氧化还原法
氧化还原滴定法

2Mn2+ + 10CO2↑+ 8H2O
n = 5 n Na2C2O4 2 2024/10/11
KMnO4
45
二、 滴定液旳配制与标定
❖ 2.指示剂:
本身指示剂
❖ 3.条件:
a.酸度 :0.5~1mol/LH+ b.温度 :65℃ c.滴定速度 :慢-快-慢 d.滴定终点 :无色-微红
2024/10/11
2024/10/11
36
四、 应用实例
❖ 例1 维生素C旳含量测定 ❖ 例2 焦亚硫酸钠旳含量测定
2024/10/11
37
四、 应用实例
❖ 例1 维生素C旳含量测定
1.原理
O
H OH
C- C= C- C- C- CH + I2
O OH OH H OH H
O
H OH
C- C- C- C- C- CH2 + 2HI
碘量法 高锰酸钾法 重铬酸钾法 亚硝酸钠法 溴量法 铈量法
2024/10/11
10
第二节 指示剂
❖ 一、 本身指示剂 ❖ 二、 特殊指示剂 ❖ 三、 氧化还原指示剂
2024/10/11
11
一、 本身指示剂
❖ 有些滴定剂或被测物有颜色,滴定产物 无色或颜色很浅,则滴定时不必再滴加 指示剂,本身旳颜色变化起着指示剂旳 作用,称本身指示剂。
❖3.条件
为使碘氧化亚砷酸钠旳反应能定量 进行,一般加入碳酸氢钠,使溶液呈 弱碱性(pH8~9);
淀粉指示剂在滴定前加入。
2024/10/11
31
(一)碘滴定液
❖4.浓度计算
cI2
=
2mAs2O3 1000 M V As2O3 I2
氧化还原滴定法的原理

氧化还原滴定法的原理氧化还原滴定法是一种常用的分析化学方法,它通过测定被测物质与氧化还原试剂之间的氧化还原反应来确定被测物质的含量。
在实际应用中,氧化还原滴定法被广泛应用于医药、环境监测、食品安全等领域,具有操作简便、准确性高的特点。
氧化还原滴定法的原理基于氧化还原反应。
在这种反应中,氧化剂与还原剂之间发生电子的转移,从而使得氧化剂自身被还原,还原剂自身被氧化。
在滴定过程中,通过加入适量的氧化还原试剂,使得被测物质与试剂发生氧化还原反应,从而确定被测物质的含量。
氧化还原滴定法的关键在于选择适当的氧化还原试剂。
常见的氧化还原试剂包括高锰酸钾、碘量法、过碘酸盐滴定法等。
这些试剂在滴定过程中能够与被测物质发生明显的氧化还原反应,从而实现对被测物质含量的准确测定。
在进行氧化还原滴定法时,需要注意滴定条件的选择。
滴定条件包括溶液的浓度、滴定剂的添加速度、滴定终点的判定等。
这些条件的选择对于滴定结果的准确性有着重要的影响。
通常情况下,滴定条件的选择需要根据被测物质的性质和滴定试剂的特点来确定。
此外,氧化还原滴定法在实际应用中还需要考虑滴定终点的判定。
滴定终点是指滴定反应达到了完全的状态,此时试剂的添加量与被测物质的摩尔量成为化学计量比。
滴定终点的判定通常通过指示剂或者仪器来实现,其中指示剂可以根据颜色的变化来判断滴定终点是否已经达到。
总之,氧化还原滴定法是一种重要的分析化学方法,它通过测定被测物质与氧化还原试剂之间的氧化还原反应来确定被测物质的含量。
在实际应用中,选择适当的氧化还原试剂、滴定条件的合理选择以及滴定终点的准确判定是保证滴定结果准确性的关键。
希望本文的介绍能够帮助读者更深入地了解氧化还原滴定法的原理和应用。
氧化还原法——精选推荐

一、定义氧化还原法 以氧化还原反应为基础的容量分析法。
二、原理氧化还原反应是反应物间发生电子转移。
示意式:还原剂1 - ne →← 氧化剂1 氧化剂2 + ne →← 还原剂2还原剂1 + 氧化剂2 →← 氧化剂1 + 还原剂2氧化还原反应按照所用氧化剂和还原剂的不同,常用的方法有碘量法、高锰酸钾法、铈量法和溴量法等。
三、碘量法 (一)定义碘量法 利用碘分子或碘离子进行氧化还原滴定的容量分析法。
(二)原理 1.基本原理碘量法的反应实质,是碘分子在反应中得到电子,碘离子在反应中失去电子。
半反应式: I 2 + 2e →← 2I - 2I - - 2e →← I 2 2.滴定方式I 2/2I -电对的标准电极电位大小适中,即I 2是一不太强的氧化剂,I -是一不太弱的还原剂。
(1)凡标准电极电位低于E 0I2/2I -的电对,它的还原形便可用I 2滴定液直接滴定(当然突跃范围须够大),这种直接滴定的方法,叫做直接碘量法。
(2)凡标准电极电位高于E 0I2/2I -的电对,它的氧化形可将加入的I -氧化成I 2,再用Na 2S 2O 3滴定液滴定生成的I 2量。
这种方法,叫做置换滴定法。
(3)有些还原性物质可与过量I 2滴定液起反应,待反应完全后,用Na 2S 2O 3滴定液滴定剩余的I 2量,这种方法叫做剩余滴定法。
3.滴定反应条件(1)直接碘量法只能在酸性、中性及弱碱性溶液中进行。
如果溶液的pH >9,就会发生下面副反应:I 2 + 2OH - → I - + IO - + H 2O 3IO - → IO 3- + 2 I -(2)间接碘量法是以I2+ 2e→←2I-2S2O32-- 2e → S4O62-—————————————I2+ 2S2O32-→2I-+ S4O62-反应为基础的。
这个反应须在中性或弱酸性溶液中进行;在碱性溶液中有下面副反应发生:Na2S2O3+ 4I2+ 10NaOH → 2Na2SO4+ 8NaI + 5H2O在强酸性溶液中,Na2S2O3能被酸分解:S2O32-+ 2H+→ S↓+ SO2↑+ H2O如果在滴定时注意充分振摇,避免Na2S2O3局部过剩,则影响不大。
氧化还原滴定法(共52张PPT)

lgK(1 2)n1n2n
0.059
差值越大, 反应越完全
一般认为: º或 f 应有0.4V以上
影响 K 值的因素:
① n1 n2
② 1º~ 2º
注意:
① n1 n2 最小公倍数
② K ~ º K ~ f
五、滴定反应对平衡常数的要求
①当n1=n2=1时,两电对条件电势差大于
②当n1=n2=2时,两电对条件电势差大于 ③当n1≠n2时,
1
n [R]ed n [R] ed 酸度: H2SO4介质,控制~1mol/L
1
1
0 .0592
2
2
2
这些关于 Ep的讨论都是指对称电对
低—反应慢, 高—H2C2O4分解
邻二氮菲 - 亚铁
[O]x n [O]x n 0 .059 10 Cl- + 2 MnO4- + 16 H+ == 5 Cl2 + 2 Mn2+ + 8 H2O
O/R xe d O/R xe+d0n .0l5 ga a9 R Oexd
O/xRedO/xRed+0n .05lg9[[R Oexd]]
gg aa Ox/Red
Ox/Red
+ 0.059 lg( n
Ox Red
c Red Ox ) c Ox Red
三、条件电极电势
gg a a O /R xe d O /R xe + 0 dn .l0g5 R O (e 9 x R O d c c e R O xd e )xd
二苯胺磺酸钠
0.84V 如何选择?
另:
指示剂校正
第五节 氧化还原滴定前的预处理
目的:将被测物预先处理成便于滴定的形式
氧化还原滴定法

③ 最佳用新鲜配制旳淀粉溶液,切勿放置过久 (若需要长时 间放置,应加入少许碘化汞) 。
④ 指示剂应在接近终点前加入,以预防淀粉吸附、包藏溶液 中旳碘。
2.溶解氧及其测定
③最终再用KMnO4原则溶液回滴剩余旳Na2C2O4至粉红色出现,并 在0.5~1min内不消失为止,消耗KMnO4原则溶液(V’1mL )。
5C2O4- + 2MnO4-+ 16H+
2Mn2++ 10CO2↑+ 8H2O
70 85o C
计算公式:
8
高锰酸盐指数(mgO2 —氧旳摩尔质量(1/2
3I2 + 6OH- = IO3- + 5I- + 3H2O
所以,直接碘量法应用不广泛。
(2)间接碘量法(利用I-旳较强还原性)
在被测旳氧化性物质中加入KI,使I-被氧化为I2,利 用具有还原性旳Na2S2O3原则溶液来滴定定量析出旳I2,间 接求得氧化性物质含量旳措施。
基本反应为: 2 I- - 2e- = I2 ;
/ L) (V1 V1' O,g/mol);
)C1 V水
V2C2 (ml)
81000
C1 — KMnO4原则溶液浓度(1/5 KMnO4 , mol/L); C2 — Na2C2O4原则溶液浓度(1/2 Na2C2O4 , mol/L). 1mmol/L(1/5 KMnO4 ) = 8O2mg/L; 1mmol/L(1/5 KMnO4 ) =5 mmol/L(KMnO4 )
进行,在碱性和强酸性溶液中易发生副反应。
常用氧化还原方法(精)

直接法配制K2Cr2O7标准溶液,其性质稳定,可长期保存在
密闭容器中,其浓度不变,用K2Cr2O7滴定时,可在盐酸溶 液中进行,不受Cl-还原作用的影响。
常用氧化还原方法
3.碘量法 以I2作为氧化剂或以I-作为还原剂进行测定的分析方 法。通常有直接法和间接法两种。
常用氧化还原方法
1.高锰酸钾法 以 KMnO4 作滴定剂, KMnO4 是一种强氧化剂,它的氧化
ቤተ መጻሕፍቲ ባይዱ
能力和还原产物都与溶液的酸度有关。应用高锰酸钾法可
以直接滴定许多还原性物质,其优点是氧化能力强,滴定 时自身可作为指示剂。但是高锰酸钾溶液不够稳定,滴定 的选择性差。
常用氧化还原方法
2.重铬酸钾法 以K2Cr2O7作滴定剂,K2Cr2O7是一种强氧化剂,它只能 在酸性条件下应用。虽然K2Cr2O7在酸性溶液中的氧化能力 不如 KMnO4强,应用范围不如 KMnO4 广泛,但是其有很多优 点:K2Cr2O7易于提纯,干燥后可作为基准物质,因而可用
氧化还原反应的基本概念与分析方法

氧化还原反应的基本概念与分析方法氧化还原反应,又称为Redox反应,是化学反应中最基本的类型之一。
它涉及到电子的转移和原子的氧化态改变。
在氧化还原反应中,一个物质失去电子,被氧化,而另一个物质获得电子,被还原。
氧化还原反应在生物体内发挥着重要的作用,我们可以通过学习其基本概念和分析方法来更好地理解这个过程。
首先,我们来了解一下氧化还原反应的基本概念。
氧化是指物质失去电子的过程,同时伴随着其氧化态的增加。
还原则是指物质获得电子的过程,同时伴随着其氧化态的减少。
在氧化还原反应中,氧化和还原总是同时发生的,而且电子的转移是必不可少的。
氧化和还原在反应中以氧化数的变化来表示,氧化数是指原子的氧化态。
氧化还原反应可以通过氧化还原方程式来描述。
在方程式中,氧化物质写在左边,还原物质写在右边,中间用箭头分隔。
方程式中的配平要求原子和电荷都平衡。
例如,将铁与硫化物结合生成铁硫化物的方程式可以表示为:Fe + S → Fe S在这个方程式中,铁被氧化成了Fe2+,而硫化物(S2-)被还原成了S。
氧化数的变化使我们能够观察到氧化还原反应的过程。
为了实验室中准确分析氧化还原反应,我们可以利用一些分析方法。
其中最常用的是电化学方法,例如伏安法和电位滴定法。
伏安法是通过测量物质溶液中的电流和电势之间的关系来分析氧化还原反应。
这种方法可以用来确定氧化还原物质的浓度、反应速率以及进行电极反应研究。
电位滴定法则是通过在不断改变电势的条件下,滴定氧化还原反应中不同物质的溶液,从而推断出它们的浓度。
这种方法比较灵活,可以应用于各种不同的氧化还原反应。
除了电化学方法,我们还可以使用其他的分析方法来研究氧化还原反应。
比如,我们可以利用光谱学技术,如紫外-可见吸收光谱和荧光光谱,来测定氧化还原物质的浓度和反应机制。
光谱学技术通过物质在吸收或发射特定波长的光时吸收或发射特定的能量来进行分析。
这些技术的应用广泛,可以用于检测和定量不同物质中的氧化还原反应。
分析化学第七讲:氧化还原滴定法

分析化学第七讲:氧化还原滴定法分析化学第七讲:氧化还原滴定法在化学分析领域中,氧化还原滴定法是一种常用的定量分析方法。
本篇文章将深入探讨氧化还原滴定法的原理、实验操作流程、应用领域以及优缺点,帮助读者更好地理解和掌握这一分析技术。
一、氧化还原滴定法的基本原理氧化还原滴定法是以氧化剂和还原剂之间的反应为基础,通过滴定计量氧化还原反应的进程来确定待测物质的含量。
其中,氧化剂是指能够夺取电子的物质,而还原剂则是指能够提供电子的物质。
在特定的实验条件下,氧化剂和还原剂的反应速率是恒定的,因此,通过滴定可以精确计算出反应物的量。
二、氧化还原滴定法的实验流程1、准备试样和试剂:选择合适的试样,准备相应的氧化剂、还原剂和指示剂。
2、滴定前的预处理:对试样进行适当的预处理,以便进行氧化还原反应。
3、滴定操作:将试样与氧化剂混合,观察反应进程,记录滴定开始至结束的时间。
4、数据记录与计算:根据实验数据计算出试样中待测物质的含量。
5、重复实验:为了确保实验结果的准确性,可能需要重复进行滴定操作。
三、氧化还原滴定法的应用领域氧化还原滴定法在许多领域都有广泛的应用,如环境保护、化工、食品、医药等。
例如,在环境保护中,可以运用该方法测定水体中的铁离子、锰离子等重金属离子的含量;在化工领域,可以用于测定原料、中间产物和最终产品的含量。
四、氧化还原滴定法的优缺点1、优点:(1) 适用范围广:氧化还原滴定法可用于测定多种物质,包括无机物和有机物。
(2) 精确度高:由于氧化还原反应的速率容易控制,因此该方法的测量精度较高。
(3) 可重复性好:多次实验的结果之间的一致性较好。
2、缺点:(1) 对实验条件要求较高:某些氧化还原反应需要在特定的实验条件下进行,如温度、压力、pH值等,对实验设备的要求较高。
(2) 反应速度较慢:某些氧化还原反应的速率较慢,需要较长的滴定时间。
(3) 干扰因素较多:例如,试样中的杂质可能会干扰氧化还原反应的进行,从而影响测量结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E E 2-E EEF三、基本原理通过药剂与污染物的氧化还原反应,把废水中有毒害的污染物转化为无毒或微毒物质的处理方法称为氧化还原法。
废水中的有机污染物(如色、嗅、味、COD)及还原性无机离子(如CN-、S2-、Fe2+、Mn2+等)都可通过氧化法消除其危害,而废水中的许多重金属离子(如汞、镉、铜、银、金、六价铬、镍等)都可通过还原法去除。
废水处理中最常采用的氧化剂是空气、臭氧、氯气、次氯酸钠及漂白粉;常用的还原剂有硫酸亚铁、亚硫酸氢钠、硼氢化钠、水合脏及铁屑等。
在电解氧化还原法中,电解槽的阳极可作为氧化剂,阴极可作为还原剂。
投药氧化还原法的工艺过程及设备比较简单,通常只需一个反应池,若有沉淀物生成,尚需进行因液分离及泥渣处理。
电解氧化还原法的工艺过程及设备均有其特殊性,将辟专节讨论。
(一)反应程度的控制对于水溶液中的氧化还原反应,可以方便地用各电对的电极电势来衡量其氧化性(或还原性)的强弱,估计反应进行的程度。
氧化剂和还原剂的电极电势差越大,反应进行得越完全。
电极电势置主要取决于物质("电对")的本性(反映为E0值),同时也和参与反应的物质浓度(或气体分压)、温度有关,其间的关系可用奈斯特公式表示:(13-1)利用上式可估算处理程度,即求出氧化还原反应达平衡时各有关物质的残余浓度。
例如,铜屑置换法处理含汞废水有如下反应:Cu+Hg2+=Cu2++Hg 当反应在室温(25℃)达平衡时,相应原电池两电极的电极电势相等:由标准电极电势表查得:=0.34V,=0.86V,于是可求得[Cu2+]/[Hg2+]=1017.5。
可见,此反应可进行得十分完全,平衡时溶液中残Hg2+极微。
(二)影响处理能力的动力学因素由于多数氧化还原反应速度很慢,因此,在用氧化还原法处理废水时,影响水溶液中氧化还原反应速度的动力因素对实际处理能力有更为重要的意义,这些因素包括:(1)反应剂和还原剂的本性。
影响很大,其影响程度通常要由实验观察或经验来决定;(2)反应物的浓度。
一般讲,浓度升高,速度加快,其间定量关系与反应机理有关,可根据实验观察来确定;(3)温度。
一般讲,温度升高,速度加快,其间定量关系可由阿仑尼乌斯公式表示;(4)催化剂及某些不纯物的存在。
近年来异相催化剂(如活性炭、粘土、金属氧化物等)在水处理中的应用受到重视;(5)溶液的pH值。
影响很大,其影响途径有三:H+或OH-直接参与氧化还原反应;OH-或H+为催化剂;溶液的pH值决定溶液中许多物质的存在状态及相对数量。
第二节化学氧化法一、空气(及纯氢)氧化法氧的化学氧化性是很强的,且pH值降低,氧化性增强。
但是,用O2进行氧化反应的活化能很高,因而反应速度很慢,这就使得在常温、常压、无催化剂时,空气氧化法(曝气法)所需反应时间很长,使其应用受到限制。
如果设法断开氧分子中的氧一氧键(如高温、高压、催化剂、γ射线辐照等),则氧化反应速度将大大加快。
"湿式氧化法"处理含大量有机物的污泥和高浓度有机废水,就是利用高温(200~300℃)、高压(3~15MPa)强化空气氧化过程的一个例子。
空气氧化法目前主要用于含硫(Ⅱ)废水的处理。
硫(Ⅱ)在废水中以S2-、HS-、H2S的形式存在。
在碱性溶液中,硫(Ⅱ)的还原性较强,且不会形成易挥发的硫化氢,空气氧化效果较好。
氧与硫化物的反应在80~90℃下按如下反应式进行:第一步2HS-+2O2=S2032-+H2O;2S2-+2O2+H2O=S2O32-+2OH-;第二步S2O32-+2O2+2OH-=2SO42-+H2O。
在废水处理中,接触反应时间约1.5h,第一步反应几乎进行完全,而第二步反应只能进行约10%。
综合这两者,氧化lkg硫(Ⅱ)总共约需1.lkg氧,约相当于4m3空气。
空气氧化脱硫工艺可在各种密封塔体(空塔、筛板塔、填料塔等)中进行。
图9-1为某炼油厂废水的氧化脱硫装置。
氧化脱硫塔分四段,段高3m;每段进口处有喷嘴,使废水、汽、气和段内废水充分混合一次,促进塔内反应的加速进行。
设计参数应通过试验确定。
下列数据可供参考:废水在塔内的停留时间为1.5~2.5h,空气用量为理论用量的2~3倍,气水体积比不小于15。
为加速反应,塔内反应温度采用80~90℃,脱硫效率达98.3%。
据试验,若温度为64℃脱硫效率为94.3%。
二、臭氧氧化法臭氧的氧化性很强。
在理想的反应条件下,臭氧可把水溶液中大多数单质和化合物氧化到它们的最高氧化态,对水中有机物有强烈的氧化降解作用,还有强烈的消毒杀菌作用。
由于臭氧是不稳定的,因此通常多在现场制备。
制备臭氧的方法有电解法、化学法、高能射线辐射法和无声放电法等。
目前工业上几乎都用干燥空气或氧气经无声放电来制取臭氧,图9-2给出无声放电法制备臭氧的原理。
在两电极间施以高的交流电压(10~20kV),由于介电体的阻碍,高压放电的电流很小,只在介电体表面的凸点处发生局部放电,形成一脉冲电子流(由于不形成电弧,故叫无声放电)。
此时,如干燥的空气(或氧气)从放电间隙通过,一些氧分子与横向通过的脉冲电子流碰撞,在电子的轰击下,发生如下反应: O2+e=O+O+e;O2+O=O3;O+O+O=O3; O3+e=O2+O+e;O3+O =2O2在上列反应中,既有O3的生成,又有O3的分解,因而无声放电法得到的是臭氧仅为l~3%(重量)的混合气体,通常叫做臭氧化气。
制取臭氧的理论耗能量为163.7kJ/mol,即每度电产生1056g臭氧,但由于热的散失,每度电的实际产量一般在60~140g。
影响臭氧产率的因素很多,包括:温度、原料气中水分与O2含量、气体流速、施加的电压、电流频率及臭氧发生器的构造型式等。
升温虽有利于O2分子键的断裂,但亦促使O3的热分解,故要冷却发生部件,并采用较高的气流速度,以减少臭氯在发生器内的热分解。
气体中的水分阻碍臭氧的产生,促进其分解,因此原料气必须充分干燥。
原料气中O2含量高,产生的臭氧浓度大,因此,最好采用纯氧或宙氧空气作原料。
电流频率增高,所制取臭氧浓度与产率均能提高。
工业生产中常用的臭氧发生器,按电极的构造不同,可以分为两大类:(1)管式臭氧发生器;(2)板式臭氧发生器。
图9-3为卧管式臭氧发生器示意图,其外形与热交换器相似,是一个圆筒形的密封容器,器内有水平装设的不锈钢管多根,两端固定在两块管板上。
管板将容器分为三部分,右端进入原料气,左端排出臭氧化气,中间管件外通以冷却水。
每根金属管构成一个低压极(接地),管内装一根同轴的玻璃管或瓷管作为介电价,玻璃管内侧面喷镀一层银和铝,与高压电源相联。
玻璃管一端封死,管壁与金属管之间留2~3mm的间隙,供气体通过之用。
臭氧处理工艺有两种流程:(1)以空气或富氧空气为原料气的开路系统;(2)以纯氧或宫氧空气为原料气的闭路系统。
开路系统的特点是将用过的废气排放掉;闭路系统与之相反,废气又返回到臭氧制取设备,这样可以提高原料气的含氧率,降低生产成本。
存在的问题是废气循环回用过程中,氮含量将愈来愈高。
为此,可采用压力转换氮分离器来降低含氮量。
分离器内装分子筛,高压时吸附氮气,低压时又释放氮气。
分离器设两个,一个吸附用,另一个解吸再生,两个交替工作。
影响奥氧氧化法处想效果的主要因素除污染物的性质、浓度、臭氧投加量、溶液pH值、温度、反应时间外,气态药剂O3的投加方式亦很重要。
O3的投加通常在混合反应器中进行。
混合反应器(接触反应器)的作用有二:(1)促进气、水扩散混合;(2)使气、水充分接触,迅速反应。
设计混合反应器时要考虑臭氧分子在水中的扩散速度和与污染物的反应速度。
当扩散速度较大,而反应速度为整个臭氧化过程的速度控制步骤时,混合接触器的结构型式应有利于反应的充分进行。
属于这一类的污染物有烷基苯磺酸钠、焦油、COD、BOD、污泥、氨氮等,反应器可采用微孔扩散板式鼓泡塔。
当反应速度较大、扩散速度为整个臭氧化过程的速度控制步骤时,结构型式应有利于臭氧的加速扩散。
属于这一类的污染物有铁(Ⅱ)、锰(Ⅱ)、氰、酚、亲水性染料、细菌等,可采用喷射器做为反应器。
微孔扩散板式鼓泡塔见图9-4。
臭氧化气从塔底的微孔扩散板(孔径约15~20μm)喷出,与硅水逆流接触;塔中可装填瓷环、塑料环等填料,以改善水气接触条件。
这种设备的特点是可较长时间保持一定的臭氧浓度,有利于臭氧与水中污染物充分反应。
此外,该设备具有较大的液相容积,气量调节容易。
喷射器式混合反应器见图9-5。
高压废水通过水射器而将臭氧化气吸入水中,这种设备的特点是混合充分,但接触时间较短。
近来,又出现了一种静态混合器.静态混合器也叫管式混合器,是在一段管子内安装了许多节螺旋叶片,相邻两片螺旋叶片有着相反的方向,水流在旋转分割运动中与臭氧接触而产生许多微小的旋涡,使水气得到充分的混合。
这种混合器的传质能力强,臭氧利用率可达87%(微孔扩散板式为73%),且耗能较少,设备费用低。
由于臭氧及其在水中分解的中间产物氢氧基有很强的氧化性,可分解一般氧化剂难于破坏的有机物,而且反应完全,速度快;剩余臭氧会迅速转化为氧,出水无嗅无味,不产生污泥;原料(空气)来源广,因此臭氧氧化法在水处理中是很有前途的。
但在当前,由于制备臭氧的电能消耗较大,臭氧的投加与接触系统效率低,使其在废水处理中的应用受到限制,主要用于低浓度、难氧化的有机废水的处理和消毒杀菌。
例如,对印染废水的处理,采用生化法脱色效率较低(仅为40~50%),而采用臭氧氧化法(有时还与混凝、活性炭吸附结合),脱色率可达90~99%,一般O3投量为40~60mg /L,接触反应时间为10~30min。
又如某炼油厂废水,经脱硫、浮选和曝气处理后,含酚0.1~0.3mg /L、油5~10mg/L、硫化物0.05mg/L,色度为8~12度,采用O3进行深度处理,O3投量为50mg/L,接触反应时间10min,处理后台酚0.01mg/L以下,含油0.3mg/L以下,含硫化物0.02mg/L以下,色度为2~4度。
三、氯氧化法(一)氯系氧化剂氯系氧化剂包括氯气、氯的含氧酸及其钠盐、钙盐以及二氧化氯。
氯(Cl2)易溶于水,并迅速水解,歧化为HCl和HClO。
次氯酸及其盐有很强的氧化性,且在酸性溶液中有更强的氧化性。
此外,氯的氧化作用还可因光辐射(如紫外光)或放射性辐射而强化。
气态的二氧化氯常在现场制备,并溶于水(6~8mg/L)备用。
用二氧化氯除臭和味后,没有残余臭和味;当水中合酚时,不产生氯酚,因此对除酚特别有用。
但ClO2的还原(及歧化)产物ClO2-对人体有毒,C1O2处理有机废水时所产生的氯代有机物对人体也有长期的生理效应。
因此,用C1O2处理水后,最好再经活性炭吸附处理。
(二)氯氧化法在废水处理中的应用氯氧化法在废水处理中主要用于氰化物、硫化物、酚、醇、醛、油类的氧化去除,还用于消毒、脱色、除臭。