高中数学解题基本方法换元法

合集下载

换元法在高中数学解题中的应用技巧

换元法在高中数学解题中的应用技巧

㊀㊀解题技巧与方法㊀㊀110㊀换元法在高中数学解题中的应用技巧换元法在高中数学解题中的应用技巧Һ梁茸茸㊀(甘肃省临夏中学,甘肃㊀临夏㊀731100)㊀㊀ʌ摘要ɔ通过 换元 分析题目㊁梳理思路㊁简化运算㊁解决问题,是高中一种至关重要的解题技巧.文章参考2019年人教版高中数学教材核心知识点,从内涵㊁价值㊁方法㊁类型题等多个维度层层深入,探究换元法的具体应用,希望对一线教师的教学有一定启发,帮助学生在高中数学解题中全面掌握换元法.ʌ关键词ɔ高中数学;换元法;解题教学引㊀言换元法是一种数学解题方法,体现着重要的数学思想,在高中数学方程㊁不等式㊁函数等问题中有着十分广泛的应用.教师应使学生充分认识换元法在高中数学解题中的应用价值,掌握其应用技巧,以培养学生高中数学解题能力,使其数学思想㊁能力等实现良好的发展.这要求教师立足实际研究换元法在高中数学解题中的应用技巧,全面把握其基本方法与关联题型,为学生提供恰到好处的指导.一㊁换元法的内涵换元法也称 变量代换法 辅助元素法 ,是一种在数学解题过程中以新的变量取代原有变量的方法.展开来说,换元法是在数学解题过程中引入一个或多个新的变量代替题目中原有的某些复杂或干扰变量,从而将分散在题目中的已知条件准确联系起来,突出隐含条件,将题目变成学生更容易理解的形式,简化烦琐的运算过程.二㊁换元法在高中数学不同类型题中的应用掌握换元法在高中数学解题中的应用技巧,应准确理解其适用题型.这样,学生才能在面对换元法相关题目时,及时确定 换元 解题思路,节约思考时间.因此,教师还应引导学生归类典型题,探索换元法在高中数学不同类型题中的应用.比如,方程问题㊁函数问题㊁不等式问题㊁数列问题.(一)方程问题方程问题是高中数学最基础的一项知识,是学生解答高中数学函数㊁导数等其他问题的重要基础.以人教版高中数学教材为例(2019年版),其在高一必修第一册便编排了 一元二次方程 知识点,足见方程在整个高中数学学习过程中的重要性.而对于一些复杂的方程问题,只有通过换元才能顺利求解.例如,人教版高一必修第一册(2019年版)第二章 一元二次函数㊁方程和不等式 教学中,有下列题目:解方程:x4+2x2+1x2+x2+1x-2=0.方程最高次项为4次,使其具有较大难度,不能直接运用解一元二次方程的解题经验,由此可考虑应用换元法,将方程最高次 降次 ,具体思路和过程如下:观察方程未知数,可知x4+2x2+1x2与x2+1x为平方关系.因此可设x2+1x为y,则x4+2x2+1x2可表示为y2,原方程转化为y2+y-2=0,(y+2)(y-1)=0,y值可取-2或1.当y值取-2时,x2+1x=-2,x2+1+2x=0,x=-1;当y值取1时,x2+1x=1,x2+1-x=0,x-12æèçöø÷2=-34,无解.所以原方程解为x=-1.一方面,基于换元法在方程问题中的 降次 优势解题,将方程最高次项由4次转化为2次.另一方面,应用整体换元法,将方程中代数式x2+1x视为一个整体,整体代入未知数y.通过换元法在方程问题中的混合应用,非常见一元四次方程被转化为学生再熟悉不过的一元二次方程,解方程难度大大降低.此外,高中数学 圆锥曲线方程 解题中,也需要应用换元法解题技巧.例如,人教版高二选择性必修第一册(2019年版)第三章 椭圆 ,有下列题目:在椭圆x24+y2=1上有一移动的点P,其坐标可表示为(x,y),求函数u=x2+2xy+4y2+x+2y的最大值.基于换元法,其解题思路与过程如下:设x=2cosθ,y=sinθ,θɪ[0,2π).u=4cos2θ+4sinθcosθ+4sin2θ+2cosθ+2sinθ=2(sinθ+cosθ)2+2cosθ+2sinθ+2.㊀㊀㊀解题技巧与方法111㊀㊀再设g=cosθ+sinθ=2sinπ4+θæèçöø÷,gɪ[-2,2]u=2g2+2g+2=2g+12æèçöø÷2+32,g=2时,u最大,值为6+22.某种意义上,圆锥曲线方程问题可以视为高一方程问题的升级,其复杂性更高,难度有显著提升,因此要求学生掌握更加灵活的解题方法.例题解题思路为三角换元法在圆锥曲线方程问题中的运用,是先根据椭圆参数方程x=acosθ,y=bsinθ特点还原,然后依据三角函数sin2x+cos2x=1等知识点化简方程,求出最终解.(二)函数问题高中数学函数问题可概括为 基础函数问题 与三角函数问题 ,前者还可细分为 二次函数基础问题 指数函数基础问题 对数函数基础问题 等,后者由于在 三角形 背景下,因此被单独归类.换元法不仅可以用于解决 二次函数 等基础函数问题,还在三角函数问题的解答中有特殊功能.教师应使学生全面掌握函数问题中的换元技巧.而 换元法在基础函数解题的应用 中,主要题型有 函数解析式问题 与 最值问题 ,下面将结合具体例题一一论述.1.函数解析式问题一般情况下,高中数学函数解析式问题可以通过待定系数法求解,若题中已知条件无法满足待定系数法解题需要,换元法便派上了用场.例如:已知函数,f2x+1æèçöø÷=lgx,求f(x).这是一个典型的求对数函数解析式问题,题目所给条件十分有限,不能直接套用待定系数法.换元法解题思路与过程如下:令2x+1=u,则x=2u-1,f(u)=lg2u-1.结合题意f2x+1æèçöø÷=lgx,可知x>0,则u>1,则f(u)=lg2u-1成立.以未知数x表示u,则f(x)=lg2x-1x>1().直接将已知函数关系式中2x+1视为一个整体,用未知数u进行表示,求出换元后的函数解析式.之后再次换元,代入新的未知数替换u,解得原函数f(x)解析式.通过变量的多次替换,轻松求出原复杂函数解析式.但是需要注意的是,由于在多次换元中, 新元 取值范围存在变化,所以在最终确定函数解析式时,要着重关注x的取值范围.此外,教师还可以视此题目为典型,引导学生归纳函数解析式问题换元规律:形如y=fg(x)[]的函数中,求解其解析式,可以先对g(x)换元,再求解原函数解析式.学生由此形成对函数解析式问题换元技巧的规律性掌握,可在自主求解函数解析式问题时,更加自信㊁巧妙地应用换元法.2.最值问题高中数学最值问题包括 最大值 最小值 问题,在二次函数㊁指数函数等函数中均有应用.而且,在某种意义上,圆锥曲线方程问题也属于函数问题,上述 三角换元解椭圆方程最大值 问题,本质上也是换元法在函数最值问题中的应用.因此在本部分,将不再对圆锥曲线方程最值问题展开赘述,以二次函数为重点讨论对象.例如:求函数f(x)=2x-x-1的最小值.题目只有寥寥一句话,却能困扰很大一部分学生.这并非常见的一元二次函数,应该采取何种方法求最小值?解题思路与过程如下:应用换元法可以将函数关系式 根号 部分的变量视为一个整体,令x-1=u,则x=u2+1,函数f(u)=2u2+2-u(uȡ0).此时,函数f(x)=2x-x-1的求解问题,被顺利转化为函数f(u)=2u2+2-u(uȡ0)的求解问题.通过顶点式表达f(u)函数关系式,f(u)=2u-14æèçöø÷2+158,函数开口向上,在顶点处取最小值,u=14,f(u)=158.通过整体换元,函数由一次函数被转化为易于求最值的二次函数形式,然后将二次函数表达式转化为 顶点式 ,可根据二次函数顶点坐标特征顺利求解.但是在换元过程中,同样要明确与 元 相对应的变量取值范围变化情况.3.三角函数问题三角函数是特殊的一种高中数学函数问题,因此换元法在其实际解题过程中的应用也具有一定特殊性,包括角换元㊁三角式㊁sin2x+cos2x=1换元等.例如:求三角函数f(x)=sinx+cosx+sinxcosx的值域.这是一个典型的 三角式换元 问题,可以通过三角式换元将三角函数转化为二次函数,使 求值域 更加简单,思路与过程如下:设sinx+cosx=t,则sin2x+cos2x+2sinxcosx=t2,1+2sinxcosx=t2,sinxcosx=t2-12.根据三角函数诱导㊀㊀解题技巧与方法㊀㊀112㊀公式,sinx+cosx=t=2sinx+π4æèçöø÷,则t取值范围为tɪ[-2,2],f(x)=t+t2-12=t+1()2-22,其对称轴为t=-1,因此在区间tɪ[-2,2]内,其值域为f-1(),f2()[].f-1()=-1,f2()=22+12,求得原函数值域为-1,22+12éëêêùûúú.通过将三角函数中某一个三角函数关系式换元,引发原函数其他变量的相应变化,将原函数由三角函数转化为二次函数,根据 换元 后函数变量取值范围变化情况确定二次函数定义域,求出其值域,该值域也是原函数待求值域.在换元法与三角函数问题的紧密融合中,高中数学三角函数解题难度也大大降低.(三)不等式问题不等式问题同样是人教版高一必修第一册(2019年版)第二章 一元二次函数㊁方程和不等式 部分教学内容,其典型题目包括求不等式某一变量取值范围㊁证明不等式等.例如:求证-12ɤx1-x2ɤ12.这是典型的证明不等式问题,初读题目,除待证不等式外,题目并未给出其他已知条件,使很多学生毫无头绪.但是应用换元法,将式中x设为cosθ,结果将天差地别,解题过程与思路如下:令x=cosθ,且θɪ0,π[],则x1-x2=cosθsinθ=12sin2θ.θɪ0,π[],-1ɤsin2θɤ1,则-12ɤ12sin2θɤ12,-12ɤx1-x2ɤ12.具体来说,此题应用三角换元法,通过设原不等式变量x为三角函数cosθ,同时设定角θ取值范围,将不等式转化为与sinθ相关的关系式.之后,可根据角θ在特殊取值范围下的值域确定sinθ取值范围,从而反证不等式,降低不等式证明难度.但是在应用此技巧时,还要注意换元的等价性,不仅要保持题目各个变量之间的关系不变,还要使各变量取值范围在换元前后保持一致.(四)数列问题换元法在数列解题中的应用,主要包括在数列的递推通项公式或前n项和公式过程中,构造等差数列或等比数列;在关于数列的不等式问题中,求解数列最值.例如,人教版高二选择性必修第二册(2019年版)第四章 数列 教学中,有下列题目:已知在数列{an}中,a1=1,当nȡ2时,数列前n项和Sn满足Sn2=anSn-12æèçöø÷,求Sn的表达式.结合题意,解决此问题,需要根据a1=1以及nȡ2时数列前n项和Sn所满足条件逆推前n项和公式,而逆推数列前n项和公式,需要构造新的数列,由此可应用换元法.解题思路如下:任意一个数列中,都有an=Sn-Sn-1,当nȡ2时,将其代入Sn2=anSn-12æèçöø÷,得到2SnSn-1+Sn-Sn-1=0.若题目成立,则Snʂ0,等式两边可同时除以SnSn-1,得到2+1Sn-1-1Sn=0,1Sn-1Sn-1=2.应用换元法,可设Cn=1Sn,则Cn-Cn-1=2,Cn{}为首项为1㊁公差为2的等差数列,表达式为2n-1.将Cn=2n-1代入Cn=1Sn,则1Sn=2n-1,Sn=12n-1.首先,根据题意以及数列特征消掉题目的an,使其只存在Sn与Sn-1两个变量,突出数列前n项和与前n-1项和的数学联系.其次,将Sn与Sn-1其中一个变量设为新的变量,通过还原构造新的数列,求出其表达式.最后,将新数列表达式代入之前所求得的数学关系式,求出数列{an}真正的前n项和表达式.将换元法渗透在运算过程中,及时设元,减少无关运算,顺利逆推出数列问题答案.结㊀语综上所述,在高中数学解题中,换元法既可以保障解题效果,又可以使学生感悟数学思想,感悟换元法应用在高中数学解题中具有的极高现实意义.教师应使学生领会换元法在高中数学解题中的常见方法,同时区分适用于换元法的不同题型,使学生全面掌握换元法应用技巧.此外,教师还需让学生建立 勿忘换元 意识,使其 换元 有始有终.ʌ参考文献ɔ[1]李志明.巧妙换元㊀解决难题 换元法在高中数学解题中的应用[J].数理化解题研究,2022(36):14-16.[2]刘延群.高中数学换元解题 六法 [J].中学数学,2022(9):81-82,95.[3]雷文发,张红霞.灵活换元㊀巧妙转换[J].数学大世界(中旬),2021(6):68.。

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用换元法是一种广泛应用于高中数学解题中的方法。

它的核心思想是通过一定的变换将问题转化为更易于解决的形式,从而得到问题的解。

一、函数换元法1. 基本思想函数换元法是一种利用函数的运算性质,将复杂函数转化为较为简单的函数,从而帮助我们解决问题的方法。

例如,在求函数 $f(x)=\frac{1}{x-1}$ 的零点时,我们可以采用换元法将 $x-1$ 替换为 $t$,从而得到 $f(t)=\frac{1}{t}$,这样我们就可以较为容易地求得 $t=0$,进一步得到 $x=1$ 这一解。

2. 具体应用函数换元法在高中数学中广泛应用于函数的求导、求极限等方面。

例如,在求函数$f(x)=\sin(2x+\frac{\pi}{6})$ 的导数时,我们可以采用函数换元法将$2x+\frac{\pi}{6}$ 替换为 $t$,这样就可以得到$\frac{d}{dx}f(x)=\frac{d}{dt}\sin t \times\frac{d}{dx}(2x+\frac{\pi}{6})=\cos(2x+\frac{\pi}{6})\times2=\sqrt{3}\cos(2x+\frac{\pi}{6})$。

这样问题就被转化为了求 $\sin t$ 的导数,从而便于计算。

二、微分方程的换元法微分方程是一种描述物理现象的重要工具,但由于其求解的困难度较大,我们需要采用适当的方法来简化问题。

其中,微分方程的换元法就是其中一个重要的方法。

例如,在求解微分方程 $y'+y=e^x$ 时,我们可以采用换元法将 $y=e^{-x}u$,得到$\frac{dy}{dx}=e^{-x}\frac{du}{dx}-e^{-x}u$,代入原方程后得到$\frac{du}{dx}=e^x$,进一步得到 $u=e^x+C$,从而得到原方程的通解为$y=e^{-x}(e^x+C)$。

微分方程的换元法在高中数学的物理问题中经常被应用。

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用王凤梅(山东省青岛市城阳区第一高级中学㊀266108)摘㊀要:换元法是高中生数学解题中较为常用的方法ꎬ对换元法进行灵活应用ꎬ将数学解题中的问题实施转化ꎬ以促使许多难题迎刃而解.因此ꎬ在高中数学的解题中运用换元法ꎬ将复杂结构实现简单化ꎬ混乱的思路清晰化ꎬ这不仅有助于学生思路的简化ꎬ而且还能使学生清晰的找到解题思路ꎬ从而实现高效解题.关键词:高中数学ꎻ换元法ꎻ解题ꎻ教学ꎻ应用中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)33-0016-02收稿日期:2020-08-25作者简介:王凤梅(1970.8-)ꎬ女ꎬ山东省临沂人ꎬ中学高级教师ꎬ从事高中数学教学研究.㊀㊀换元法作为高中数学具体教学中ꎬ较为常见的一种解题方法ꎬ在数学的解题中ꎬ通常会出现较为复杂或存有两个及其以上的未知条件的相关数学题ꎬ在解题的时候ꎬ可依据知识之间存在的内在联系ꎬ对数学题中存有的数量关系实施转化ꎬ并通过各变量的条件转换ꎬ将一种问题转变成另种问题ꎬ以实现整个解题的简化.同时ꎬ换元方法有许多种ꎬ如函数换元㊁变量换元㊁不等量换元㊁三角函数的换元等.在具体解题的时候ꎬ教师通过换元法的灵活应用ꎬ不仅能够对学生自身的思维敏捷度进行锻炼ꎬ而且还能使学生自身的思维能力得到有效提高.㊀㊀一㊁换元法内涵及其应用技巧归纳1.换元法内涵所谓的换元法ꎬ其主要就是把数学题目中原先的部分变量通过另一些变量进行替代ꎬ经过换元ꎬ通常能够产生缩减变量㊁简化形式的效果.较为常见的换元方式包含三种ꎬ具体为:(1)整体换元ꎬ如将x表达式的f(x)进行整体替换成tꎬ并通过t表示成其他的与x有关的表达式ꎻ(2)利用关系ꎬ其主要指将较为相似的表达式进行换元ꎬ其主要是通过已知代数式和三角知识的联系实施换元ꎬ也就是在解题的时候ꎬ通过相同的参数ꎬ对两个变量进行表示ꎬ以减少变元ꎬ促使问题简化ꎻ(3)均值换元ꎬ当能够确切求出两个变量和的时候ꎬ就能通过均值换元.不论是何种换元ꎬ在换元之后ꎬ都能够对新变量实施运算ꎬ在对变量完成计算后ꎬ再对原变量进行取值ꎬ通过这样的解题思路ꎬ需确保换元时的等效变换ꎬ特别是定义域转变ꎬ只有确保变换的等效ꎬ才能确保计算结构的有效性.2.应用技巧归纳首先ꎬ常规换元法的掌握.对于不同换元法ꎬ其通常具有相应的形式ꎬ特别是三角换元.因此ꎬ对于难度较低的题目ꎬ学生只要充分掌握较为常规化的换元规律ꎬ并做出迅速反应ꎬ就能实现迅速解题.其次ꎬ注重题目形式的观察.对于难度相对较高的数学题型ꎬ其题目的条件通常具有较强的隐藏性ꎬ此时ꎬ就需对题目条件实施相应的梳理与分析ꎬ并找到换元实施的突破点.需要注意的是ꎬ题型的难度通常不会对换元的相关条件造成影响ꎬ因此ꎬ对条件实施初步解算以及分析ꎬ不仅有利于学生打开解题思路ꎬ而且还能实现高效解题.最后ꎬ注意等效的条件.应用换元法的前后ꎬ其等效性通常是其正确应用的重要保证ꎬ但也是在解题中最容易被忽略的部分.不论是哪种题型ꎬ难度如何ꎬ都需对等效性进行牢固记忆.㊀㊀二㊁换元法在高中数学解题中的应用策略1.基于换元法的三角函数教学高中数学的解题中ꎬ三角换元已经得到广泛应用.三角换元的解题中ꎬ其主要是通过相应的三角换元ꎬ把代数表达转变成三角表达ꎬ也就是把代数式解答或者证明转变成三角式解答与证明ꎬ以达到简化题目㊁理顺思路的作用.可应用同角三角关系ꎬ或者辅助角公式asinx+bcosx=a2+b2sin(x+φ)ꎬ其中的a㊁b均是非零实数ꎬφ角则能通过tanφ=ba进行确定ꎬ以此对解题过程进行简化ꎬ从而使解题效率得到有效提高.例1㊀已知x㊁y满足x2-xy+y2=1ꎬ求x2-y2的取值61 Copyright©博看网 . All Rights Reserved.范围.解㊀设x=ρcosθꎬy=ρsinθꎬ那么ꎬρ2-ρ2sinθcosθ=1ꎬ也就是ρ2=22-sin2θꎬ因此ꎬx2-y2=2 cos2θ2-sin2θ.设k=cos2θ2-sin2θꎬ由此可知ꎬksin2θ+cos2θ=2kꎬsin(2θ+φ)=2kk2+1ꎬ其中tanφ=1kꎬθɪ[0ꎬ2π).根据三角函数的有界性可得:2kk2+1ɤ1ꎬ也就是-33ɤkɤ33ꎬ因此ꎬx2-y2的取值范围是-233ɤx2-y2ɤ233.2.基于构造辅助的函数换元基于构造辅助的函数换元属于极其重要的一种解题方法.对于函数而言ꎬ其作为高中数学具体教学中的核心知识ꎬ通常具有相应的导向性与工具性ꎬ大部分问题都能够以巧妙的构造进行函数辅助ꎬ促使复杂难解的问题转变为直观明了ꎬ转变为程序化.例2㊀已知函数f(x)=mx-aInx-mꎬg(x)=ex/exꎬ其中的mꎬa都是实数ꎬ设m=1ꎬa<0ꎬ如果对任意的x1ꎬx2ɪ[3ꎬ4](x1ʂx2)ꎬ且f(x2)-f(x1)<1g(x2)-1g(x1)恒成立ꎬ求取a最小值.解㊀若m=1ꎬa<0的时候ꎬf(x)=x-aInx-1ꎬxɪ(0ꎬ+ɕ).由于fᶄ(x)=x-ax>0位于[3ꎬ4]上恒成立ꎬ那么ꎬf(x)位于[3ꎬ4]区间内为增函数假设h(x)=1g(x)=exexꎬ因此ꎬhᶄ(x)=ex-1(x-1)x2>0位于[3ꎬ4]上恒成立ꎬ即h(x)位于[3ꎬ4]区间内为增函数.假设x2>x1ꎬ那么ꎬf(x2)-f(x1)<1g(x2)-1g(x1)等价为f(x2)-f(x1)<h(x2)-h(x1)ꎬ即f(x2)-h(x2)<f(x1)-h(x1).构造函数u(x)=f(x)-h(x)=x-alnx-1-1eexxꎬ那么ꎬu(x)位于[3ꎬ4]区间内为减函数ꎬ因此ꎬuᶄ(x)=1-ax-1e ex(x-1)x2ɤ0位于[3ꎬ4]区间恒成立ꎬ也就是aȡx-ex-1+ex-1x恒成立.假设v(x)=x-ex-1+ex-1xꎬ由于vᶄ(x)=1-ex-1+ex-1(x-1)x2=1-ex-1[(1x-12)2+34]ꎬxɪ[3ꎬ4]ꎬ因此ꎬex-1[(1x-12)2+34]>34e2>1ꎬ那么vᶄ(x)<0ꎬv(x)是减函数ꎬ因此ꎬv(x)位于[3ꎬ4]上的最大值是v(3)=3-23e2ꎬ由此可知ꎬa的最小值是3-23e2.通过构造辅助函数方法ꎬ对具体问题进行分析ꎬ明确原问题和和辅助函数之间的联系ꎬ并通过相应的推理ꎬ构造出合理的辅助函数ꎬ从而对问题进行有效解决.3.基于换元法的不等式解题不等的证明与解答相关问题属于高中数学中的重要模块ꎬ通过换元法ꎬ对题实施新元替换ꎬ不仅有助于学生解题思路进行梳理ꎬ而且还能实现高效解题.例3㊀若(x-1)29+(y+1)216=1ꎬ不等式x+y-k>0恒成立ꎬ则k值的取值范围是多少?解㊀首先进行换元ꎬ即x-13=cosαꎬ且y+14=sinαꎬ由此可知ꎬx=1+3cosαꎬy=-1+4sinα.将其代入到不等式x+y-k>0当中ꎬ可得出k<4sinα+3cosα=5sin(α+φ)ꎬ而-5ɤ5sin(α+φ)ɤ5ꎬ所以k<-5.在实际解题中ꎬ经过换元法进行新不等式的构建ꎬ不仅使解题思路得到有效简化ꎬ而且还能促使解题方式实现简便化ꎬ这对不等式相关问题解答是个重要突破口ꎬ也是一种高效的解法.综上所述ꎬ高中数学的具体教学中ꎬ换元法属于较为常见的一种解题方法ꎬ其不仅指解题过程的简化ꎬ而且还有助于学生形成良好的解题思路ꎬ并形成发散思维ꎬ同时ꎬ灵活的应用各种换元法ꎬ还能使繁琐且复杂的数学问题实现简化计算.㊀㊀参考文献:[1]潘帅.换元法在高中数学解题中的应用[J].中国高新区ꎬ2019(01):130.[2]钟文.高中数学解题中换元法的有效运用探析[J].读与写(教师)ꎬ2019(02):264.[3]李京玉.高中数学解题思想方法之一 换元法[J].教育教学论坛ꎬ2017(50):205-206.[4]程子祺.关于换元法在高中数学数列部分的应用讨论[J].中国高新区ꎬ2019(01):105.[5]杜娟.换元法在高中数学中的应用[J].考试周刊ꎬ2018(26):72.[6]黄高乐.如何利用换元法解高中数学题[J].语数外学习(高中版中旬)ꎬ2019(01):42.[责任编辑:李㊀璟]71 Copyright©博看网 . All Rights Reserved.。

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用换元法是高中数学中的一个重要概念,它在解决数学问题中起着非常关键的作用。

换元法是指在数学问题中,通过引入新的变量或函数来简化原问题的解决过程,使得原本繁杂的问题变得更加清晰和易于处理。

换元法常常应用于代数、微积分、几何等各个领域中,下面我们就来详细了解一下换元法在高中数学解题中的应用。

在高中数学中,换元法在代数问题中的应用是非常常见的。

在代数问题中,我们经常会遇到各种复杂的多项式函数或者复杂的方程。

而有时候,我们可以通过引入新的变量或者函数,来简化原来的问题,使得解决过程变得更加直观和简单。

在解决一个关于二次函数的问题时,我们可能会遇到形如y=ax^2+bx+c的多项式函数。

而有时候,我们可以通过令新的变量u=x^2,来将原来的二次函数化简为一个关于u的一次函数,从而更加方便地进行求解和分析。

这就是换元法在代数问题中的应用之一。

在高中数学的微积分部分,换元法也是非常重要的。

在解决一些复杂的定积分或不定积分问题时,通过引入新的变量或者函数,常常可以将原问题化简为一个更加易于处理的形式。

在计算定积分∫sin^2(x)cos(x)dx时,我们可以通过令u=sin(x),来将原来的积分化简为∫u^2du,从而更加简单地求解出原来的定积分。

这就是换元法在微积分问题中的一个经典应用。

在几何问题中,换元法也是非常常见的。

比如在解决一个关于平面几何的问题时,有时候我们可以引入新的坐标系或者新的参数,来使原来的问题更加易于分析和解决。

在学习换元法时,我们需要掌握一些基本的技巧和方法。

我们需要灵活地运用代数、微积分等数学知识,来选择合适的新变量或者新函数,使得原问题化简为更加易于处理的形式。

我们需要熟练掌握各种换元的方法,如代数换元法、三角换元法等,以便灵活地应用于具体的问题中。

在运用换元法解题时,我们需要不断地进行实践和思考,从而逐渐提高我们的解题能力和数学思维能力。

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用作者:***
来源:《广东教育(高中)》2024年第05期
在數学解题过程中,把题目中某一复杂结构作为新的整体用单一字母表示,得到结构简单并且便于求解的新问题,这种方法通常称为换元法.换元法在高中数学中有着广泛的应用,灵活运用换元法可以简化问题情境,有助于变繁为简、化难为易,使得数学问题的解答变得简便和巧妙.高中数学中最常用的换元法有三角换元法、局部换元法和均值换元法.二元条件最值问题、无理函数最值问题、周期数列问题、函数与导数和解析几何中,都对换元法有涉及.以下通过具体例题,总结换元法在高中解题中应用.。

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用换元法是高中数学中的一种重要解题方法,它常常应用在代数、微积分和函数等领域。

换元法是一种通过引入新的变量或函数来简化原问题的方法,它能够将原问题转化为更容易处理的形式,从而解决原问题。

本文将着重介绍换元法在高中数学解题中的应用,探讨它的作用和优势。

在代数中,换元法常常用于简化复杂的代数式或方程。

当我们要求解一个关于变量的复杂方程时,可以通过引入新的变量或代数式来简化原方程,从而更容易求解。

当我们要对一个复杂的代数式进行因式分解或化简时,也可以运用换元法来转化成更简单的形式,便于进行后续操作。

对于如下代数式:x^4 + 4x^3 + 6x^2 + 4x + 1,我们可以引入新的变量y=x+1,从而将原式转化为y^4的形式,进而进行简化或因式分解操作。

这种方法能够大大简化代数式的求解过程,提高解决问题的效率。

二、换元法在微积分中的应用在微积分中,换元法是一种常用的积分方法,它常常用于求解含有根式、三角函数等特殊形式的积分。

通过引入新的变量或函数,可以将原积分转化为更容易处理的形式,从而利用已知积分的性质或方法求解原积分。

对于积分\int \frac{1}{x\sqrt{x^2+1}} dx,我们可以通过引入新的变量u=x^2+1,从而将原积分转化为\int \frac{1}{2\sqrt{u}} du的形式,利用已知积分\int\frac{1}{\sqrt{u}} du的性质求解原积分。

这种方法在解决含有根式的积分时具有很大的优势,能够简化积分的求解过程,提高解题的效率。

在函数的研究中,换元法也具有重要的应用价值。

当我们要对一个复杂的函数进行求导或积分时,可以通过引入新的变量或函数来简化原函数,从而利用已知函数的性质或方法求解原函数。

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用

换元法在高中数学解题中的应用1. 引言1.1 介绍换元法换元法是高中数学中常用的一种解题方法,通过对变量进行替换或者转化,可以简化问题的处理过程,使得原本复杂的数学题目变得更容易解决。

换元法在数学中的应用非常广泛,不仅可以用来解一元二次方程、化简代数式,还可以用来证明数学定理、解决几何问题以及处理微积分问题等。

在数学中,换元法是一种灵活的工具,能够帮助我们更加深入地理解数学概念,提高问题解决效率。

通过适当选择变量的替换,可以将原本复杂的问题简化为更容易处理的形式,从而更快地得出解答。

换元法在高中数学学习中起着举足轻重的作用,不仅可以帮助我们更好地掌握数学知识,还可以培养我们的逻辑思维能力和解决问题的能力。

要想在高中数学学习中取得更好的成绩,掌握好换元法这一重要的解题工具是至关重要的。

通过不断练习和理解,我们可以更好地运用换元法解决各种数学问题,提高自己的数学解题能力,为未来的学习和工作打下坚实的基础。

1.2 换元法在解高中数学问题中的重要性在高中数学中,换元法可以用于解一元二次方程。

通过适当的变量替换,可以将原问题转化为简单的一次方程问题,从而更容易地求解方程的解。

换元法还可以用于化简复杂的代数式,从而简化计算过程,提高计算效率。

换元法还可以用于证明数学定理。

通过巧妙地引入新的变量,可以简化证明过程,使得证明更加清晰和简洁。

换元法还可以用于解决几何问题和微积分问题,在解决这些问题时发挥着非常重要的作用。

换元法在高中数学解题中的灵活运用可以帮助学生更好地理解和掌握数学知识,提高解题效率和解题能力。

换元法是高中数学学习中不可或缺的重要工具,学生应该认真学习和掌握这一方法,以便更好地应对各种数学问题。

2. 正文2.1 利用换元法解一元二次方程利用换元法解一元二次方程是高中数学学习中非常常见的问题。

一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知数,x为未知数。

当解一元二次方程时,有时候可以通过换元法来简化计算过程。

高一函数换元法知识点总结

高一函数换元法知识点总结

高一函数换元法知识点总结函数是数学中的重要概念,也是高中数学中的重要内容之一。

在数学的学习过程中,我们经常会遇到各种不同的函数,而函数的换元法是其中的一种重要方法。

本文将对高一函数换元法的知识点进行总结,以帮助同学们更好地掌握这一内容。

一、什么是函数换元法函数换元法是一种通过将自变量或因变量替换成新的变量,从而简化函数的形式和计算的方法的数学方法。

通过合适的换元操作,我们可以将原函数转化为更易于处理的形式,从而更好地解决问题。

二、如何进行函数换元函数换元法的基本原则是将函数中的某个符号替换成另一个符号,并确保变换是可逆的。

具体而言,我们可以通过以下几个步骤进行函数的换元操作。

1. 选择合适的换元变量:根据问题中的要求,我们通常选择与原函数中的一项相对应的符号作为换元变量。

同时,我们还需要考虑到这个变量的可独立性和计算的方便性。

2. 建立新的变量与原变量之间的关系式:替换后的变量应该与原来的变量之间有明确的关系。

这个关系式可以通过已知条件或特殊的转换方法来确定。

3. 计算新的函数表达式:根据建立的关系式,将原函数中的自变量或因变量用新的变量表达出来。

在进行计算时,可以结合换元变量的特点和函数的性质,适当地进行化简或变形。

4. 反向换元:如果需要得到原来的变量表达式,可以通过将新变量的表达式代入到建立的关系式中,从而得到原变量与新变量之间的关系。

三、常用的函数换元方法函数换元法在实际运用中,有许多常见的方法和技巧,以下列举几种常用的函数换元法。

1. 线性换元法:当函数的自变量或因变量中含有线性关系时,可以通过选择新的变量,将其线性化,从而简化计算。

2. 幂函数换元法:当函数的自变量或因变量涉及幂函数时,可以通过选取合适的底数和指数,将其转换成简单的形式。

3. 三角函数换元法:当函数涉及三角函数时,可以通过选取适当的三角函数和反三角函数的关系,化简计算。

4. 指数换元法:当函数涉及指数函数时,可以通过选取适当的底数和指数,进行换元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学解题基本方法——换元法
化归与转化的思想在解题中的应用
1.解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的,这一思想方法我们称之为“化归与转化的思想方法”。

2.化归与转化思想的实质是揭示联系,实现转化。

除极简单的数学问题外,每个数学问题的解决都是通过转化为已知的问题实现的。

从这个意义上讲,解决数学问题就是从未知向已知转化的过程。

化归与转化的思想是解决数学问题的根本思想,解题的过程实际上就是一步步转化的过程。

数学中的转化比比皆是,如未知向已知转化,复杂问题向简单问题转化,新知识向旧知识的转化,命题之间的转化,数与形的转化,空间向平面的转化,高维向低维转化,多元向一元转化,高次向低次转化,超越式向代数式的转化,函数与方程的转化等,都是转化思想的体现。

3.转化有等价转化和非等价转化。

等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

4.化归与转化应遵循的基本原则:
(1)熟悉化原则:将陌生的问题转化为熟悉的问题,以利于我们运用熟知的知识、经验和问题来解决。

(2)简单化原则:将复杂的问题化归为简单问题,通过对简单问题的解决,达到解决复杂问题的目的,或获得某种解题的启示和依据。

(3)和谐化原则:化归问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐的形式,或者转化命题,使其推演有利于运用某种数学方法或其方法符合人们的思维规律。

(4)直观化原则:将比较抽象的问题转化为比较直观的问题来解决。

(5)正难则反原则:当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解。

换元法:解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。

换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。

换元法又称辅助元素法、变量代换法。

通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。

或者变为熟悉的形式,把复杂的计算和推证简化。

它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。

换元的方法有:局部换元、三角换元、均值换元等。

局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。

均值换元,如遇到x+y=S形式时,设x

S
2
+t,y=
S
2
-t等等。

我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。

1、方程3
3
1
3
1
=
+
+-
x
x
的解是_______________。

2、不等式2
)2
2(
log
)1
2(
log1
2
2
<
-
-+x
x的解集是_______________。

3、已知数列{}n a 中,n n n n a a a a a -=-=++111,1,则数列通项=n a ___________。

4、等差数列{}n a 中,10010=S ,10100=S ,求110S 。

5、等比数列前12项的和为354,前12项中偶数项与奇数项的和之比为32:27,求公差d 。

6、求x x x x y cos sin cos sin ++=的值域。

7、设实数y x ,满足0122
=-+xy x ,则y x +的取值范围是___________。

8、解不等式152+>+x x
9、已知:0>x ,求证:3211
1-≤++
-+
x
x x
x
10、关于x 的方程0124=+++a a x
x 有实根,求实数a 的取值范围。

11、求函数x x y -+=1的值域。

12、实数y x ,满足545422=+-y xy x 设22y x S +=,求min
max
11S S +的值。

相关文档
最新文档