20届中考优选知识点题型复习讲义 第2讲 代数式及整式的运算(原卷版)
2020年中考数学 第2讲 代数式

( b )3 a
b a3
3
(-2019)0=1
( 1 )1 2 2
3.整式的乘法
(1)单项式与单项式相乘,把它们的系数、同底数幂分别
,对于只在一个单
项式里含有的字母, 单 项 式 与 多 项 式 相 乘 , 就 是 用 单 项 式 去 乘 多 项 式 的 每 一 项 , 再 把 所 得 的
考点七 二次根式的有关概念
1.概念:一般地,我们把形如____a_(_a____0_)___的式子叫做二次根式. 2. 二次根式有意义的条件:被开方数____大__于__等__于__0_. 3.最简二次根式应满足的条件:被开方数中不含有___分__母___.被开方数中不 含能开得尽方的因数或__因__式____ ;分母中不含根号. 4.同类二次根式:几个二次根式化为最简二次根式后,如果被开方数相同,
(1)完全平方公式(a±b)2 =
(2)平方差公式:a2-b2 = _____________.
【温馨提示】(1)(a+b)(a2-ab+b2)=a3+b3 .(2)(a-b)(a2+ab+b2)=a3-b3. (3)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.(4)(a+b)3=a3+3a2b+3ab2+b3. (5)(a-b)3=a3-3a2b+3ab2-b3.
则这几个二次根式叫做同类二次根式.
【温馨提示】判别一个式子是否为二次根式,看所给的式子是否同时具备以下两点: ①带有二次根号;②被开方数不小于0.如根据定义可知 是二次根式. 不是二次根式.
考点八 二次根式的性质
2020年中考数学复习第2讲 代数式及整式的运算(讲练)(解析版)

第一单元数与式第2讲代数式及整式的运算1.理解用字母表示数的意义,会用代数式表示简单问题的数量关系,了解单项式、多项式及整式的相关概念.2.理解整式的加减运算、乘除运算、去括号法则、乘法公式等常用的整式运算法则,能熟练运用于整式的运算.3.了解因式分解的概念,学会用提公因式法和公式法对多项式进行因式分解.4.理解配方法、换元法、待定系数法等重要的数学方法,能灵活用这些方法处理整式.1.(2018秋•吴兴区期末)﹣的系数是()A.﹣2 B.﹣C.D.2【思路点拨】根据单项式的概念即可求出答案.【答案】解:该单项式的系数为,故选:B.【点睛】本题考查单项式,解题的关键是熟练运用单项式的概念,本题属于基础题型.2.(2019•金华)计算a6÷a3,正确的结果是()A.2 B.3a C.a2D.a3【思路点拨】根据同底数幂除法法则可解.【答案】解:由同底数幂除法法则:底数不变,指数相减知,a6÷a3=a6﹣3=a3.故选:D.【点睛】本题是整式除法的基本运算,必须熟练掌握运算法则.本题属于简单题.3.(2018•西湖区一模)某企业今年1月份产值为x万元,2月份比1月份增加了10%,3月份比2月份减少了20%,则3月份的产值是()万元.A.(1+10%)(1﹣20%)x B.(1+10%+20%)xC.(x+10%)(x﹣20%)D.(1+10%﹣20%)x【思路点拨】根据题意可以先列出2月份的产量为(1+10%)x,再根据题意可列三月份的产量.【答案】解:根据题意可得2月份产量为x(1+10%)万元∵3月份比2月份减少了20%∴3月份的产量为(1+10%)(1﹣20%)x故选:A.【点睛】本题考查了列代数式,能根据题意正确列出代数式是本题关键4.(2019•衢州一模)下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab﹣3ab=﹣ab;(3)2ab﹣3ab=6ab;(4)2ab÷3ab=.做对一题得2分,则他共得到()A.2分B.4分C.6分D.8分【思路点拨】这几个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【答案】解:(1)2ab+3ab=5ab,正确;(2)2ab﹣3ab=﹣ab,正确;(3)∵2ab﹣3ab=﹣ab,∴2ab﹣3ab=6ab错误;(4)2ab÷3ab=,正确.3道正确,得到6分,故选:C.【点睛】本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.5.(2019•宁波)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a4【思路点拨】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【答案】解:A、a3与a2不是同类项,故不能合并,故选项A不合题意;B、a3•a2=a5故选项B不合题意;C、(a2)3=a6,故选项C不合题意;D、a6÷a2=a4,故选项D符合题意.故选:D.【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1.【思路点拨】原式利用平方差公式计算即可得到结果.【答案】解:原式=x2﹣1,故答案为:x2﹣1【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.(2019•宁波)分解因式:x2+xy=x(x+y).【思路点拨】直接提取公因式x即可.【答案】解:x2+xy=x(x+y).【点睛】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.一般来说,如果可以提取公因式的要先提取公因式,再看剩下的因式是否还能分解.8.(2019•滨江区一模)先化简,再求值:(2﹣a)(3+a)+(a﹣5)2,其中a=4.【思路点拨】根据多项式乘多项式和完全平方公式可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【答案】解:(2﹣a)(3+a)+(a﹣5)2=6+2a﹣3a﹣a2+a2﹣10a+25=﹣11a+31,当a=4时,原式=﹣11×4+31=﹣44+31=﹣13.【点睛】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.1.整式的概念及整式的加减(2)单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或一个字母也叫单项式.一个单项式中,所有字母的指数的和叫做这个单项式的次数,单项式中的数字因数叫做这个单项式的系数.(2)多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数就是这个多项式的次数,不含字母的项叫做常数项.(3)整式:单项式和多项式统称为整式.(4)同类项以及合并同类项法则:多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.2.整式的乘除(1)幂的运算性质:(1)同底数幂相乘:a m·a n=a m+n(m,n都是整数,a≠0).(2)幂的乘方:(a m)n=a mn(m,n都是整数,a≠0).(3)积的乘方:(ab)n=a n·b n(n是整数,a≠0,b≠0).(4)同底数幂相除:a m÷a n=a m-n(m,n都是整数,a≠0).(2)整式乘法:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.单项式乘多项式:m(a+b)=ma+mb.多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.(3)乘法公式:①平方差公式:(a+b)(a-b)=a2-b2.②完全平方公式:(a±b)2=a2±2ab+b2.(4)整式除法:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.3.因式分解(1)因式分解的概念:把一个多项式化成几个整式的积的形式,叫做因式分解.因式分解与整式的乘法是互逆变形.(2)因式分解的基本方法:①提取公因式法:ma+mb+mc=m(a+b+c).②公式法:运用平方差公式:a2-b2=(a+b)(a-b).运用完全平方公式:a2±2ab+b2=(a±b)2.(3)因式分解的一般步骤:①如果多项式的各项有公因式,那么先提取公因式.②如果各项没有公因式,那么尽可能尝试用公式法来分解;如果项数较多,要分组分解.③分解因式必须分解到不能再分解为止,每个因式的内部不再有括号,且同类项合并完毕,若有相同因式需写成幂的形式.④意题中因式分解要求的范围,如在有理数范围内分解因式,x4-9=(x2+3)(x2-3);在实数范围内分解因式,x4-9=(x2+3)(x+3)(x-3),题目不作说明的,一般是指在有理数范围内分解因式.【考点一整式及其加减运算】例1.(2019•乐清市一模)计算3x2+2x2的结果()A.5 B.5x2C.5x4D.6x2【思路点拨】根据合并同类项法则进行计算即可得解.【答案】解:3x2+2x2,=(3+2)x2,=5x2.故选:B.【点睛】本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.【变式训练】1.(2019•台州)计算2a﹣3a,结果正确的是()A.﹣1 B.1 C.﹣a D.a【思路点拨】根据合并同类项法则合并即可.【答案】解:2a﹣3a=﹣a,故选:C.【点睛】本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.2.(2018•临安区)10名学生的平均成绩是x,如果另外5名学生每人得84分,那么整个组的平均成绩是()分A.B.C.D.【思路点拨】整个组的平均成绩=15名学生的总成绩÷15.【答案】解:先求出这15个人的总成绩10x+5×84=10x+420,再除以15可求得平均值为分.故选:B.【点睛】此题考查了加权平均数的知识,解题的关键是求的15名学生的总成绩.3.(2018秋•黄岩区期末)已知x2+3x+5的值是7,则式子﹣3x2﹣9x+2的值是()A.0 B.﹣2 C.﹣4 D.﹣6【思路点拨】首先根据x2+3x+5的值是7,求出x2+3x的值是多少;然后代入式子﹣3x2﹣9x+2,求出算式的值是多少即可.【答案】解:∵x2+3x+5=7,∴x2+3x=7﹣5=2,∴﹣3x2﹣9x+2=﹣3(x2+3x)+2=﹣3×2+2=﹣6+2=﹣4故选:C.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.4.(2019•富阳区一模)化简:﹣3(x﹣2y)+4(x﹣2y)=x﹣2y.【思路点拨】先去括号,再合并同类项即可.【答案】解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故答案为x﹣2y.【点睛】本题考查了整式的加减,掌握去括号的法则和合并同类项的法则是解题的关键.5.(2017•杭州)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉30﹣千克.(用含t的代数式表示.)【思路点拨】设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程,求出x即可.【答案】解:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据题意,得:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.【点睛】本题主要考查列代数式的能力,解题的关键是理解题意,抓住相等关系列出方程,从而表示出第三天销售香蕉的千克数.【考点二整式的乘除运算】例2.(2018•宁波)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.【思路点拨】首先计算完全平方,再计算单项式乘以多项式,再合并同类项,化简后再把x的值代入即可.【答案】解:原式=x2﹣2x+1+3x﹣x2=x+1,当x=﹣时,原式=﹣+1=.【点睛】此题主要考查了整式的混合运算﹣﹣化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.【变式训练】1.(2019•瑞安市三模)计算x6÷x2的结果是()A.x12 B.x8C.x4D.x3【思路点拨】根据同底数幂的除法法则:底数不变,指数相减进行计算即可.【答案】解:原式=x4,故选:C.【点睛】此题主要考查了同底数幂的除法,关键是掌握计算法则.2.(2018•湖州)计算﹣3a•(2b),正确的结果是()A.﹣6ab B.6ab C.﹣ab D.ab【思路点拨】根据单项式的乘法解答即可.【答案】解:﹣3a•(2b)=﹣6ab,故选:A.【点睛】此题考查单项式的除法,关键是根据法则计算.3.(2018•宁波)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6C.a6÷a2=a3D.(a3)2=a5【思路点拨】根据同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【答案】解:∵a3+a3=2a3,∴选项A符合题意;∵a3•a2=a5,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a3)2=a6,∴选项D不符合题意.故选:A.【点睛】此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,合并同类项的方法,以及幂的乘方与积的乘方的运算方法,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.4.(2019•富阳区一模)化简:﹣3(x﹣2y)+4(x﹣2y)=x﹣2y.【思路点拨】先去括号,再合并同类项即可.【答案】解:原式=﹣3x+6y+4x﹣8y=x﹣2y,故答案为x﹣2y.【点睛】本题考查了整式的加减,掌握去括号的法则和合并同类项的法则是解题的关键.5.(2018•宁波)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b【思路点拨】利用面积的和差分别表示出S1和S2,然后利用整式的混合运算计算它们的差.【答案】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.故选:B.【点睛】本题考查了整式的混合运算:整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.也考查了正方形的性质.【考点三因式分解】例3.(2019•婺城区模拟)分解因式:a3﹣4a2=a2(a﹣4).【思路点拨】直接找出公因式进而提取得出答案.【答案】解:a3﹣4a2=a2(a﹣4).故答案为:a2(a﹣4).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.【变式训练】1.(2019•舟山)分解因式:x2﹣5x=x(x﹣5).【考点】53:因式分解﹣提公因式法.【思路点拨】直接提取公因式x分解因式即可.【答案】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).【点睛】此题考查的是提取公因式分解因式,关键是找出公因式.2.(2019•温州)分解因式:m2+4m+4=(m+2)2.【思路点拨】直接利用完全平方公式分解因式得出答案.【答案】解:原式=(m+2)2.故答案为:(m+2)2.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.3.(2019•杭州)因式分解:1﹣x2=(1﹣x)(1+x).【思路点拨】根据平方差公式可以将题目中的式子进行因式分解.【答案】解:∵1﹣x2=(1﹣x)(1+x),故答案为:(1﹣x)(1+x).【点睛】本题考查因式分解﹣运用公式法,解题的关键是明确平方差公式,会运用平方差公式进行因式分解.4.(2019•鹿城区校级二模)因式分解:a2x2﹣4a2y2=a2(x+2y)(x﹣2y).【思路点拨】原式提取公因式,再利用平方差公式分解即可.【答案】解:原式=a2(x2﹣4y2)=a2(x+2y)(x﹣2y),故答案为:a2(x+2y)(x﹣2y)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.【考点四乘法公式及其应用】例4.(2018•衢州)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【思路点拨】根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.【答案】解:由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+==a2+2ab+b2=(a+b)2.【点睛】本题考查完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.【变式训练】1.(2019•柯城区校级一模)先化简,再求值:(x﹣1)2﹣x(x﹣4)+(x﹣2)(x+2),其中x=1.【思路点拨】根据完全平方公式、单项式乘多项式、平方差公式可以化简题目中的式子,然后将x=1代入化简后的式子即可解答本题.【答案】解:(x﹣1)2﹣x(x﹣4)+(x﹣2)(x+2)=x2﹣2x+1﹣x2+4x+x2﹣4=x2+2x﹣3,当x=1时,原式=12+2×1﹣3=0.【点睛】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式化简求值的方法.2.(2019•南浔区二模)先化简,再求值:(a+b)2﹣(a+b)(a﹣b),其中a=﹣2,b =.【思路点拨】原式利用提取公因式,化简得到结果,把a与b的值代入计算即可求出值.【答案】解:原式=(a+b)(a+b﹣a+b)=2b(a+b)=2ab+2b2,当a=﹣2,b =时,原式=﹣2+=﹣1.【点睛】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.11。
第2讲 代数式及整式的运算(讲练)(原卷版)

备战2021年中考数学总复习一轮讲练测第一单元数与式第2讲代数式及整式的运算1.理解用字母表示数的意义,会用代数式表示简单问题的数量关系,了解单项式、多项式及整式的相关概念.2.理解整式的加减运算、乘除运算、去括号法则、乘法公式等常用的整式运算法则,能熟练运用于整式的运算.3.了解因式分解的概念,学会用提公因式法和公式法对多项式进行因式分解.4.理解配方法、换元法、待定系数法等重要的数学方法,能灵活用这些方法处理整式.1.(2019•怀化)单项式﹣5ab的系数是()A.5 B.﹣5 C.2 D.﹣2【思路点拨】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数,单项式中,所有字母的指数和叫做这个单项式的次数,可得答案.【答案】解:单项式﹣5ab的系数是﹣5,故选:B.【点睛】本题考查单项式,注意单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.2.(2020•宁波模拟)下列单项式,是2次单项式的是()A.xy B.2x C.x2y D.x2y2【思路点拨】一个单项式中所有字母的指数的和叫做单项式的次数,据此求解可得.【答案】解:A、xy的次数为2,是2次单项式;B、2x的次数为1,不是2次单项式;C、x2y的次数为3,不是2次单项式;D.x2y2的次数是4,不是2次单项式;故选:A.【点睛】本题主要考查单项式,解题的关键是掌握单项式次数的概念:一个单项式中所有字母的指数的和叫做单项式的次数.3.(2020•河北)墨迹覆盖了等式“x3x=x2(x≠0)”中的运算符号,则覆盖的是()A.+ B.﹣C.×D.÷【思路点拨】直接利用同底数幂的除法运算法则计算得出答案.【答案】解:∵x3x=x2(x≠0),∴覆盖的是:÷.故选:D.【点睛】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.4.(2020•滨城区二模)下列从左到右的变形是因式分解的是()A.ma+mb﹣c=m(a+b)﹣cB.﹣a2+3ab﹣a=﹣a(a+3b﹣1)C.(a﹣b)(a2+ab+b2)=a3﹣b3D.4x2﹣25y2=(2x+5y)(2x﹣5y)【思路点拨】因式分解是指将一个多项式写成几个整式的乘积的形式,本题按照因式分解的定义及其分解方法,逐个选项分析即可.【答案】解:A、没将一个多项式化成几个整式的乘积的形式,不是因式分解,故本选项不符合题意;B、提公因式变号错误,不是正确的因式分解,故本选项不符合题意;C、不是因式分解,是整式的乘法,故本选项不符合题意;D、符合因式分解定义,是因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义及其分解方法,明白因式分解的定义及其分解方法,是解题的关键.5.(2020•长兴县一模)分解因式a3﹣4a的结果正确的是()A.a(a2﹣4)B.a(a﹣2)(a+2)C.a(a﹣2)2D.a(a+2)2【思路点拨】首先提取公因式a,再利用平方差公式分解因式得出答案.【答案】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故选:B.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.6.(2020•石家庄二模)数学课上,老师让甲、乙、丙、丁四位同学各做了一道数学题,甲:(3a2)3=9a6;乙:a12÷a3=a9;丙:(a+b)(﹣a﹣b)=a2﹣b2;丁:(a﹣2)2=a2﹣4.其中做对的同学是()A.甲B.乙C.丙D.丁【思路点拨】根据甲乙丙丁中的式子,可以计算出正确的结果,即可解答本题.【答案】解:(3a2)3=27a6,故甲做的错误;a12÷a3=a9,故乙做的正确;(a+b)(﹣a﹣b)=﹣a2﹣2ab﹣b2,故丙做的错误;(a﹣2)2=a2﹣4a+4,故丁做的错误;故选:B.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.7.(2020•青海)下面是某同学在一次测试中的计算:①3m2n﹣5mn2=﹣2mn;②2a3b•(﹣2a2b)=﹣4a6b;③(a3)2=a5;④(﹣a3)÷(﹣a)=a2.其中运算正确的个数为()A.4个B.3个C.2个D.1个【思路点拨】根据合并同类项法则、单项式乘单项式的运算法则、幂的乘方法则、同底数幂的除法法则计算,判断即可.【答案】解:①3m2n与5mn2不是同类项,不能合并,计算错误;②2a3b•(﹣2a2b)=﹣4a5b2,计算错误;③(a3)2=a3×2=a6,计算错误;④(﹣a3)÷(﹣a)=(﹣a)3﹣1=a2,计算正确;故选:D.【点睛】本题考查的是单项式乘单项式、合并同类项、幂的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.8.(2020•郴州)如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释下列哪个等式()A.x2﹣2x+1=(x﹣1)2B.x2﹣1=(x+1)(x﹣1)C.x2+2x+1=(x+1)2D.x2﹣x=x(x﹣1)【思路点拨】根据图形可以用代数式表示出图1和图2的面积,由此得出等量关系即可.【答案】解:由图可知,图1的面积为:x2﹣12,图2的面积为:(x+1)(x﹣1),所以x2﹣1=(x+1)(x﹣1).故选:B.【点睛】本题考查平方差公式的几何背景,解答本题的关键是明确题意,列出相应的代数式.9.(2019•河北)小明总结了以下结论:①a(b+c)=ab+ac;②a(b﹣c)=ab﹣ac;③(b﹣c)÷a=b÷a﹣c÷a(a≠0);④a÷(b+c)=a÷b+a÷c(a≠0)其中一定成立的个数是()A.1 B.2 C.3 D.4【思路点拨】直接利用单项式乘以多项式以及多项式除以单项式运算法则计算得出答案.【答案】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.【点睛】此题主要考查了单项式乘以多项式以及多项式除以单项式运算,正确掌握相关运算法则是解题关键.10.(2020•绵阳)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=0或8.【思路点拨】直接利用多项式的次数确定方法得出答案.【答案】解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.【点睛】此题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.11.(2018•达州)已知a m=3,a n=2,则a2m﹣n的值为 4.5.【思路点拨】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m﹣n的值为多少即可.【答案】解:∵a m=3,∴a2m=32=9,∴a2m﹣n===4.5.故答案为:4.5.【点睛】此题主要考查了同底数幂的除法法则,以及幂的乘方与积的乘方,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.12.(2019•翔安区模拟)如果a2﹣b2=8,且a+b=4,那么a﹣b的值是2.【思路点拨】根据a+b)(a﹣b)=a2﹣b2,可得(a+b)(a﹣b)=8,再代入a+b=4可得答案.【答案】解:∵a2﹣b2=8,∴(a+b)(a﹣b)=8,∵a+b=4,∴a﹣b=2,故答案为:2.【点睛】此题主要考查了平方差,关键是掌握a+b)(a﹣b)=a2﹣b2.13.(2020•临沂)若a+b=1,则a2﹣b2+2b﹣2=﹣1.【思路点拨】由于a+b=1,将a2﹣b2+2b﹣2变形为含有a+b的形式,整体代入计算即可求解.【答案】解:∵a+b=1,∴a2﹣b2+2b﹣2=(a+b)(a﹣b)+2b﹣2=a﹣b+2b﹣2=a+b﹣2=1﹣2=﹣1.故答案为:﹣1.【点睛】考查了平方差公式,注意整体思想的应用.14.(2020•硚口区模拟)计算:2a2•a4﹣6a9÷3a3+(﹣2a3)2.【思路点拨】根据积的乘方、同底数幂的乘除法可以解答本题.【答案】解:2a2•a4﹣6a9÷3a3+(﹣2a3)2=2a6﹣2a6+4a6=4a6.【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.15.(2020•蒙山县模拟)先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2019,y=2020.【思路点拨】原式利用平方差公式,多项式除以单项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【答案】解:原式=x2﹣4y2+5y2﹣2xy=x2﹣2xy+y2,当x=2019,y=2020时,原式=(x﹣y)2=(2019﹣2020)2=(﹣1)2=1.【点睛】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.1.整式的概念及整式的加减(2)单项式:由或相乘组成的代数式叫做单项式,单独一个数或一个字母也叫单项式.一个单项式中,所有字母的指数的和叫做这个单项式的,单项式中的数字因数叫做这个单项式的.(2)多项式:由几个组成的代数式叫做多项式,多项式里次数最高的项的次数就是这个多项式的,不含字母的项叫做.(3)整式:.(4)同类项以及合并同类项法则:多项式中,所含相同,并且也相同的项,叫做同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.2.整式的乘除(1)幂的运算性质:(1)同底数幂相乘:a m·a n=(m,n都是整数,a≠0).(2)幂的乘方:(a m)n=(m,n都是整数,a≠0).(3)积的乘方:(ab)n=(n是整数,a≠0,b≠0).(4)同底数幂相除:a m÷a n=(m,n都是整数,a≠0).(2)整式乘法:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.单项式乘多项式:m(a+b)=.多项式乘多项式:(a+b)(c+d)=.(3)乘法公式:①平方差公式:(a+b)(a-b)=.②完全平方公式:(a±b)2=.(4)整式除法:单项式相除,把系数、同底数幂分别,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式,先把这个多项式的除以这个单项式,再把所得的商相加.3.因式分解(1)因式分解的概念:把一个多项式化成几个的形式,叫做因式分解.因式分解与是互逆变形.(2)因式分解的基本方法:①提取公因式法:ma+mb+mc=.②公式法:运用平方差公式:a2-b2=.运用完全平方公式:a2±2ab+b2=.(3)因式分解的一般步骤:①如果多项式的各项有公因式,那么先提取公因式.②如果各项没有公因式,那么尽可能尝试用公式法来分解;如果项数较多,要分组分解.③分解因式必须分解到不能再分解为止,每个因式的内部不再有括号,且同类项合并完毕,若有相同因式需写成幂的形式.④意题中因式分解要求的范围,如在有理数范围内分解因式,x4-9=(x2+3)(x2-3);在实数范围内分解因式,x4-9=(x2+3)(x+3)(x-3),题目不作说明的,一般是指在有理数范围内分解因式.【考点一整式及其加减运算】例1.(2019•广西一模)下列各式中运算正确的是()A.4m﹣m=3 B.a2b﹣ab2=0C.2a3﹣3a3=﹣a3 D.xy﹣2xy=3xy【变式训练】1.(2020•义乌市模拟)计算3a2﹣2a2正确的是()A.1 B.a C.a2D.﹣a2 2.(2020•宁波模拟)小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1 B.﹣3a2﹣5a+6 C.a2+a﹣4 D.﹣3a2+a﹣4 3.(2020•隆化县二模)数学课上,老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”.甲、乙、丙、丁四位同学各有一张多项式卡片,下面是甲、乙、丙、丁四位同学的对话:请根据对话解答下列问题:(1)判断甲、乙、丙三位同学的多项式是否为“友好多项式”,并说明理由.(2)丁的多项式是什么?(请直接写出所有答案).4.(2019•慈溪市模拟)把四张形状大小完全相同的小长方形卡片(如图①),分两种不同形式不重叠的放在一个底面长为m,宽为n的长方形盒子底部(如图②、图③),盒子底面未被卡片覆盖的部分用阴影表示,设图②中阴影部分图形的周长为l1,图③中两个阴影部分图形的周长和为l2,若,则m,n满足()A.m=n B.m=n C.m=n D.m=n【考点二整式的乘除运算】例2.(2020•柯桥区模拟)下面是一位同学做的四道题①(a+b)2=a2+b2,②(2a2)2=﹣4a4,③a5÷a3=a2,④a3•a4=a12.其中做对的一道题的序号是()A.①B.②C.③D.④【变式训练】1.(2020•启东市三模)化简(﹣a2)•a5所得的结果是()A.a7B.﹣a7C.a10D.﹣a10 2.(2020•杭州)(1+y)(1﹣y)=()A.1+y2B.﹣1﹣y2C.1﹣y2D.﹣1+y2 3.(2019•邵阳)以下计算正确的是()A.(﹣2ab2)3=8a3b6B.3ab+2b=5abC.(﹣x2)•(﹣2x)3=﹣8x5D.2m(mn2﹣3m2)=2m2n2﹣6m34.(2020•黄石模拟)若a+b=1,则a2﹣b2+2b的值为()A.4 B.3 C.1 D.0 5.(2019•滨海县二模)已知a m=3,a n=2,则a3m﹣2n=.6.(2020•宁波模拟)已知实数x,y满足x﹣y=4,xy=1,则x2+y2=.7.(2020•沙河市模拟)已知A=x2﹣mx+2,B=nx2+2x﹣1,且化简2A﹣B的结果与x无关.(1)求m、n的值;(2)求式子﹣3(m2n﹣2mn2)﹣[m2n+2(mn2﹣2m2n)﹣5mn2]的值.【考点三因式分解】例3.(1)(2020•凤山县一模)分解因式:2a3b﹣4a2b2+2ab3.(2)(2020•青州市一模)因式分解:(x﹣y)2+6(y﹣x)+9=.【变式训练】1.(2020•河北)对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解2.(2020•郓城县模拟)把多项式x2+ax+b分解因式,得(x+1)(x﹣3),则a,b的值分别是()A.a=2,b=3 B.a=﹣2,b=﹣3 C.a=﹣2,b=3 D.a=2,b=﹣3 3.(2020•霍邱县一模)因式分解m3﹣4m=.4.(2020•黄石模拟)在实数范围内分解因式:x4﹣9=.5.(2019•江北区模拟)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【考点四乘法公式及其应用】例4.(2020•邯山区一模)数学活动课上,张老师用图①中的1张边长为a的正方形A、1张边长为b的正方形B和2张宽和长分别为a与b的长方形C纸片,拼成了如图②中的大正方形.观察图形并解答下列问题.(1)由图①和图②可以得到的等式为(用含a,b的代数式表示);并验证你得到的等式;(2)嘉琪用这三种纸片拼出一个面积为(2a+b)(a+2b)的大长方形,求需要A、B、C三种纸片各多少张;(3)如图③,已知点C为线段AB上的动点,分别以AC、BC为边在AB的两侧作正方形ACDE和正方形BCFG.若AB=6,且两正方形的面积之和S1+S2=20,利用(1)中得到的结论求图中阴影部分的面积.【变式训练】1.(2020•浦口区模拟)计算(2a﹣b+1)(2a﹣1﹣b).2.(2018•河北模拟)请你参考黑板中老师的讲解,用乘法公式简便计算;(1)6992(2)20192﹣2017×20213.(2020•洛阳二模)先化简,再求值:(x+2y)2+(x+2y)(x﹣2y)﹣2x(x+y),其中x、y满足方程组.4.(2020•雨花区校级二模)先化简,再求值:[(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2]÷y,其中x=﹣1,y=﹣2.5.(2019•芜湖三模)观察以下等式:第1个等式:(x﹣1)(x+1)=x2﹣1;第2个等式:(x﹣1)(x2+x+1)=x3﹣1第3个等式:(x﹣1)(x3+x2+x+1)=x4﹣1:…按照以上规律,解决下列问题:(1)写出第4个等式:(x﹣1)(x4+x3+x2+x+1)=;(2)写出你猜想的第n个等式:(x﹣1)(x n+x n﹣1+…+x+1)=;(3)请利用上述规律,确定22019+22018+…+2+1的个位数字是多少?。
【最新】2020中考数学考点举一反三讲练第2讲 代数式及整式的运算 (学生版)

第2讲 代数式及整式的运算一、考点知识梳理【考点1 代数式定义及列代数式】1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式. 2.代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.【考点2 幂的运算】1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. a m •a n =a m +n (m ,n 是正整数)2.幂的乘方法则:底数不变,指数相乘. (a m )n =a mn (m ,n 是正整数)3.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. (ab )n =a n b n (n 是正整数)4.同底数幂的除法法则:底数不变,指数相减. a m ÷a n =a m ﹣n (a ≠0,m ,n 是正整数,m >n ) 【考点3 合并同类项】所含字母相同并且相同字母的指数也分别相同的项叫做同类项.所有的常数项都是同类项. 把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 【考点4 整式的乘法】单项式乘以多项式m(a +b)=am +bm多项式乘以多项式(a +b)(m +n)=am +an +bm +bn 二、考点分析【考点1 代数式定义及列代数式】【解题技巧】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)列代数式的关键是正确分析数量关系,掌握文字语言(和、差、积、商、乘以、除以等)在数学语言中的含义;(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.【例1】(2019.海南中考)当m =﹣1时,代数式2m +3的值是( ) A .﹣1B .0C .1D .2【举一反三1-1】(2019.云南中考)按一定规律排列的单项式:x 3,﹣x 5,x 7,﹣x 9,x 11,……,第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1 B .(﹣1)n x 2n ﹣1 C .(﹣1)n ﹣1x 2n +1D .(﹣1)n x 2n +1【举一反三1-2】(2019•台湾)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a ,矩形面积为b .若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?( )A .4a +2bB .4a +4bC .8a +6bD .8a +12b【举一反三1-3】(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( )A .10﹣xB .10﹣yC .10﹣x +yD .10﹣x ﹣y【考点2 幂的运算】【解题技巧】1.在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a 2b 2)3与(a 2b 2)4,(x ﹣y )2与(x ﹣y )3等;②a 可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.2.概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.3.注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【例2】(2019•广东中考)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【举一反三2-1】(2019•甘肃中考)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【举一反三2-2】(2019•海南中考)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a4【举一反三2-3】(2019•江苏南京中考)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【举一反三2-4】(2019•山东济南中考模拟)在平面直角坐标系中,任意两点A(a,b),B(c,d),定义一种运算:A*B=[(3﹣c),],若A(9,﹣1),且A*B=(12,﹣2),则点B的坐标是_______.【考点3 合并同类项】【解题技巧】合并同类项时要注意以下三点:(1)要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;(2)明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;(3)“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.(4)只要不再有同类项,就是结果(可能是单项式,也可能是多项式).【例3】(2019•吉林长春中考)先化简,再求值:(2a+1)2﹣4a(a﹣1),其中a=.【举一反三3-1】(2019•山东威海中考)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【举一反三3-2】(2019•辽宁沈阳中考)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2【举一反三3-3】(2019•河北石家庄中考模拟)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.【举一反三3-4】(2019•山东青岛中考模拟)化简求值:已知整式2x 2+ax ﹣y +6与整式2bx 2﹣3x +5y ﹣1的差不含x 和x 2项,试求4(a 2+2b 3﹣a 2b )+3a 2﹣2(4b 3+2a 2b )的值. 【考点4 整式的乘法】【解题技巧】多项式的乘法要注意多项式中每一项不要漏乘,还要注意运算符号,遵循去括号的法则。
2020届中考数学复习课件:第2讲 代数式、整式 (共17张PPT)

D.(m+n)(m-n)=m2-n2
6.(2017·广东,15)已知4a+3b=1,则整式8a+6b-3的值为 -1 .
7.(2019·广东,14)已知x=2y+3,则代数式4x-8y+9的值是 21 .
第一章
第2讲 代数式、整式 课前小练 考情分析
知识梳理
例题精讲
随堂练习
-16-
8.当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为 6 .
第一章
第2讲 代数式、整式
课前小练 考情分析 知识梳理 例题精讲 随堂练习
-5-
2.同类项:所含字母相同,相同字母的指数也分别相同的项叫同类 项.
合并同类项:把同类项的系数相加,字母和字母的指数不变.非同 类项不能合并.
第一章
第2讲 代数式、整式
课前小练 考情分析 知识梳理 例题精讲 随堂练习
-6-
2
9.某计算程序编辑如图所示,当输入x= 12或- 3 时,输出的y=3.
第一章
第2讲 代数式、整式 课前小练 考情分析
知识梳理
例题精讲
随堂练习
-ቤተ መጻሕፍቲ ባይዱ7-
10. (2019·广东,16)如图1所示的图形是一个轴对称图形,且每个角 都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣, 相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的 总长度是 a+8b (结果用含a,b代数式表示).
第2讲 代数式、整式
第一章
第2讲 代数式、整式
课前小练 考情分析 知识梳理 例题精讲 随堂练习
-2-
1.计算:a2+3a2= 4a2 .
【人教版】2020年中考数学总复习 第2讲 整式与因式分解 新版 新人教版

3.整式的加减运算
(1)合并同类项法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
(2)去括号法则:若括号外是“+”,则括号里的各项都不变号;若括号外是“-”,则括号里的各项都变号.
(3)整式的加减运算法则:先去括号,再合并同类项.
失分警示:去括号时,如果括号外面是符号,一定要变号,且与括号内每一项相乘,不要有漏项.
例:a-b=3,则3b-3a=-9.
2.整式(单项式、多项式)
(1)单项式:表示数字与字母积的代数式,单独的一个数或一个字母也叫单项式.其中的数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数.
(2)多项式:几个单项式的和.多项式中的每一项叫做多项式的项,次数最高的项的次数叫做多项式的次数.
(2)在解决幂的运算时,有时需要先化成同底数.例:2m·4m=23m.
5.整式的乘除运算
(1)单项式×单项式:①系数和同底数幂分别相乘;②只有一个字母的照抄.
(2)单项式×多项式:m(a+b)=ma+mb.
(3)多项式×多项式: (m+n)(a+b)=ma+mb+na+nb.
(4)单项式÷单项式:将系数、同底数幂分别相除.
例:-2(3a-2b-1)=-6a+4b+2.
4.幂运算法则
(1)同底数幂的乘法:am·an=am +n;
(2)幂的乘方:(am)n=amn;
(3)积的乘方:(ab)n=an·bn;
(4)同底数幂的除法:am÷an=am-n(a≠0).
其中m,n都在整数
(1)计算时,注意观察,善于运用 它们的逆运算解决问题.例:已知2m+n=2,则3×2m×2n=6.
中考复习讲义(2)代数式和代数式的值整式的加减乘除运算及练习

中考复习讲义(二)代数式和代数式的值整式的加减乘除运算班级姓名一、考点审视1、列代数式要注意两点:一是要正确理解问题中的数量关系,特别是弄清问题中的和、差、积、商与大、小、多、少、倍、几分之几等词语的意义;二是要弄清问题中的运算顺序,特别是要掌握先乘除后加减的原则,以及代数式的结构特点;2、注意理解本节中的概念:整式、分式、单项式、多项式,以及单项式的次数、系数和多项式的项、次数、系数,同类项;3、整式的运算注意(1)运算顺序(2)运算律的应用(3)去括号和合并同类项法则;4、多项式的降幂或升幂排列;5、利用正整数幂的运算性质进行计算;6、乘法公式要熟记,注意其几何背景。
二、重点细说1、代数式的分类(1)代数式与代数式的值的概念(2)列代数式2、单项式和多项式的概念(1)单项式:(2)单项式的系数和次数:(3)多项式:(4)多项式的项和次数:(5)同类项和常数项:3、去括号和添括号法则(1)去括号法则:(2)添括号法则:4、合并同类项法则:5、整式的加减法:6、整式的乘法(1)同底数幂的乘法:(2)幂的乘方:(3)积的乘方:(4)单项式的乘法:(5)单项式与多项式相乘:(6)多项式与多项式相乘:(7)乘法公式及几何背景:7、整式的除法(1)同底数幂的除法:(2)单项式除以单项式:(3)多项式除以单项式:8、零指数幂与负整数指数幂(1)任何不等于0的数的0次幂都等于1。
(0的0次幂无意义)(2)任何不等于0的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。
(特别地,一个不等于零的数的-1次幂,就等于这个数的倒数)(二)代数式和代数式的值整式的加减乘除运算班级 姓名1、下列算式是一次式的是( )(A )8 (B )42s t + (C )12ah (D )5x 2、计算:472632211()()393a b a b ab -÷-= ; 3、先化简,再求值:2()()()2x y x y x y x ⎡⎤-++-÷⎣⎦,其中3, 1.5x y ==-;4、已知2225,7x y x y +=+=,且x y >,则x y -的值为多少?5、观察下列算式:123477,749,7343,72401,==== ,由此可判断20097的末位数字是 ;6、观察下列各式:22334422,33,44112233⨯=+⨯=+⨯=+,想一想,什么样的两数之积等于这两数之和?设n 表示正整数,请用关于n 的等式表示这个规律;7、阅读下面代数领域的滑稽节目,你觉得结果2=3荒谬吗?能找出它的错误吗? 第一幕:等式410915-=- 第二幕:等式两边同时加上164,即114106915644-+=-+ 第三幕:22225555222()323()2222-⨯⨯+=-⨯⨯+,即2255(2)(3)22-=- 第四幕:两边开平方,得552322-=- 第五幕:两边加上52,得到等式2=38、2是( ) (A )分数 (B )不是分数 (C )有理数 (D )实数 9、如果代数式2425y y -+的值为7,那么代数式221y y -+的值是( )(A )2 (B )3 (C )-2 (D )410、先化简,再求值:(1)2()()()2()4x y x y x y y x y y ⎡⎤+---+-÷⎣⎦,其中11,22x y ==-(2)2()()()y x y x y x y x +++--,其中12,2x y =-=11、若6,9x y ==,且0xy <,则x y += 。
第二讲、代数式—整式与因式分解复习讲义

一、知识点归纳 ★整式部分 (1)代数式的分类⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧无理式分式多项式单项式整式有理式代数式 (2)概念:①代数式: 用______把数与表示数的字母连接而成的式子叫___________.注:单独一个_____或一个_____也是代数式.②代数式的值: 用_____代替代数式的字母计算后所得的_____,叫代数式的________. ③整式: 分母中不含有________的_______式叫整式. ④同类项:条件是 _______________,_____________________.⑤单项式:是数与字母的______.注:★不含_____运算,★★单独的一个_____或____也是单项式.⑥多项式:是几个单项式的______. (3)运算:整式的加减:(实质是去括号,合并同类项)①合并同类项:把同类项的系数相加,所得结果作为系数,字母及字母的指数不变; ②去括号法则:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里面各项都不变;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都变号.③添括号法则:括号前面是“+”号,括到括号里的各项都不变;括号前面是“-”号,括到括号里的各项都变号. 整式的乘除:①单项式相乘:把它们的系数、相同字母分别相乘;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:就是根据分配律用单项式乘以多项式的每一项,在把所得的积相加.mc mb ma c b a m ++=++)(.③多项式与多项式相乘:方法★bn bm an am n m b a +++=++))((方法★★乘法公式(用于多项式乘法的简便运算) 平方差公式:__________))((=-+b a b a ;完全平方公式:___________)(2=+b a ;___________)(2=-b a .④单项式相除:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的因式.⑤多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加. ⑥幂的运算性质(m 、n 为正整数)____=⋅n m a a ; ____=÷n m a a (0≠a ); _____)(=n m a ;____)(=n ab .10=a )0(≠a ,)0(1≠=-a aa n n . ★分解因式部分:(1)概念:把一个多项式化成几个整式的积的形式,这种式子变形叫做把这个多项式因式分解. (2)常用分解因式方法: ①提取公因式法:_____________=++mc mb ma .其分解步骤为:★确定多项式的公因式:公因式=各项系数的最大公约数与相同字母的最低次幂的积;★★将多项式除以它的公因式从而得到多项式的另一个因式. ②运用公式法:__________22=-b a ;__________222=+±b ab a .注意:★如果多项式中各项含有公因式,应该先提取公因式,再考虑运用公式法;★★公式中的字母,即可以表示一个数,也可以表示一个单项式或者一个多项式. ③分组分解法.多项式四项及以上的考虑用这种方法.(3)分解因式的一般步骤:一提二套三分组,二次三项想十字. 注:必须进行到每一个多项式因式都不能再分解为止. (4)整式乘法与分解因式的区别和联系:互为逆变形 .多项式整式的积因式分解方法 1. 提取公因式法:例:将2x 3n -20x 2n y 3+50x n y 6分解因式. 解:原式=2x n (x 2n -10x n y 3+25y 6) =2x n (x n -5y 3)2 2. 公式法:a 2-b 2=(a -b )(a +b ) a 2±2ab +b 2=(a ±b )2 a 3+b 3=(a +b )(a 2-ab +b )2 a 3-b 3=(a -b )(a 2+ab +b 2)例:64x 6-y 12解:原式=(8x 3+y 6)(8x 3-y 6)=(2x +y 2)(4x 2-2xy 2+y 4)(2x -y 2)(4x 2+2xy 2+y 4) 3. 分组分解法:例:(am +bn )2+(an -bm )2+c 2m 2+c 2n 2解:原式=a 2m 2+b 2n 2+2abmn +a 2n 2+b 2m 2-2abmn +c 2m 2+c 2n 2=a 2m 2+b 2n 2+a 2n 2+b 2m 2+c 2(m 2+n 2) =(m 2+n 2)(a 2+b 2+c 2) 4.十字相乘法:例:12x 2+10xy -12x +5y -9 解:原式=12x 2+(10y -12)x +5y -9 2x 16x 5y -9∴ 原式=(2x +1)(6x +5y -9) 5.配方法:例:将x 4+y 4+z 4-2x 2y 2-2x 2z 2-2y 2z 2分解因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2讲 代数式及整式的运算一、考点知识梳理【考点1 代数式定义及列代数式】1.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式. 2.代数式的值:用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.【考点2 幂的运算】1.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. a m •a n =a m +n (m ,n 是正整数)2.幂的乘方法则:底数不变,指数相乘. (a m )n =a mn (m ,n 是正整数)3.积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘. (ab )n =a n b n (n 是正整数)4.同底数幂的除法法则:底数不变,指数相减. a m ÷a n =a m ﹣n (a ≠0,m ,n 是正整数,m >n ) 【考点3 合并同类项】所含字母相同并且相同字母的指数也分别相同的项叫做同类项.所有的常数项都是同类项. 把多项式中同类项合成一项,叫做合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变. 【考点4 整式的乘法】单项式乘以多项式m(a +b)=am +bm多项式乘以多项式(a +b)(m +n)=am +an +bm +bn 二、考点分析【考点1 代数式定义及列代数式】【解题技巧】(1)在建立数学模型解决问题时,常需先把问题中的一些数量关系用代数式表示出来,也就是列出代数式;(2)列代数式的关键是正确分析数量关系,掌握文字语言(和、差、积、商、乘以、除以等)在数学语言中的含义;(3)注意书写规则:a×b 通常写作a·b 或ab ;1÷a 通常写作1a;数字通常写在字母前面,如a×3通常写作3a ;带分数一般写成假分数,如115a 通常写作65a.【例1】(2019.海南中考)当m =﹣1时,代数式2m +3的值是( ) A .﹣1B .0C .1D .2【举一反三1-1】(2019.云南中考)按一定规律排列的单项式:x 3,﹣x 5,x 7,﹣x 9,x 11,……,第n 个单项式是( ) A .(﹣1)n ﹣1x 2n ﹣1 B .(﹣1)n x 2n ﹣1 C .(﹣1)n ﹣1x 2n +1D .(﹣1)n x 2n +1【举一反三1-2】(2019•台湾)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a ,矩形面积为b .若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?( )A .4a +2bB .4a +4bC .8a +6bD .8a +12b【举一反三1-3】(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共为10份意大利面,x 杯饮料,y 份沙拉,则他们点了几份A 餐?( )A .10﹣xB .10﹣yC .10﹣x +yD .10﹣x ﹣y【考点2 幂的运算】【解题技巧】1.在应用同底数幂的乘法法则时,应注意:①底数必须相同,如23与25,(a 2b 2)3与(a 2b 2)4,(x ﹣y )2与(x ﹣y )3等;②a 可以是单项式,也可以是多项式;③按照运算性质,只有相乘时才是底数不变,指数相加.2.概括整合:同底数幂的乘法,是学习整式乘除运算的基础,是学好整式运算的关键.在运用时要抓住“同底数”这一关键点,同时注意,有的底数可能并不相同,这时可以适当变形为同底数幂.3.注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.【例2】(2019•广东中考)下列计算正确的是()A.b6+b3=b2B.b3•b3=b9C.a2+a2=2a2D.(a3)3=a6【举一反三2-1】(2019•甘肃中考)计算(﹣2a)2•a4的结果是()A.﹣4a6B.4a6C.﹣2a6D.﹣4a8【举一反三2-2】(2019•海南中考)下列运算正确的是()A.a•a2=a3B.a6÷a2=a3C.2a2﹣a2=2D.(3a2)2=6a4【举一反三2-3】(2019•江苏南京中考)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【举一反三2-4】(2019•山东济南中考模拟)在平面直角坐标系中,任意两点A(a,b),B(c,d),定义一种运算:A*B=[(3﹣c),],若A(9,﹣1),且A*B=(12,﹣2),则点B的坐标是_______.【考点3 合并同类项】【解题技巧】合并同类项时要注意以下三点:(1)要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;(2)明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;(3)“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.(4)只要不再有同类项,就是结果(可能是单项式,也可能是多项式).【例3】(2019•吉林长春中考)先化简,再求值:(2a+1)2﹣4a(a﹣1),其中a=.【举一反三3-1】(2019•山东威海中考)下列运算正确的是()A.(a2)3=a5B.3a2+a=3a3C.a5÷a2=a3(a≠0)D.a(a+1)=a2+1【举一反三3-2】(2019•辽宁沈阳中考)下列运算正确的是()A.2m3+3m2=5m5B.m3÷m2=mC.m•(m2)3=m6D.(m﹣n)(n﹣m)=n2﹣m2【举一反三3-3】(2019•河北石家庄中考模拟)先化简,再求值:(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.【举一反三3-4】(2019•山东青岛中考模拟)化简求值:已知整式2x 2+ax ﹣y +6与整式2bx 2﹣3x +5y ﹣1的差不含x 和x 2项,试求4(a 2+2b 3﹣a 2b )+3a 2﹣2(4b 3+2a 2b )的值. 【考点4 整式的乘法】【解题技巧】多项式的乘法要注意多项式中每一项不要漏乘,还要注意运算符号,遵循去括号的法则。
【例4】(2019•河北邯郸中考模拟)阅读:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值.解“设另一个因式为x +n ,得x 2﹣4x +m =(x +3)(x +n )则x 2﹣4x +m =x 2+(n +3)x +3n ∴解得∴另一个因式为x ﹣7,m 的值为﹣21问题:仿照上述方法解答下列问题:(1)已知二次三项式2x 2+3x ﹣k 有一个因式是2x ﹣5,求另一个因式及k 的值. (2)已知2x 2﹣13x +p 有一个因式x ﹣3,则P = .【举一反三4-1】(2019•辽宁大连中考模拟)计算2x (3x 2+1),正确的结果是( ) A .5x 3+2x B .6x 3+1 C .6x 3+2x D .6x 2+2x【举一反三4-2】(2016 河北中考)若mn =m +3,则2mn +3m -5nm +10=_____.【举一反三4-3】(2019•台湾中考)计算(2x ﹣3)(3x +4)的结果,与下列哪一个式子相同?( ) A .﹣7x +4B .﹣7x ﹣12C .6x 2﹣12D .6x 2﹣x ﹣12【举一反三4-4】(2019•辽宁葫芦岛中考模拟)已知y = 31x – 1,那么31x 2 – 2xy + 3y 2 – 2的值是 . 三、【达标测试】 一.选择题1.(2019 河北石家庄中考模拟)如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x ,淇淇猜中的结果应为y ,则y =( )A .2B .3C .6D .x +3 2.(2019 山东青岛中考模拟)若x =1,则|x -4|=( )A .3B .-3C .5D .-5 3.(2017 重庆中考)若x =-13,y =4,则代数式3x +y -3的值为( )A .-6B .0C .2D .64.(2019•湖南长沙中考模拟)已知x-2y=3,则代数式6-2x+4y 的值为( ) A .0 B .-1 C .-3 D .35.(2019•江苏徐州中考)下列计算正确的是( ) A .a 2+a 2=a 4 B .(a +b )2=a 2+b 2 C .(a 3)3=a 9D .a 3•a 2=a 66.(2019•深圳)下列运算正确的是( ) A .a 2+a 2=a 4B .a 3•a 4=a 12C .(a 3)4=a 12D .(ab )2=ab 27.(2019•江苏徐州中考)(2019•青岛)计算(﹣2m )2•(﹣m •m 2+3m 3)的结果( ) A .8m 5B .﹣8m 5C .8m 6D .﹣4m 4+12m 58.(2019•新疆中考)下列计算正确的是( ) A .a 2•a 3=a 6 B .(﹣2ab )2=4a 2b 2C .x 2+3x 2=4x 4D .﹣6a 6÷2a 2=﹣3a 39.(2019•成都)下列计算正确的是( ) A .5ab ﹣3a =2b B .(﹣3a 2b )2=6a 4b 2C .(a ﹣1)2=a 2﹣1D .2a 2b ÷b =2a 210.(2019•南通中考)下列计算,正确的是( ) A .a 2•a 3=a 6 B .2a 2﹣a =aC .a 6÷a 2=a 3D .(a 2)3=a 6二、填空题1.(2018,盐城市中考模拟)如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +2b)、宽为(a +b)的大长方形,则需要C 类卡片 张.2. (2018,山东省济南中考模拟)将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:所剪次数1234…nab bb aa C BA 第1题图则a n = (用含n 的代数式表示).3.(2019,河北石家庄中考模拟)下图是一个简单的数值运算程序,当输入x 的值为3时,则输出的数值为 .4.(2019,山东省德州中考模拟)有一组按规律排列的单项式:2a ,4a 3,6a 5,8a 7,…,第25个单项式是 .5. (2018,辽宁葫芦岛中考模拟)在图3所示的运算流程中,若输出的数y=3,则输入的数x= .三.解答题1.(2019.河北沧州中考模拟)一般情况下不成立,但有些数可以使得它成立,例如:a =b =0.我们称使得成立的一对数a ,b 为“相伴数对”,记为(a ,b ).(1)若(1,b )是“相伴数对”,求b 的值; (2)若(m ,n )是“相伴数对”,其中m ≠0,求; (3)若(m ,n )是“相伴数对”,求代数式m ﹣﹣[4m ﹣2(3n ﹣1)]的值.2.(2018,徐州巿中考模拟)已知21,23.x x x =--求的值3.(2018,内江市中考模拟)阅读下列内容后,解答下列各题: 几个不等于0的数相乘,积的符号由负因数的个数决定.例如:考查代数式(1)(2)x x --的值与0的大小 当1x <时,10x -<,20x -<,(1)(2)0x x ∴--> 当12x <<时,10x ->,20x -<,(1)(2)0x x ∴--< 当2x >时,10x ->,20x ->,(1)(2)0x x ∴--> 综上:当12x <<时,(1)(2)0x x --< 当1x <或2x >时,(1)(2)0x x --> (1) 填写下表:(用“+”或“-”填入空格处)(2)由上表可知,当x 满足 时,(2)(1)(3)(4)0x x x x ++--<; (3)运用你发现的规律,直接写出当x 满足 时,(7)(8)(9)0x x x -+-<3.(2019,河北省沧州中考模拟)下图是某居民小区的一块面积为4ab 平方米的长方形空地,准备在空地的四个顶点处修建一个半径为a 米的扇形花台,在花台内种花,其余部分种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?4.(2019,海南中考)有2019个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是1,那么前6个数的和是 ,这2019个数的和是 .5.(2019,吉林中考)先化简,再求值:(a﹣1)2+a(a+2),其中a=.。