了神经网络PID控制器。推导出多缸液压同步控制系统在各种工况下的传递函数,并把该控制器应用到多缸液压同步控制系统中。经过仿真研究表明该控制器控制效果良好,能满足多缸液压同步的控制要求。 关键词:多缸同步;PID算法;仿真;神经网络 Study on the simulation and appllication of hydraulic servo system of straihtening machine based on Immune Neural network PID control alorithm DING Shu-guang, GUI Gui-sheng,ZHAI Hua Hefei University of Technology, Hefei 23009 Abstract:The principle of immune feedback and immune-neural network PID algorithm was respectively.An immune-neural network PID controller was designed by which an adaline neural network was selected as antibody stay function and parameters of the immune-neural network PID controller were determined by simulation.The transfer function of the hydraulic servo system of crankshaft straightenin on were introduced in different working conditions.The immune-neural network PID controller was applied to hydraulic system of crankshaft straightenin.The simulation and equipment were done,and results show that its control effectiveness is better and can meet the needs of he hydraulic servo-system of crankshaft straightening hydraulic press. Key words:straightening machine; Immune control arithmetic; simulation;neural network 0引言 精密校直液压机(精校机)液压伺服系统是精校机的执行环节,高精度液压位置伺服控制是精校机的关键技术之一,它保证了液压伺服控制系统的控制精度、稳定性和快速性,是完成校直工艺的必要条件。因此,精校机液压伺服控制系统的研究,为精校机产品的设计和制造提供了理论依据,对校直技术和成套设备的开发具有重大的意义[1]。 精校机液压位置伺服系统是一个复杂的系统,具有如下特点:精确模型难建立,要求位置控制精度高、超调量小、响应快、参数易变且难以确定[1]。因此该系统的控制有较大的难度。传统的PID控制虽然简单易行,但参数调整困难,具有明显的滞后特性,PID 控制很难一直保证系统的控制精度,Smith预估补偿 国家重大科技专项资助(项目编号:2009ZX04004-021)安徽省自然科学基金资助(项目编号:090414155)和安徽省科技攻关项目资助(项目编号:06012019A)制方法从理论上为解决时滞系统的控制问题提供了一种有效的方法,但是Smith预估器控制的鲁棒性差,系统性能过分依赖补偿模型的准确性,限制了它在实际过程中的应用[1~5]。 近年来,人们开始将生物系统的许多有益特性应用于各种控制中[1~5],取得了一定成果。自然免疫系统使生物体的一个高度进化、复杂的功能系统,它能自适应地识别和排除侵入肌体的抗原性异物,并且具有学习、记忆和自适应调节功能,以维护肌体内环境的稳定。自然免疫系统非常复杂,但其抵御抗原(antigen)的自适应能力十分显著。生物信息的这种智能特性启发人们利用它来解决一些工程难题,这就引起多种免疫方法的出现。人工免疫系统就是借鉴自然免疫系统自适应、自组织的特性而发展起来的一种智能计算技术。该算法在大量的干扰和不确定环境中都具很强的鲁棒性和自适应性,在控制、优化、模式识别、分类

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

关于学习神经网络监督(学习)控制的一点心得

关于学习神经网络监督(学习)控制的一点心得 神经网络控制是一种基本上不依赖于精确数学模型的先进控制方法,比较适用于那些具有不确定性或高度非线性的控制对象,并具有较强的适应和学习能力。[1] 人工神经元网络是在生物神经元模型基础上发展而来的。生物神经元模型的基本组成单元是单个的神经元,它有着接受、传导信息的功能。其中最重要的一点是生物神经元能接受多个神经元传递的信息,并能将其往下传递给多个神经元。根据其特点抽象出的最典型的人工神经元模型如下图所示: 从图中易知其数学模型为: ∑∑===-=n i i ji j n i i ji j x w f x w f y 01)()(θ ,( 100-==j j w x ,θ) 式中,j θ是阈值, ji w 是连接权系数;f (·)为输出变换函数。 人工神经网络是由多个人工神经元组成,每个神经元有多个输入连接通路,但只有一个单一的输出,但是它可以连接到很多其他的神经元。经过多个神经元的串、并连接,就可以构成神经网络。依据神经元的图形模型和数学模型可以知道神经网络具有如下性质: 1) 对于每个节点有一个状态变量j x ; 2) 节点i 到节点 j 有一个连接权系数ji w ; 3) 对于每一个节点有一个阈值j θ; 4) 对于每个节点定义一个变换函数f j [x i ,w ji ,j θ( i ≠j )]。[1] 单个神经元的输出乘以连接权系数即是下一个神经元的输入。对于一个神经网络,当确定了各节点的输出变换函数后,连接权值将作为变量,神经网络的学习功能旨在通过调整连接权值以达到给定输入下得到目标输出的目的,但实际情况只能是接近目标输出。 神经网络的学习基本方式如下:通过给定的输入得到实际输出值,然后记录到目标输出与实际输出的差值,想减小综合差值的方向调整连接权值,这样依次进行下去,最后得到一组最优的连接权集合。当神经网络的节点越多,其能识别的模式也越多,但训练的运算量也相应的增加,这就对训练样本的选择提出更高的要求。 神经元网络监督控制系统的基本系统框图如下:

神经网络分析法

神经网络分析法是从神经心理学和认知科学研究成果出发,应用数学方法发展起来的一种具有高度并行计算能力、自学能力和容错能力的处理方法。 神经网络技术在模式识别与分类、识别滤波、自动控制、预测等方面已展示了其非凡的优越性。神经网络是从神经心理学和认识科学研究成果出发,应用数学方法发展起来的一种并行分布模式处理系统,具有高度并行计算能力、自学能力和容错能力。神经网络的结构由一个输入层、若干个中间隐含层和一个输出层组成。神经网络分析法通过不断学习,能够从未知模式的大量的复杂数据中发现其规律。神经网络方法克服了传统分析过程的复杂性及选择适当模型函数形式的困难,它是一种自然的非线性建模过程,毋需分清存在何种非线性关系,给建模与分析带来极大的方便。 编辑本段神经网络分析法在风险评估的运用 神经网络分析方法应用于信用风险评估的优点在于其无严格的假设限制,且具有处理非线性问题的能力。它能有效解决非正态分布、非线性的信用评估问题,其结果介于0与1之间,在信用风险的衡量下,即为违约概率。神经网络法的最大缺点是其工作的随机性较强。因为要得到一个较好的神经网络结构,需要人为地去调试,非常耗费人力与时间,因此使该模型的应用受到了限制。Altman、marco和varetto(1994)在对意大利公司财务危机预测中应用了神经网络分析法;coats及fant(1993)trippi 采用神经网络分析法分别对美国公司和银行财务危机进行预测,取得较好效果。然而,要得到一个较好的神经网络结构,需要人为随机调试,需要耗费大量人力和时间,加之该方法结论没有统计理论基础,解释性不强,所以应用受到很大限制。 编辑本段神经网络分析法在财务中的运用 神经网络分析法用于企业财务状况研究时,一方面利用其映射能力,另一方面主要利用其泛化能力,即在经过一定数量的带噪声的样本的训练之后,网络可以抽取样本所隐含的特征关系,并对新情况下的数据进行内插和外推以推断其属性。 神经网络分析法对财务危机进行预测虽然神经网络的理论可追溯到上个世纪40年代,但在信用风险分析中的应用还是始于上个世纪90年代。神经网络是从神经心理学和认识科学研究成果出发,应用数学方法发展起来的一种并行分布模式处理系统,具有高度并行计算能力、自学能力和容错能力。神经网络的结构是由一个输入层、若干个中间隐含层和输出层组成。国外研究者如Altman,Marco和Varetto(1995),对意大利公司财务危机预测中应用了神经网络分析法。Coats,Pant(1993)采用神经网络分析法

机器人神经网络控制

第一部分 机器人手臂的自适应神经网络控制 机器人是一具有高度非线性和不确定性的复杂系统,近年来各研究单位对机器人智能控制的研究非常热门,并已取得相当丰富的成果。 机器人轨迹跟踪控制系统的主要目的是通过给定各关节的驱动力矩,使得机器人的位置、速度等状态变量跟踪给定的理想轨迹。与一般的机械系统一样,当机器人的结构及其机械参数确定后,其动态特性将由动力学方程即数学模型来描述。因此,可采用经典控制理论的设计方法——基于数学模型的方法设计机器人控制器。但是在实际工程中,由于机器人模型的不确定性,使得研究工作者很难得到机器人精确的数学模型。 采用自适应神经网络,可实现对机器人动力学方程中未知部分的精确逼近,从而实现无需建模的控制。下面将讨论如何利用自适应神经网络和李雅普诺夫(Lyapunov )方法设计机器人手臂跟踪控制的问题。 1、控制对象描述: 选二关节机器人力臂系统(图1),其动力学模型为: 图1 二关节机器人力臂系统物理模型 ()()()()d ++++=M q q V q,q q G q F q ττ (1) 其中 1232 232232 22cos cos ()cos p p p q p p q p p q p +++??=? ?+??M q ,322 3122312 sin ()sin (,)sin 0p q q p q q q p q q --+?? =???? V q q

41512512cos cos()()cos()p g q p g q q p g q q ++??=??+?? G q ,()()0.02sgn =F q q ,()()0.2sin 0.2sin T d t t =????τ。 其中,q 为关节转动角度向量,()M q 为2乘2维正定惯性矩阵,(),V q q 为2乘2维向心哥氏力矩,()G q 为2维惯性矩阵,()F q 为2维摩擦力矩阵,d τ为 未知有界的外加干扰,τ为各个关节运动的转矩向量,即控制输入。 已知机器人动力学系统具有如下动力学特性: 特性1:惯量矩阵M(q)是对称正定阵且有界; 特性2:矩阵 () ,V q q 有界; 特性3:()()2,-M q C q q 是一个斜对称矩阵,即对任意向量ξ,有 ()()()2,0T -=ξ M q C q q ξ (2) 特性4:未知外加干扰d τ 满足 d d b ≤τ, d b 为正常数。 我们取[][]2 12345,,,, 2.9,0.76,0.87,3.04,0.87p p p p p kgm ==p ,两个关节的位置 指令分别为()10.1sin d q t =,()20.1cos d q t =,即设计控制器驱动两关节电 机使对应的手臂段角度分别跟踪这两个位置指令。 2、传统控制器的设计及分析: 定义跟踪误差为: ()()()d t t t =-e q q (3) 定义误差函数为: =+∧r e e (4) 其中0>∧=∧T 。 则 d =-++∧q r q e

基于神经网络的智能车控制(chinese)概要

基于神经网络的智能车控制 对于智能小车的控制算法, 神经网络应该是不错的选择。神经网络的研究一般是基于 OFF-LINE 的,另外,神经网络无论在分类还是拟合作用上,计算精确性并不是100%,这也是航空技术不用神网的原因。此篇论文主要讨论神经网络用在小车控制算法上的可能性以及如何利用神经网络于小车控制算法。 一般用机理分析法和系统辨识法对实验数据建模, 得到传递函数, 然后通过调试实际系统, 从开环到闭环, 不断调整参数和控制参数。举个例子:要建立小车直线、弧线行走的控制模型, 即通过实测数据建立驱动控制和小车转弯偏移量的关系, 那么输入的参数是当前速度, 曲率大小, 转弯弧度, 最大安全速度, 目前偏移角度等等参数, 而输出的就是目标速度, 目标角度。这个输入和输出之间的关系就是控制模型, 一般也叫控制器。小车跑得快,跑得稳,主要就是这个”控制器“,控制器拟合得好,适应性强,效果就不差。小车控制算法要解决的问题是 : 输入—— >控制模型—— >输出控制参数。按一般的方法, 控制模型的建立需要大量数据, 离线在线都必需调试多遍, 系统的适应性不佳。而尝试神经网络,这些问题就都可以很大程度地避免了。 首先, 有必要介绍一下神经网络, 到底神经网络是干什么用的, 如何用。神经网络的理论并不复杂, 我想是有些书或论文把简单问题复杂化了。大家不要对它恐惧。一堆数据 A ,通过一个 NET 不断调整,得到另一堆数据 B 。而 A 和目标结果数据 C 都是已知的, NET 是未知的,这个调整 NET 的过程就是训练, NET 训练好的结果是使 B 和 C 的误差最小,误差合理就收敛。收敛完了,这个 NET 就可以用了。神经网格的核心就是得到一个 NET 。控制模型就是一个 NET , NET 包含很多参数,如权值,隐含层数,训练方法,神经元模型, 传递函数等,只要建立一个 NET ,那么输入和输出的关系就建立起来了。神经网络主要有两个作用:一个是分类,另一个是回归(拟合。如果把它运用于小车控制算法,毫无疑问是用于回归拟合的功能。回归什么呢?对, 回归上面所说的控制模型, 这个 NET 就是控制器。神经网络用于小车控制算法上的优势比较明显, 模型可以随时调整, 而且模型不是通过公式表示, 只是一个 NET 来表达, 避免复杂的参数调整和试算过程。通过新的环境参数得到新的

基于神经网络输出反馈的动态矩阵控制研究

clear all; close all; xite=0.50; alfa=0.05; w2=rand(6,1); w2_1=w2;w2_2=w2; w1=rand(2,6); w1_1=w1;w1_2=w1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; Iout=[0,0,0,0,0,0]'; FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts; u(k)=0.50*sin(3*2*pi*k*ts); a(k)=1.2*(1-0.8*exp(-0.1*k)); y(k)=a(k)*y_1/(1+y_1^2)+u_1; for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; e(k)=y(k)-yn(k); w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j)))^2; end

for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); end end w1=w1_1+dw1+alfa*(w1_1-w1_2); x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn'); grid on ts=0.1; for k=1:1:200 time(k)=k*ts; u(k)=1; a(k)=1.2*(1-0.8*exp(-0.1*k)); y(k)=a(k)*y_1/(1+y_1^2)+u_1; for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; e(k)=y(k)-yn(k); w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j)))^2; end for i=1:1:2

一种新的在线训练神经网络算法

一种新的在线训练神经网络算法 速度估计和PMSG风力发电系统的自适应控制 最大功率提取* B Fernando Jaramillo Lopez,Francoise Lamnabhi Lagarrigue *,godpromesse肯尼, 一个该DES signaux等系统,Supelec高原都moulon Gif sur伊维特,91192,法国 B该d'automatique等信息学系的精灵appliquee,电气,iut-fv Bandjoun,Universite de姜村,喀麦隆 这是一个值得注意的问题。 有一个房间 文章历史: 在本文中,自适应控制系统最大功率点跟踪单机PMSG风 涡轮系统(WTS)了。一种新的程序来估计风速导出。实现 这一神经网络识别?ER(NNI)是为了近似的机械转矩设计 WTS。有了这些信息,风速计算的基础上的最佳机械扭矩点。 NNI接近实时的机械转矩信号,它不需要离线训练 得到其最佳参数值。这样,它可以真正接近任何机械扭矩值 精度好。为了将转子转速调节到最优转速值,采用块反推 控制器导出。使用Lyapunov证明了一致渐近稳定的跟踪误差来源 争论。一个标准的被动为基础的控制器的数值模拟和比较

为了显示所提出的自适应方案的良好性能。 三月20日收到2014 以书面形式收到 2015七月4 接受25七月2015 可在线8月13日2015 关键词: 风力发电系统 风速估计 非线性系统 人工神经网络人工? 反推控制 ?2015 Elsevier公司保留所有权利。 1。介绍 使风产业的趋势是设计和建造变量— 高速涡轮机的公用事业规模安装[ 2 ]。 可再生能源发电的兴趣增加 由于污染排放,在其他原因。风 能源是各种可再生能源中最为成熟的能源之一技术,并得到了很多的青睐,在世界的许多地方[ 1 ]。 根据风速、VST可以在3区域操作,因为它

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

设计一个BP神经网络监督控制系统

题目:设计一个BP 神经网络监督控制系统,被控对象为: 1000 G ( s) s387.35s210470 s 采样时间 1ms,输入信号为方波信号,幅值 0.5,频率 2hz。设计一个 BP神经网络用于该控制系统,并采用遗传算法进行 BP 神经网络参数及权值的优化设计,并试进行 matlab 仿真。 1、设计结构方案 控制器选取 PD 控制器, k p50,k d0.5 2、神经网络参数 神经网络为2-4-1 结构,权值W1,W2的初始值取1, 1 之间的随机值,取学习参数0.3,0.05 。 (1)前向传播:计算网络输出 隐层神经元的输入为所有输入的加权之和,即 x j w ij x i i 隐层神经元的输出x'j采用S 函数激发x j,得

x 'j f ( x j ) 1 1 e x j 输出层神经元的输出为 u (k ) w jo x ' n j j 控制律为 u(k ) u p (k) u n (k) 神经网络调整的性能指标为 E(k ) 1 (u n (k ) u( k)) 2 2 u p ( k) u (k) 近似取 n ,由此产生的不精确通过权值调节来补偿。 w j (k) w i ( k) (2) 反向传播:采用 学习算法,调整各层间的权值输出层及隐层的连接权值 w j 2 学习算法为 w j 0 E u p (k ) u n u p (k) x 'j w j 0 w j 0 隐层及输入层连接权值 w ij 学习算法为 w ij E u p ( k) u n w ij w ij 式中, u n w j 0 x 'j (1 x 'j ) x i w ij k 1 时刻网络的权值为 w j 0 (k 1) w j 0 ( k) w j 0 (w j 0 (k) w j 0 (k 1)) w ij (k 1) w ij (k ) w ij (w ij (k ) w ij (k 1)) 3、离散化对象 y(k ) den(2) y(k 1) den(3) y(k 2) den(4) y(k 3) num (2)u(k 1) num(3)u(k 2) num(4) u(k 3)

神经网络与回归方法分析(数学建模)

多元回归与神经网络的应用 摘要 本文主要是通过整理分析数据,以得出题目中所给出的i x 与j y 的函数关系.由于数据并不是很充足,我们选择了所有数据为样本数据和部分数据为验证数据。我们首先采用了多元回归方法,由于数据之间并没有明显的线性或者其它函数关系,模型很难选择,得到的结论对于1y 来说残值偏大,效果很差,于是我们引用了BP 神经网络,经过选择合适的参数,多次训练得到合适的网络,拟合得到了相对精确的结果,并进行了验证,最后将三种模型进行了对比。 关键字: 多元线性回归 多元非线性回归 最小二乘法 牛顿法 BP 神经网络 1.问题重述 现实生活中,由于客观事物内部规律的复杂性及人们认识程度的限制,人们常收集大量的数据,基于数据的统计分析建立合乎基本规律的数学模型,然后通过计算得到的模型结果来解决实际问题.回归分析法和神经网络是数学建模中常用于解决问题的有效方法.本文要解决的主要问题是:通过对所给数据的分析,分别用回归方法或神经网络来确立x i 与y i 之间的函数关系,并验证结论。 2.问题分析 题目要求我们使用神经网络或回归方法来做相关数据处理,相比较之下,我们对回归方法比较熟悉,所以首先选取了回归方法。得到相关函数,并分析误差,再利用神经网络模型建立合理的网络,进行误差分析并和前者比较,得出合理的结论。 3.符号说明 m x 的自变量个数 β 回归系数 ε 残差 Q 偏差平方和

,X Y -- 分别为两个变量序列,i i X Y 的均值 w (t)ij 第一层网络与第二层网络之间的权值 (t)ij B 第二层神经元的阈值 (t)jk w 第二层与第三层之间的权值 (t)jk B 第三层神经元的阈值 jk w ? 第二层与第三层权值调整量 jk B ? 第二层与第三层阈值调整量 ij w ? 第一层与第二层权值调整量 ij B ? 第一层与第二层阈值调整量 Logsig 函数 x e y -+=11 Tansig 函数 1 -)e +(12x 2-? Q 偏差平方和 y α 观察值 ^ y α 回归值 β 估计参数 h S 回归平方和 1 h S (p-1)个变量所引起的回归平方和(即除去i x ) i Q 偏回归平方和 4.模型建立与求解

一种递归模糊神经网络自适应控制方法

一种递归模糊神经网络自适应控制方法 毛六平,王耀南,孙 炜,戴瑜兴 (湖南大学电气与信息工程学院,湖南长沙410082) 摘 要: 构造了一种递归模糊神经网络(RFNN ),该RFNN 利用递归神经网络实现模糊推理,并通过在网络的第 一层添加了反馈连接,使网络具有了动态信息处理能力.基于所设计的RFNN ,提出了一种自适应控制方案,在该控制方案中,采用了两个RFNN 分别用于对被控对象进行辨识和控制.将所提出的自适应控制方案应用于交流伺服系统,并给出了仿真实验结果,验证了所提方法的有效性. 关键词: 递归模糊神经网络;自适应控制;交流伺服中图分类号: TP183 文献标识码: A 文章编号: 037222112(2006)1222285203 An Adaptive Control Using Recurrent Fuzzy Neural Network M AO Liu 2ping ,W ANG Y ao 2nan ,S UN Wei ,DAI Y u 2xin (College o f Electrical and Information Engineering ,Hunan University ,Changsha ,Hunan 410082,China ) Abstract : A kind of recurrent fuzzy neural network (RFNN )is constructed ,in which ,recurrent neural network is used to re 2alize fuzzy inference temporal relations are embedded in the network by adding feedback connections on the first layer of the network.On the basis of the proposed RFNN ,an adaptive control scheme is proposed ,in which ,two proposed RFNNs are used to i 2dentify and control plant respectively.Simulation experiments are made by applying proposed adaptive control scheme on AC servo control problem to confirm its effectiveness. K ey words : recurrent fuzzy neural network ;adaptive control ;AC servo 1 引言 近年来,人们开始越来越多地将神经网络用于辨识和控 制动态系统[1~3].神经网络在信号的传播方向上,可以分为前馈神经网络和递归神经网络.前馈神经网络能够以任意精度逼近任意的连续函数,但是前馈神经网络是一个静态的映射,它不能反映动态的映射.尽管这个问题可以通过增加延时环节来解决,但是那样会使前馈神经网络增加大量的神经元来代表时域的动态响应.而且,由于前馈神经网络的权值修正与网络的内部信息无关,使得网络对函数的逼近效果过分依赖于训练数据的好坏.而另一方面,递归神经网络[4~7]能够很好地反映动态映射关系,并且能够存储网络的内部信息用于训练网络的权值.递归神经网络有一个内部的反馈环,它能够捕获系统的动态响应而不必在外部添加延时反馈环节.由于递归神经网络能够反映动态映射关系,它在处理参数漂移、强干扰、非线性、不确定性等问题时表现出了优异的性能.然而递归神经网络也有它的缺陷,和前馈神经网络一样,它的知识表达能力也很差,并且缺乏有效的构造方法来选择网络结构和确定神经元的参数. 递归模糊神经网络(RFNN )[8,9]是一种改进的递归神经网络,它利用递归网络来实现模糊推理,从而同时具有递归神经网络和模糊逻辑的优点.它不仅可以很好地反映动态映射关系,还具有定性知识表达的能力,可以用人类专家的语言控制规则来训练网络,并且使网络的内部知识具有明确的物理意 义,从而可以很容易地确定网络的结构和神经元的参数. 本文构造了一种RFNN ,在所设计的网络中,通过在网络的第一层加入反馈连接来存储暂态信息.基于该RFNN ,本文还提出了一种自适应控制方法,在该控制方法中,两个RFNN 被分别用于对被控对象进行辨识和控制.为了验证所提方法的有效性,本文将所提控制方法用于交流伺服系统的控制,并给出了仿真实验结果. 2 RFNN 的结构 所提RFNN 的结构如图1所示,网络包含n 个输入节点,对每个输入定义了m 个语言词集节点,另外有l 条控制规则 节点和p 个输出节点.用u (k )i 、O (k ) i 分别代表第k 层的第i 个节点的输入和输出,则网络内部的信号传递过程和各层之间的输入输出关系可以描述如下: 第一层:这一层的节点将输入变量引入网络.与以往国内外的研究不同,本文将反馈连接加入这一层中.第一层的输入输出关系可以描述为:O (1)i (k )=u (1)i (k )=x (1)i (k )+w (1)i (k )?O (1)i (k -1), i =1,…,n (1) 之所以将反馈连接加入这一层,是因为在以往的模糊神经网络控制器中,控制器往往是根据系统的误差及其对时间的导数来决定控制的行为,在第一层中加入暂态反馈环,则只需要以系统的误差作为网络的输入就可以反映这种关系,这样做不仅可以简化网络的结构,而且具有明显的物理意义,使 收稿日期:2005207201;修回日期:2006206218 基金项目:国家自然科学基金项目(N o.60075008);湖南省自然科学基金(N o.06JJ50121)   第12期2006年12月 电 子 学 报 ACT A E LECTRONICA SINICA V ol.34 N o.12 Dec. 2006

相关文档
最新文档