重庆求精中学 2014-2015学年八年级下学期期末数学试卷(含答案)
2014-2015学年八年级(下)期末数学试卷

八年级期末数学试卷一、请仔细地选一选(以下每道题只有一个正确的选项,请把正确选项的代号填入答题栏内,每小题3分,共30分)1.(3分)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+92.(3分),,,,a+中,分式的个数有()A.2个B.3个C.4个D.5个3.(3分)(2006•襄阳)不等式组的解集在数轴上应表示为()A.B.C.D.4.(3分)下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A.1个B.2个C.3个D.4个5.(3分)下列图形中,是相似形的是()A.所有平行四边形B.所有矩形C.所有菱形D.所有正方形6.(3分)△ABC∽△A′B′C′,且相似比为2:3,则它们的面积比等于()A.2:3 B.3:2 C.4:9 D.9:47.(3分)方程的解为增根,则增根可能是()A.x=2 B.x=0 C.x=﹣1 D.x=0或x=﹣18.(3分)在比例尺为l:300000的某市地图上,A,B两地相距5cm,则A、B之间的实际距离为()A.15km B.1.5km C.15000km D.1500000km9.(3分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计、下列判断:①这种调查方式是抽样调查;②800名学生的数学成绩是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个10.(3分)(1999•南京)甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.二、请认真填一填(每小题3分,共15分)11.(3分)(2006•衡阳)化简:结果是_________.12.(3分)(2004•芜湖)对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,S甲2=0.02;机床乙:乙=10,S乙2=0.06,由此可知:_________(填甲或乙)机床性能好.甲13.(3分)不等式3(x+1)≥5x﹣3的正整数解是_________.14.(3分)已知=,则分式的值是_________.15.(3分)如图,P是△ABC中边AB上一点,连接CP,有如下条件:①∠ACP=∠B,②∠APC=∠ACB,③AC2=AP•AB,④=,其中能判定△ACP∽△ABC的条件是_________(填序号).三、解答题(16、19、21题个8分,17题6分,18、22题个10分,20题5分,共55分)16.(8分)将下列各式分解因式:(1)x2y2+6xy+9(2)2x3﹣18x.17.(6分)(2006•武汉)先化简,再求值:,其中x=4.18.(10分)解下列不等式组,并把解集在数轴上表示出来(1);(2).19.(8分)6月5日是世界环保日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围的人数最多?(不要求说明理由).(4)若成绩在90分以上(不含90分)为优秀,则该校八年级参赛学生成绩优秀的约为多少人?频率分布表分组频数频率50.5﹣60.5 4 0.0860.5﹣70.5 8 0.1670.5﹣80.5 10 0.2080.5﹣90.5 16 0.3290.5﹣100.5合计20.(5分)看图填空:如下图左,∠A+∠D=180°(已知)∴_________∥_________(_________)∴∠1=_________(_________)∵∠1=65°(已知)∴∠C=65°.21.(8分)在“情系玉树”捐款活动中,某同学对八年级的(1)、(2)两班的捐款情况进行统计得到如下三条信息:信息一:(1)班共捐款300元,(2)班共捐款232元;信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的;信息三:(1)班比(2)多2人;请你根据以上三条信息,求出(1)班平均每人捐款多少元?22.(10分)如图,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角顶点P在AD上滑动时(点P与A、D 不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)证明△DPC∽△AEP;(2)当∠CPD=30°时,求AE的长;(3)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.期末数学试卷参考答案与试题解析一、请仔细地选一选(以下每道题只有一个正确的选项,请把正确选项的代号填入答题栏内,每小题3分,共30分)1.(3分)下列多项式中能用平方差公式分解因式的是()A.a2+(﹣b)2B.5m2﹣20mn C.﹣x2﹣y2D.﹣x2+9考点:因式分解-运用公式法.分析:能用平方差公式分解因式的式子特点是:两项平方项,符号相反.解答:解:A、a2+(﹣b)2符号相同,不能用平方差公式分解因式,故错误;B、5m2﹣20mn两项不都是平方项,不能用平方差公式分解因式,故错误;C、﹣x2﹣y2符号相同,不能用平方差公式分解因式,故错误;D、﹣x2+9能用平方差公式分解因式,故正确.故选D.点评:本题考查用平方差公式分解因式的式子特点,两平方项的符号相反.2.(3分),,,,a+中,分式的个数有()A.2个B.3个C.4个D.5个考点:分式的定义.专题:存在型.分析:根据分式的定义进行解答即可.解答:解:这一组式子中,,a+中分母含有未知数,故是分式.故选A.点评:本题考查的是分式的定义,解答此题的关键是熟知π是一个常数,这是此题的易错点.3.(3分)(2006•襄阳)不等式组的解集在数轴上应表示为()A.B.C.D.考点:在数轴上表示不等式的解集.分析:根据不等式画出数轴,实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.解答:解:不等式组的解集是≤x<2,在数轴上可表示为:故应选B.点评:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)下列四个命题:①对顶角相等;②同位角相等;③等角的余角相等;④凡直角都相等.其中真命题的个数的是()A.1个B.2个C.3个D.4个考点:命题与定理.专题:应用题.分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:①对顶角相等,是真命题,②只有在两直线平行时,同位角才相等,假命题,③等角的余角相等,是真命题,④直角都等于90°,是真命题,真命题有3个,故选C.点评:本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假,关键是要熟悉课本中的性质定理,难度适中.5.(3分)下列图形中,是相似形的是()A.所有平行四边形B.所有矩形C.所有菱形D.所有正方形考点:相似图形.专题:常规题型.分析:根据相似图形的定义,对选项进行一一分析,排除错误答案.解答:解:A、所有平行四边形,属于形状不唯一确定的图形,不一定相似,故错误;B、所有矩形,属于形状不唯一确定的图形,不一定相似,故错误;C、所有菱形,属于形状不唯一确定的图形,不一定相似,故错误;D、所有正方形,形状相同,但大小不一定相同,符合相似定义,故正确.故选D.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.6.(3分)△ABC∽△A′B′C′,且相似比为2:3,则它们的面积比等于()A.2:3 B.3:2 C.4:9 D.9:4考点:相似三角形的性质.分析:根据相似三角形的面积比等于相似比的平方解题.解答:解:∵△ABC∽△A′B′C′,且相似比为2:3∴它们的面积比为4:9故选C.点评:本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比.(2)相似三角形面积的比等于相似比的平方.(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.7.(3分)方程的解为增根,则增根可能是()A.x=2 B.x=0 C.x=﹣1 D.x=0或x=﹣1考点:分式方程的增根.专题:计算题.分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x+1)=0,得到x=0或﹣1即可.解答:解:∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1.故选D.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.(3分)在比例尺为l:300000的某市地图上,A,B两地相距5cm,则A、B之间的实际距离为()A.15km B.1.5km C.15000km D.1500000km考点:比例线段.分析:首先设A、B之间的实际距离为xcm,然后根据本比例尺的性质,即可得方程:,解此方程即可求得答案,注意统一单位.解答:解:设A、B之间的实际距离为xcm,根据题意得:=,解得:x=1500000,∵1500000cm=15km.∴A、B之间的实际距离为15km.故选A.点评:此题考查了比例尺的性质.此题比较简单,解题的关键是根据比例尺的性质列方程,注意统一单位.9.(3分)为了解我校八年级800名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计、下列判断:①这种调查方式是抽样调查;②800名学生的数学成绩是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200名学生是样本容量.其中正确的判断有()A.1个B.2个C.3个D.4个考点:总体、个体、样本、样本容量.分析:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.解答:解:这种调查方式是抽样调查;故①正确;总体是我校八年级800名学生期中数学考试情况;故②正确;个体是每名学生的数学成绩;故③正确;样本是所抽取的200名学生的数学成绩,故④错误样本容量是200,故⑤错误,故选C.点评:解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.(3分)(1999•南京)甲、乙两班参加植树造林,已知甲班每天比乙班每天多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植x棵,根据题意列出的方程是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:应用题.分析:关键描述语是:“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”;等量关系为:甲班植80棵树所用的天数=乙班植70棵树所用的天数.解答:解:若设甲班每天植x棵,那么甲班植80棵树所用的天数应该表示为:,乙班植70棵树所用的天数应该表示为:.所列方程为:.故选D.点评:列方程解应用题的关键步骤在于找相等关系.本题应该抓住“甲班植80棵树所用的天数比与乙班植70棵树所用的天数相等”的关键语.二、请认真填一填(每小题3分,共15分)11.(3分)(2006•衡阳)化简:结果是1.考点:分式的加减法.专题:计算题.分析:本题考查了分式的加减运算.分母互为相反数,把分母化成同分母的分式,然后进行加减运算.解答:解:原式=﹣==1.故答案为1.点评:本题考查了分式的加减运算,注意将结果化为最简分式.12.(3分)(2004•芜湖)对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下:机床甲:=10,S甲2=0.02;机床乙:乙=10,S乙2=0.06,由此可知:甲(填甲或乙)机床性能好.甲考点:方差;算术平均数.分析:根据方差的意义可知,方差越小,稳定性越好,由此即可求出答案.解答:解:因为甲的方差小于乙的方差,甲的稳定性好,所以甲机床的性能好.故填甲.点评:一般地设n个数据,x1,x2,…x n的平均数为,则差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13.(3分)不等式3(x+1)≥5x﹣3的正整数解是1,2,3.考点:一元一次不等式组的整数解.专题:计算题.分析:先求出不等式的解集,然后求其正整数解.解答:解:∵不等式3(x+1)≥5x﹣3的解集是x≤3,∴正整数解是1,2,3.点评:本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.14.(3分)已知=,则分式的值是.考点:比例的性质;分式的值.分析:根据比例的性质,两內项之积等于两外项之积用a表示出b,然后代入比例式进行计算即可得解.解答:解:∵=,∴b=a,∴==.故答案为:.点评:本题考查了比例的性质,熟记两內项之积等于两外项之积并用a表示出b是解题的关键.15.(3分)如图,P是△ABC中边AB上一点,连接CP,有如下条件:①∠ACP=∠B,②∠APC=∠ACB,③AC2=AP•AB,④=,其中能判定△ACP∽△ABC的条件是①②③(填序号).考点:相似三角形的判定.分析:根据图形,∠A为△ACP和△ABC的公共角,然后根据相似三角形的判定方法对各小题分析判断后利用排除法求解.解答:解:由图可知,∠A为△ACP和△ABC的公共角,①∠ACP=∠B,符合两角对应相等,两三角形相似,②∠APC=∠ACB,符合两角对应相等,两三角形相似,③由AC2=AP•AB可得=,符合两边对应成比例,夹角相等,两三角形相似,④=,夹角为∠B,可判定△CBP∽△ABC,所以能判定△ACP∽△ABC的条件是①②③.故答案为:①②③.点评:本题考查了相似三角形的判定,熟记三角形的判定方法是解题的关键.三、解答题(16、19、21题个8分,17题6分,18、22题个10分,20题5分,共55分)16.(8分)将下列各式分解因式:(1)x2y2+6xy+9(2)2x3﹣18x.考点:提公因式法与公式法的综合运用.分析:(1)直接利用完全平方公式分解因式即可;(2)先提取公因式2x,再对余下的多项式利用平方差公式继续分解.解答:解:(1)x2y2+6xy+9=(xy+3)2;(2)2x3﹣18x,=2x(x2﹣9),=2x(x+3)(x﹣3).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.(6分)(2006•武汉)先化简,再求值:,其中x=4.考点:分式的化简求值.专题:计算题.分析:先化简,把“1”看做分母是“1”,化到最简后再把x=4代入求值.解答:解:原式==x﹣3,当x=4时,原式=1.点评:此题主要考查分式的化简与求值,比较简单.18.(10分)解下列不等式组,并把解集在数轴上表示出来(1);(2).考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:(1)先求出两个不等式的解集,然后表示在数轴上,再求其公共解;(2)先求出两个不等式的解集,然后表示在数轴上,再求其公共解.解答:解:(1),由①得,x>2,由②得,x>4,在数轴上表示如下:所以,不等式组的解集是x>4;(2),由①得,x≥1,由②得,x<2,在数轴上表示如下:所以,不等式组的解集是1≤x<2.点评:本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.19.(8分)6月5日是世界环保日,为了让学生增强环保意识,了解环保知识,某中学政教处举行了一次八年级“环保知识竞赛”,共有900名学生参加了这次活动,为了了解该次竞赛成绩情况,从中抽取了部分学生的成绩(满分100分,得分均为正整数)进行统计,请你根据下面还未完成的频率分布表和频率分布直方图,解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)全体参赛学生中,竞赛成绩落在哪组范围的人数最多?(不要求说明理由).(4)若成绩在90分以上(不含90分)为优秀,则该校八年级参赛学生成绩优秀的约为多少人?频率分布表分组频数频率50.5﹣60.5 4 0.0860.5﹣70.5 8 0.1670.5﹣80.5 10 0.2080.5﹣90.5 16 0.3290.5﹣100.5合计考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)根据50.5﹣60.5频数为4,频率为0.08,求出总人数,即可求出90.5﹣100.5的人数,以及频率.(2)根据各组频数即可补全条形图;(3)根据条形图的高度可得答案;(4)先计算出样本的优秀率,再乘以900即可.解答:解:(1)∵50.5﹣60.5频数为4,频率为0.08,∴总人数为:4÷0.08=50人,∴90.5﹣100.5的人数为:50﹣4﹣8﹣10﹣16=12(人),频率为:12÷50=0.24,填表即可;(2)根据(1)中数据补全频数分布直方图,如图所示;(3)由频率分布表或频率分布直方图可知,竞赛成绩落在80.5﹣90.5这个范围内的人数最多;(4)12÷50×100%×900=216(人).答:该校成绩优秀学生约为216人.点评:此题主要考查了频数分布直方图,频率,用样本估计总体,读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.20.(5分)看图填空:如下图左,∠A+∠D=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∴∠1=∠C(两直线平行,内错角相等)∵∠1=65°(已知)∴∠C=65°.考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的判定定理“同旁内角互补,两直线平行”判定AB∥CD,然后由平行线的性质推知∠1=∠C;最后根据已知条件∠1=65°,利用等量代换求得∠C=65°.解答:解:∵∠A+∠D=180°(已知)∴AB∥CD(同旁内角互补,两直线平行),∴∠1=∠C(两直线平行,内错角相等),∵∠1=65°(已知)∴∠C=65°(等量代换).故答案是:AB、CD、同旁内角互补,两直线平行、∠C、两直线平行,内错角相等.点评:本题考查了平行线的判定与性质.解答此题的关键是注意平行线的性质和判定定理的综合运用.21.(8分)在“情系玉树”捐款活动中,某同学对八年级的(1)、(2)两班的捐款情况进行统计得到如下三条信息:信息一:(1)班共捐款300元,(2)班共捐款232元;信息二:(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的;信息三:(1)班比(2)多2人;请你根据以上三条信息,求出(1)班平均每人捐款多少元?考点:分式方程的应用.专题:应用题.分析:根据(2)班平均每人捐款钱数是(1)班平均每人捐款钱数的,则若设(1)班平均每人捐款x元,则(2)班平均每人捐款元.根据:(1)班比(2)多2人即可列方程求解.解答:解:设(1)班平均每人捐款x元,则(2)班平均每人捐款元,根据题意得:,解得:x=5,经检验x=5是原方程的解.答:(1)班平均每人捐款5元.点评:本题主要考查了利用方程解决实际问题,正确把信息一,二转化为相等关系是解题的关键.22.(10分)如图,在矩形ABCD中,AB=4,AD=10.一把三角尺的直角顶点P在AD上滑动时(点P与A、D 不重合),一直角边始终经过点C,另一直角边与AB交于点E.(1)证明△DPC∽△AEP;(2)当∠CPD=30°时,求AE的长;(3)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.考点:相似三角形的判定与性质;矩形的性质.分析:(1)根据等角的余角相等,得∠1=∠3,根据两个角对应相等即可证明相似;(2)根据30°直角三角形的性质,得PC=8,再根据勾股定理求得DP的长,总而利用相似三角形的对应边的比相等即可求解;(3)根据相似三角形周长的比等于相似比进行分析.解答:解:(1)证明:在△DPC、△AEP中,∠1与∠2互余,∠2与∠3互余,∴∠1=∠3,(1分)又∠A=∠D=90°,(1分),∴△DPC∽△AEP.(1分)(2)∵∠2=30°,CD=4,∴PC=8,PD=(2分),又∵AD=10,∴AP=AD﹣PD=10﹣4,由(1),得=10﹣12;(3)存在这样的点P,使△DPC的周长等于△AEP周长的2倍,(1分)∵相似三角形周长的比等于相似比,设=2,解得DP=8.(2分)点评:此题综合考查了相似三角形的判定和性质.。
2014--2015学年度第二学期八年级数学下册期末试卷

2014--2015学年度第二学期八级(下册)数学期末试卷班级_____ 姓名_____ 分数______一、选择题(每小题3分,共24分)1、下列变形分解因式正确的是()A .x4=(x2+1)(x-1)(x+1)B .x2+x-1=(x+1)(X-1)+xC.(3a2-b2)2=9a4-6b2a2+b4 D .3x2+3x=3x2(1+1/x)2、下列调查最适合用普查方式是()A .八年级一班参加假期艺术培训班的人数B.某市在国庆期间外出旅游的人数C.调查某种产品的数量D.调查某种炮弹的杀伤半径3、下列命题中是真命题的个数是()(1)若a<b,则-3a>-3b (2)若(x2-4)/(x-2)=0则x=2(3)三角形的外角大于任何一个内角(4)4、(2013山东临沂)不等式组20132xxx-⎧⎪⎨+-⎪⎩>,≥的解集是()A.x≥8 B.x>2 C.0<x<2 D.2<x≤8X>a5、若不等式组的解为x>4则a的取值范围是()5+2x<3x+1A a>4B a≥4C a≤4D a<46、若4x 2+m ×y+49y 2是一个完全平方式,则m 的值是( ) A ±14 B 14 C ±28 D 287、(2013陕西)如图,在四边形错误!未找到引用源。
中,对角线AB=AD ,CB=CD ,若连接AC 、BD 相交于点O ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对 8、已知ab a b -=4 则abb a bab a 7222+---的值等于 ( ) A152 B -72C -6D 6二、填空题(每小题3分,共21分)1、在命题“对顶三角形相等”,条件是_________,结论是_________. 2、分解因式-3x 2+12xy-12y2=__________3、已知a 2+3a-2=0,那3a 2+9a+2010的值为___________.X ≥134、不等式 的整数解为____________ X ≤155、甲乙两同学几次数学单元成绩,计算平均数与方差结果为X 甲=85,X 乙=85,S甲2=16,S乙2=1则数学成绩比较稳定的是同学_______ 6、分式32+x x +34-x =________ 7、(2013重庆市)不等式2x -3≥x 的解集是 .线段AB被点C分成的比比为AC:AB=BC:AC_____________2x-5(x-1)>14三、解不等式组 (8分)1-213-x <x+10四、若(a-1)2+(b+2)2=0求,b a b -+2222abb aab+-÷222abb ab -+的值(8分)五、某市举行一次少年篮球比赛,各年龄组的参赛人数如下表所示(9分)1.年龄13 14 15 16参赛人数 5 9 12 14(1)求全体参赛少年年龄的平均数和中位数(2)小丁说他们在年龄组的参赛人数占全体参赛人数的30%,你认为小丁是哪个年龄组的选手?2.[2013湖南邵阳,10分]雅安地震后,政府为安置灾民,从某厂调拔了用于搭建板房的板材5600m3和铝材2210m3,计划用这些材料在某安置点搭建甲、乙两种规格的板房共100间.若搭建一间甲型板房或一间乙型板房所需板材和铝材的数量如下表所示:板房规格板材数量(m3) 铝材数量(m3)甲型40 30乙型60 20请你根据以上信息,设计出甲、乙两种板房的搭建方案..(2013广东珠海,10分)如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E;求证:BC=DC.6. (10分)如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.。
重庆市2014—2015学年度下学期期末复习八年级数学试卷3

重庆市2014—2015学年度下学期期末复习八年级数学试卷3一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意) 1、下列运算正确的是 ( )A.x 2x 3x +=B.32221-=C.2525+=D.()a x b x a b x -=-2、下列叙述中,错误的是 ( ) A 、对角线互相平分的四边形是平行四边形 B 、对角线互相垂直的四边形是菱形 C 、对角线互相垂直的平行四边形是矩形 D 、对角线互相垂直的矩形是正方形3、某次抽测100户城市居民家庭人口数如下表所示在这一次调查中,众数、中位数、平均数分别为 ( ) A. 4,4,4.01 B. 4,5,4.01 C. 28,28,4 D. 28,4,4.014、如图,小刚在操场上玩耍,一段时间内,他沿M →A →B →M 的路径匀速散步,能近似刻画小刚距出发点M的距离y 与时间x 之间关系的函数图象是 ( )5、如图,“赵爽弦图”是四个全等的直角三角形与中间的一个小正方形拼成的大正方形.如果大正方形的面积为13,小正方形的面积为1,直角三角形的短直角边为a ,长直角边为b ,那么()2a b +的值为 ( ) A.25 B.19 C.13 D.1696、如图,点E 是ABCD 的边CD 的中点,AD BE 、的延长线相交于F ,DF 3cm DE 2cm ==,,则ABCD 的周长为()A.5cmB.7cmC.10cmD.14cm7、若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .8、如图所示,函数y 2x =和y ax 4=+的图象相交于点(),A 3m 4m 3+,则不等式2x ax 4<+的解集为( )A.3x 2<B.x 3<C.3x 2> D.x 3> 9、匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC为一折线).这个容器的形状是下图中哪一个A B C D10、如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F ,若AB=6,BC=46,则FD 的长为( )A .2B .4C .6D .23人口数 1 2 3 4 5 6 7 户 数 2 9 25 28 24 10 2 B A M B x y O A x y O C x y O Dx y O E C DAB F xy OAA BCD E G11、把所有正奇数从小到大排列,并按如下规律分组:(1)、(3,5,7)、(9,11,13,15,17)、(19,21,23,25,27,29,31)、…….,现有等式(,)m A i j =表示正奇数m 是第i 组第j 个数(从左往右数),如7(2,3)A =,则2015A =A 、(31,50)B 、(32,47)C 、(33,46)D 、(34,42)12、在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化 的图象(全程)如图,根据图象判定下列结论不正确...的是 A .甲先到达终点 B .前30分钟,甲在乙的前面 C .第48分钟时,两人第一次相遇 D .这次比赛的全程是28千米 二、填空题13、若2a 1a 1a a++=-,则a 的取值范围是 . 14、数据,,,,210x 3的平均数为2,则这组数据的方差是 .15、如图ABCD Y 中,对角线AC BD 、交于点O ,过O 作BD 的垂线交边BC 于点E ;若ABCD 的周长为a ,则△DEC 的周长为 . 16、平面直角坐标系内,一次函数()y 2m 1x m 3=-+-的图象不经第二象限,则m 的取值范围是 . 17、已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .18、菱形ABCD 的对角线分别为12和16,M 、N 分别为BC 、CD 的中点,P 是对角线BD 上的一动点,则PM+PN 的最小值为 . 三、解答题19、计算:()()()-2201520151932323227--+-20、如图,在正方形ABCD 中,对角线的交点为O ,E 是OB 上的一点,DG AE ⊥,垂足为G ,DG 交OA 于F . 求证:OF OE =21、如图,矩形OBCD 按如右图所示放置在平面直角坐标系中(坐标原点为O ),连结AC (点A C 、的坐标见图示)交OB 于点E ;求阴影部分的四边形OECD 的面积?EODBCAF G O C D AB E x y (4,2)(0,-1)E B D C AO O 14 12 1096 86 66 30 x /分y /千米 AB C D(第12题图)乙 甲22、某校为了进一步了解八年级450名学生的身体素质情况,体育老师抽取了八年级50名学生进行一分钟跳绳次数的测试,以测试数据为样本,并分组绘制出的部分统计表和部分条形图如下所示:请结合图表完成下列问题:(1)表中的a = ;(2).请把条形图补充完整;(3).这个样本的中位数落在第 组; (4)八年级学生一分钟跳绳次数(x )达标要求是:x 120<为不合格;120x 140≤<为合格;140x 160≤<为良;x 160≥为优.若该年级共有400名学生,请根据以上信息,估计该年级跳绳达到优的人数.23、某渔业公司组织20辆汽车装运鲢鱼、草鱼、青鱼共120吨去外地销售,按计划20辆车都要装运,每辆汽车只能装运同一种鱼,且必须装满,根据下表提供的信息,解答下列问题鲢鱼草鱼 青鱼 每辆汽车载鱼量(吨) 865每吨鱼获利(万元)0.25 0.3 0.2(1)设装运鲢鱼的车辆数为x 辆,装草鱼的车辆数为y 辆,求y 与x 之间的函数关系式。
2013-2014学年重庆市渝中区求精中学八年级(上)期末数学试

2013-2014学年重庆市渝中区求精中学八年级(上)期末数学试卷一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案填在答题卷中对应的表格内.1.(4分)(2013秋•顺义区期末)若式子有意义,则x的取值范围是()A.x≠﹣1 B.x≠1 C.x>1 D.x≠02.(4分)(2012•宜昌)在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是()A.B.C.D.3.(4分)(2013秋•渝中区校级期末)下列计算正确的是()A.(﹣p2q)3=﹣p5q3B.(12a2b3c)÷(6ab2)=2abC.3m2÷(3m﹣1)=m﹣3m2D.(x2﹣4x)÷x=x﹣44.(4分)(2013秋•渝中区校级期末)三角形两边分别为1、7,则第三边长可能是()A.4 B.5 C.6 D.75.(4分)(2013•湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°6.(4分)(2013秋•渝中区校级期末)已知x2﹣y2=2014,且x=y+2,则x+y=()A.2014 B.2013 C.1007 D.10047.(4分)(2013•钦州)等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°8.(4分)(2013秋•渝中区校级期末)已知x2+kxy+16y2是一个完全平方式,则k的值是()A.8 B.±8 C.16 D.±169.(4分)(2003•常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣ac C.ab﹣bc﹣ac+c2 D.b2﹣bc+a2﹣ab10.(4分)(2013秋•渝中区校级期末)若方程无解,则a的值为()A.﹣1 B.0 C.1 D.211.(4分)(2013秋•渝中区校级期末)如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC 的平分线,DE⊥AB,垂足为E,若AB=10cm,则△DBE的周长等于()A.10cm B.8cm C.12cm D.9cm12.(4分)(2013秋•渝中区校级期末)如图,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD.有下列四个结论:①∠PBC=30°;②AD∥BC;③直线PC与AB垂直;④四边形ABCD是轴对称图形.其中正确结论的个数为()A.1 B.2 C.3 D.4二、填空题(本大题6个小题,每小题4分,共24分),请将每小题的答案直接填在答题卷中对应的横线上.13.(4分)(2013•河北模拟)因式分解:3a2﹣27b2=.14.(4分)(2013秋•渝中区校级期末)方程+=0的解是.15.(4分)(2010•黄冈)已知,ab=﹣1,a+b=2,则式子+=.16.(4分)(2012秋•永靖县期末)已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为.17.(4分)(2013•德阳)已知关于x的方程的解是正数,则m的取值范围是.18.(4分)(2013秋•渝中区校级期末)中国恒大夺取亚冠创造了中国足球的历史,能与阿尔阿赫利、拜仁慕尼黑、米内罗竞技等国际豪门过招更是让中国人大饱眼福.2013年的恒大重新点燃了人们对足球的热爱.我市体育协会为了鼓励中学生热爱足球,发起一项足球联赛,共赛17轮(即每队均参赛17场),记分办法是胜一场得3分,平一场得1分,负一场得0分.若某校足球队总积分为16分,且踢平场数是所负场数的整数倍,胜、平、负的场数各不相同.则该校足球队至少负场.三、解答题(本大题2个小题,每小题7分,共14分),解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.(7分)(2013秋•渝中区校级期末)[(x+2y)(x﹣2y)﹣(x+4y)2]÷4y,其中x=5,y=2.20.(7分)(2011•武汉校级模拟)如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:EF∥CD.四、解答题(本大题4个小题,每小题10分,共40分),解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.(10分)(2009秋•滨江区期末)△ABC在平面直角坐标系中的位置如图.请画出△ABC 关于y轴对称的△A1B1C1,并求出A1、B1、C1三点的坐标.22.(10分)(2015•眉山校级模拟)先化简,再求值:.其中x为不等式组的整数解.23.(10分)(2013秋•渝中区校级期末)小李购买了一套商品房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m),解答下列问题:(1)用含x、y的代数式表示地面总面积;(2)已知客厅面积比卫生间面积多21m2,且客厅与卫生间面积共有27m2.若铺1m2地砖的平均费用为120元,那么铺地砖的总费用为多少元?24.(10分)(2013秋•渝中区校级期末)如图,C为BE上一点,以BC、CE为边向线段BE同侧作等边△ABC、等边△CDE,BD交AC于M,交AE于点G,AE交CD于N,连接CG.(1)若BD=6,求AE的长;(2)求证:EG=CG+DG.五、解答题(本大题2个小题,每小题12分,共24分),解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.(12分)(2013秋•渝中区校级期末)为了缓解市内交通拥堵,市委市政府决定对内环高速公路进行扩建,其中某路段长6000米,甲、乙两个工程队计划在一个月内(含30天)分工合作完成该项目,若甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,甲工程队每天修建的长度是乙工程队修建长度的1.5倍.(1)试问甲乙两个工程队每天分别修路多少米?(2)已知甲工程队每天的施工费用为0.8万元,乙工程队每天的施工费用为0.6万元,要使该工程的施工总费用最低,甲乙两队应各做多少天?最低费用是多少?(甲乙两队工作天数均为整数)26.(12分)(2013秋•渝中区校级期末)如图,在长方形ABCD中,AB=3,线段BC上有动点M,过M作直线MN交AB边于点N,并使得BM=2BN.(1)当N与A重合时,求BM的长;(2)在直线AD上是否存在一点P,使得△PMN是等腰直角三角形?若存在,求出AP的长;若不存在,请说明理由.2013-2014学年重庆市渝中区求精中学八年级(上)期末数学试卷参考答案一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案填在答题卷中对应的表格内.1.B 2.B 3.D 4.D 5.A 6.C 7.B 8.B 9.C 10.C 11.A 12.C二、填空题(本大题6个小题,每小题4分,共24分),请将每小题的答案直接填在答题卷中对应的横线上.13.3(a+3b)(a-3b) 14.x=3 15.-6 16.14或16 17.m>-6且m≠-4 18.1三、解答题(本大题2个小题,每小题7分,共14分),解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.19.20.四、解答题(本大题4个小题,每小题10分,共40分),解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.21.22.23.24.五、解答题(本大题2个小题,每小题12分,共24分),解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卷中对应的位置上.25.26.。
重庆市2014—2015学年度下学期期末复习八年级数学试卷4

重庆市2014—2015学年度下学期期末复习八年级数学试卷4(满分150分,考试时间120分钟)一、选择题:本大题共12个小题,每小题4分,共48分.在四个选项中,只有一项是符合题目要求的. 1.下列二次根式中,化简后能与3进行合并的是( ) A.8 B. 18 C.23 D. 12A .1x ,21≠-≥且x B .1x ≠ C .21-≥x D .1x ,21≠->且x3.在今年的中招体育考试中,我校甲、乙、丙、丁四个班级的平均分完全一样,方差分别为: 2甲S =8.5,2乙S =21.7,2丙S =15,2丁S =17.2,则四个班级体考成绩最稳定的是( )A . 甲班B .乙班C . 丙班D . 丁班 4. 下列各式计算正确的是( )A .91)3(2-=-- B .23218-=- C .10=a D .2)2(2-=-5.不能判定四边形ABCD 为平行四边形的条件是( )A. AB ∥CD ,AD=BCB. AB ∥CD ,∠A=∠CC. AD ∥BC ,AD=BCD. ∠A=∠C ,∠B=∠D 6. 在―大家跳起来‖的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示. 对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .极差是15 7.如图,在平行四边形ABCD 中,BC=7,CE 平分∠BCD 交AD 边于点E , 且AE=4,则AB 的长为( )A. 2B.27C. 3D. 4 8、如图,是直线3-=x y 的图象,点P (2,m )在该直线的上方,则m 的取值范围是( )A .m >-3B .m >-1C .m >0D .m <3 9.矩形ABCD 中,E ,F ,M 为AB ,BC ,CD 边上的点,且AB=6,BC=7, AE=3,DM=2,EF ⊥FM ,则EM 的长为( )A 、25B 、5C 、6D 、26第9题图第8题图ABCD第7题图E第6题图A .49B .3C .4D .5 11. 如图,矩形ABCD 的边长AB =6,BC =8,将矩形沿EF 折叠,使B 点与D 点重合,则折痕EF 的长是( ). D .二、填空题:本大题共6个小题,每小题4分,共24分. 13.1112-=-∙+x x x 成立的条件是 .14.化简312a 的结果是 ;在实数范围里因式分解32-x = .15.如图,在平行四边形ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围 16.如图,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是_______.17.如图,已知函数b x y +=2与函数3-=kx y 的图象交于点P ,则不等式b x kx +>-23的解集是 1920.已知一次函数y=(2m –2)x+m+1①m 为何值时,图象过原点. ②已知y 随x 增大而增大,求m 的取值范围. ③函数图象与y 轴交点在x 轴上方,求m 取值范围. ④图象过二、一、四象限,求m 的取值范围.四、解答题:本大题共4个小题,每小题10分,共40分.第16题图 BE21.当1<a <2时,求+的值.22.如图,在矩形ABCD 中,E 是BC 的中点,将△ABE 沿AE 折叠后得到△AFE ,点F 在矩形ABCD 内部,延长AF 交CD 于点G .(1)猜想线段GF 与GC 有何数量关系?并证明你的结论; (2)若AB=3,AD=4,求线段GC 的长;23. 某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图。
2015年八年级数学下册期末试卷含答案

2015年八年级数学下册期末试卷含答案一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)1 )A. B .2.方程2(1)4(1)x x -=-的根是( )A .5B .-5C .5或-5D .5或13.在五边形ABCDE 中,已知∠A 与∠C 互补,∠B+∠D=2700,则∠E 的度数为( ) A .800 B .900 C .1000 D .11004有意义,则x 的取值范围是( ) A .x ≤5 B .x ≥5 C .x >5且 x ≠6 D .x ≥5且x ≠6 5.下列四个命题中真命题是( )A.对角线互相垂直平分的四边形是正方形;B.对角线垂直且相等的四边形是菱形;C.对角线相等且互相平分的四边形是矩形;D.四边都相等的四边形是正方形.6.某市2013年投入教育经费2亿元,为了发展教育事业,该市每年教育经费的年增长率均为x ,从2013年到2015年共投入教育经费9.5亿元,则下列方程正确的是( )A.5.922=x B .5.9)1(2=+x C .5.9)1(22=+x D .5.9)1(2)1(222=++++x x7.如图,在平面直角坐标系中,菱形ABCD 的顶点C 的坐标为(-1,0),点B 的坐标为(0,2),点A 在第二象限.直线521+-=x y 与x 轴、y 轴分别交于点N 、M .将菱形ABCD 沿x 轴向右平移m 个单位,当点D 落在△MON 的内部时(不包括三角形的边),则m 的值可能是( ) A.1 B.2 C.4 D.8 8.对于反比例函数ky x=,如果当2-≤x ≤1-时有最大值4=y ,则当x ≥8时,有( ) A .最小值y =21-B .最小值1-=yC .最大值y =21-D .最大值1-=y9.已知关于x 的一元二次方程02)(2=-+++c a bx x c a ,其中a 、b 、c 分别为△ABC 三边的长.下列关于这个方程的解和△ABC 形状判断的结论错误的是( ) A .如果x =-1是方程的根,则△ABC 是等腰三角形; B .如果方程有两个相等的实数根,则△ABC 是直角三角形; C .如果△ABC 是等边三角形,方程的解是x =0或 x =-1; D .如果方程无实数解,则△ABC 是锐角三角形. 10.有下列四个命题: ① 函数xky =,当0,0<>x k 时,y 随着x 的增大而减小.② 点P )(y x ,的坐标满足054222=+-++y x y x ,若点P 也在反比例函数xk y =的图像上,则2-=k . ③ 如果一个样本123,,,n x x x x 的方差a ,那么这个样本1233,3,33,n x x x x 的方差为3a.. ④关于x 的方程0)(2=++b m x a 的解是21-=x ,12=x ,(a,m,b 均为常数,a ≠0),则方程0)2(2=+++b m x a 的解是14x =-,21x =-其中真命题的序号是 ( )A .1个B .2个C .3个D .4个 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 11.在一次演讲比赛中,某班派出的5名同学参加年级竞赛的成绩如下表(单位:分),其中隐去了3号同学的成绩,但得知5名同学的平均成绩是21分,那么5名同学成绩的方差是 .12.用反证法证明“在三角形中,至少有一个角不大于60°”时,应先假设 .13. 如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长= cm .14.如图,点A 在反比例函数ky x=(x>0)的图象上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使AD =DC ,过点A 作AB ⊥x 轴于点B ,连结BC 交y 轴于点E .若△ABC 的面积为4,则k 的值为 .15.如图,△ABC 是一张等腰直角三角形彩色纸,AC =BC =40cm .(1)将斜边上的高CD 五等分,然后裁出4张宽度相等的长方形纸条,则这4张纸条的面积和是 cm 2.(2)若将斜边上的高CD 分成n 等分,然后裁出(n -1)张宽度相等的长方形纸条,则这(n -1)张纸条的面积和是 cm 2.16. 若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.在四边形ABCD 中,AB=AD=BC ,∠BAD=90°,AC 是四边形ABCD 的和谐线,则∠BCD=三. 全面答一答 (本题有7个小题, 共66分) 解答应写出文字说明, 证明过程或推演步骤.17.(本题6分)(1)64)7()3(22--+- (2)2)32()31)(31(+--+18.(本题8分)(1)162=-x x (2)2x 2+5x-5=019.(本题8分)某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):经统计发现两班总数相等。
14-15第二学期期末八年级数学答案

2014—2015学年第二学期期末考试八年级数学试题参考答案及评分标准15题:解:∵O1为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=×1=,∵平行四边形AO1C2B的对角线交于点O2,∴平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形ABC3O2的面积=××1=,依此类推,平行四边形ABC2014O2015的面积=cm2.二、填空题(每小题2分,共10分)16.甲17.58xy=-⎧⎨=-⎩18.619.10 20.(31,16)20题:解:∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.则B n的坐标是(2n﹣1,2n﹣1).∴B5的坐标是(25﹣1,24).即:B5的坐标是(31,16).三、解答题(本大题共6个小题;共60分)21.(本题满分8分)解:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,-----------------------------3分在Rt△DCB中:CD2+BC2=BD2,2CD2=(100)2,CD=100(米),答:在直线L上距离D点100米的C处开挖.-----------------------------8分(第21题图)2014-2015学年第二学期期末八年级数学答案第1页(共3页)2014-2015学年第二学期期末八年级数学答案 第2页(共3页)22.(本题满分10分) 解:(1)设直线OA 的解析式为y=kx , 把A (3,4)代入得4=3k ,解得k=, 所以直线OA 的解析式为y=x ;------------2分 ∵A 点坐标为(3,4), ∴OA==5,∴OB=OA=5,∴B 点坐标为(0,﹣5), -----------------4分 设直线AB 的解析式为y=ax+b , 把A (3,4)、B (0,﹣5)代入得,解得,∴直线AB 的解析式为y=3x ﹣5;----------------------------------------------------8分 (2)△AOB 的面积S=×5×3=.-------------------------------------------------10分23. (本题满分10分) 证明:∵DE ∥AC ,∴∠DEC=∠ACB ,∠EDC=∠DCA , ∵四边形ABCD 是平行四边形, ∴∠CAB=∠DCA , ∴∠EDC=∠CAB , 又∵AB=CD ,∴△EDC ≌△CAB ,∴CE=CB , ----------------------------------7分 所以在Rt △BEF 中,FC 为其中线,所以FC=BC , ----------------------9分 即FC=AD .-------------------------------------10分24、(本小题满分10分)解:(1)a =1﹣(40%+20%+25%+5%)=1﹣90%=10%, 被抽查的学生人数:240÷40%=600, 8天的人数:600×10%=60人,补全统计图如图所示:------------------ 4分(2)参加社会实践活动5天的最多, 所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;--------------------8分(3)1000×(25%+10%+5%)=1000×40%=400所以,填400人.----------------------------10分(第22题图)(第23题图)FED CBA25.(本题满分10分)(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;---------------------------------------5分(2)解:四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC﹣BE=DC﹣DF即CE=CF,在△COE和△COF中,,(第25题图)∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形∵AE=AF,∴平行四边形AEMF是菱形.--------------------------------------------------------------10分26.(本题满分12分)解:(1)∵8x+6y+5(20﹣x﹣y)=120,∴y=20﹣3x.∴y与x之间的函数关系式为y=20﹣3x.----------------------------------------4分(2)由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5,又∵x为正整数,∴x=3,4,5.故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.--------------------------------------------8分(3)W=8x•12+6(20﹣3x)•16+5[20﹣x﹣(20﹣3x)]•10=﹣92x+1920.∵W随x的增大而减小,又x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元.答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.--------------------------------------------------------------------12分2014-2015学年第二学期期末八年级数学答案第3页(共3页)。
2014-2015学年第二学期八年级下期末测试数学试卷已整理版

2014-2015第二学期八年级下期末测试数学试卷(满分150分)一、选择(每题4分,计40分)1)A 、50B 、24C 、27D 、21 2.如果x 0≤,则化简x 1- ) A 、x 12- B 、x 21- C 、1- D 、13.长度分别为5cm 、9 cm 、12 cm 、13cm 、15 cm 、五根木棍首尾连接,最多可搭成直角三角形的个数为( )A .1个B .2个C .3个D .4个 4.方程)3(5)3(2-=-x x x 的根是( ) A .25=x B .x=3 C .25,321==x x D .25-=x 5.已知三角形两边长是4和7,第三边是方程055162=+-x x 的根,则第三边长是( )A .5B .11C .5或11D .66.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x ,则下列方程正确的是 A .1.4(1+x )=4.5 B .1.4(1+2x )=4.5C .1.4(1+x )2=4.5D .1.4(1+x )+1.4(1+x )2=4.5 7.直线l 过正方形ABCD 顶点B ,点A 、C 到直线l 距离分别是1和2,则正方形边长是( ) A .3 B .5 C .212D .以上都不对8根据上表中的信息判断,下列结论中错误..的是( ) A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分5D .该班学生这次考试成绩的平均数是45分 9.在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A .∠ADE =20° B .∠ADE =30° C .∠ADE =1 2∠ADC D .∠ADE = 13∠ADC 10.如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .2 5B .3 5C .5D .6 二、填空(每题5分,计20分)11.在△ABC 中,AB=AC=41cm ,BC=80cm ,AD 为∠A 的平分线,则S △ABC =______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆求精中学2014—2015学年度下学期期末质量监测八年级数学试卷(本卷共4页,满分150分,考试时间120分钟)一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列根式中,是最简二次根式的是( )A D 2.下列计算正确的是( ) A .523=+ B.623=⨯ C.3312=- D .428=÷3.下列各点在函数x y 2=的图象上的是( )A .(2,-1)B .(-1,2)C .(1,2)D .(2,1) 4.下列各数组中,能作为直角三角形三边长的是( )A .1,1,2B .2,3,4C .2,3,5D .3,4,55.在一次射击比赛中,甲、乙两名运动员10次射击的平均成绩都是7环,其中甲成绩的方差为1.21,乙成绩的方差为3.98,由此可知( )A .甲比乙的成绩稳定B .乙比甲的成绩稳定C .甲、乙两人的成绩一样稳定D .无法确定谁的成绩更稳定 6.如图,矩形ABCD 中,0120=∠AOD ,3AB =,则BD 的长是( ) A .33 B .6 C .4 D .327.若1(4, )y -,2(2, )y 两点都在直线42--=x y 上,则1y 与2y 的大小关系是( ) A .12y y > B .12y y = C .12y y < D .无法确定8.如图,平行四边形ABCD 中,对角线AC 与BD 交于点O,已知∠OAB=90,BD=10cm ,AC=6cm ,则AB 的长为( )A .4cm B.5cm C.6cm D.8cm9.如图,菱形ABCD 的周长为48cm ,对角线AC 、BD 相交于O 点,E 是AD 的中点,连接OE ,则线段OE 的长等于( )A .4 cmB . 5cmC .6 cmD . 8cm10.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:则这15名同学每天使用零花钱的中位数和众数分别是( )A .3,2B .4,2C .2 ,3D .5,4 11.李华从家骑自行车上学,匀速行驶了一段距离,休息了一段时间,发现自己忘了带数学复习资料,立刻原路原速返回,在途中遇到给他送数学复习资料的妈妈,拿到数学复习资料后,张华立刻掉头沿原方向用比原速大的速度匀速行驶到学校.在下列图形中,能反映张华离家的距离s 与时间的函数关系的大致图象是( )BCA DEO(9题图)A .12.如图,在平面直角坐标系中,直线x l ⊥1轴于点(1,0),直线x l ⊥2轴于点(2,0),直线x l ⊥3 轴于点(3,0)⋅⋅⋅直线x l n ⊥轴于点(n,0).函数y=x 的图象与直线n l l l l ,...,,321分别交于点n A A A A ....,,321,.函数y=2x的图象与直线n l l l l ,...,,321分别交于点n B B B B ....,,321.11B OA ∆的面积记为1S ,四边形1221B B A A 的面积记为2S ,四边形2332B B A A 的面积记为3S ,四边形11--n n n n B B A A 的面积记为n S ,则2014S =( )2013.5A.2012B.2013C.2013.5D.2014 二、填空题:本大题共6个小题,每小题4分,共24分. 13.若根式3-x 有意义,则x 的取值范围是__________.14. (= .15.在平面直角坐标系中,点O 为原点,直线4y kx =+交x 轴于点A,交y 轴于点B,若△AOB 的面积为8,则k 的值为 .16.如图,平行四边形ABCD 的对角线相交于点O ,且AB≠AD,过O 作OE ⊥BD 交BC 于点E .若△CDE 的周长为8,则平行四边形ABCD 的周长为 .17.如图,直线 (0)y kx b k =+<交x 轴于A(4,0),则关于x 的不等式0kx b +>的解集为_______.18.如图,正方形ABCD 中,对角线AC 与BD 相交于点O , DE 平分∠CDB 交BC 于E,交AC 于F,则BC:OF= .三、解答题:本大题共2个小题,每小题7分,共14分. 19.计算: ()3201481239123---+--÷.20.如图,ABC ∆中,o 90C ∠=,AC D 是BC 的中点,且o 45ADC ∠=,求△ABC 的周长.(结果保留根号)四、解答题:本大题共4个小题,每小题10分,共40分. 21.平行四边形ABCD 中,E F ,是对角线AC 上两点,且∠ADF= ∠CBE ,连接DE,BF .(1)求证:AFD CEB △≌△; (2)求证:四边形BFDE 是平行四边形.BCAD (20题图)22.某中学八年级在半期测试中数学取得了较好成绩,年级主任随机抽取了部分学生的成绩作为一个样本按A(满分)、B(优秀)、C(良好)、D(及格)四个等级进行统计,并将统计结果制成如下2幅不完整统计图,请你结合图表所给信息解答下列问题:(1)此次调查共随机抽取了__________名学生,其中学生成绩的中位数落在________等级;在图②中D所在扇形的圆心角的度数是;(2)将拆线统计图和扇形统计图在图中补充完整.23.如图,直线 (0)y ax b a =+≠与1y x =+交于y 轴上的点C ,与x 轴交于点 (2, 0)B . (1)求a ,b 的值;(2)设直线1y x =+与x 轴的交点为A ,求ABC ∆的面积.24.如图,P 为正方形ABCD 边BC 上任一点,BG ⊥AP 于点G ,在AP 的延长线上取点E ,使AG=GE ,连接BE ,CE .(1)求证:BE=BC ; (2)∠CBE 的平分线交AE 于N 点,连接DN ,求证:BN +DN =2AN .(23题图)五、解答题:本大题共2个小题,每小题12分,共24分.25.某渔场计划今年养殖无公害标准化生态白鲢和花鲢,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表:(单位:万元/吨)渔场受经济条件的影响,先期投资不能超过36万元,养殖期间的投资不超过29万元.设白鲢种苗的投放量为x吨.(1)求x的取值范围;(2)设这两个品种产出后的总产值为y(万元),试写出y与x之间的函数关系式,并求出当x等于多少时,y有最大值?最大值是多少?26.如图,矩形OACB的顶点O是坐标原点,顶点A,B分别在y轴,x轴的正半轴上,OA=8,OB=6,等腰直角三角形EFD按图①摆放(点D与点O重合)FD=10,连接AB,△EFD从图①位置出发,以每秒1个单位的速度沿OB方向匀速移动,同时,点M从A出发,以每秒2个单位沿AB-BC匀速移动,AO与△EFD的直角边相交于点N。
当M到达点C时,△EFD同时停止运动,连接MN,设移动时间为t(s),t>0.解答下列问题:(1)求AB的解析式;(2)在△EFD的移动过程中,当点E在AD上时t= s;当E在AC上时, t= s;(3)记△EFD与△AOB重叠部分面积为S,直接写出S与t的函数关系式及相应自变量t的取值范围;(4)在移动过程中,连接MN,是否存在△AMN为直角三角形。
若存在,求出t的值;若不存在,说明理由.答案:一1-6BCCDAB7-12AACADC 二.13. 3≥x 14. 23+15. 1± 16. 16 17. x<4 18. 三.解答题19.解:原式=()2132336++--÷……….5分 =133+……….7分20.解:∵o 90C ∠=,o 45ADC ∠= ∴AC=DC ∵AC =∴DC=2 ……….2分 ∵D 是BC 的中点 ∴BD=DC=2∴BC=22 ……….4分 在Rt △ABC 中,根据勾股定理 AB=()()102222222=+=+AC BC ……….6分∴△ABC 的周长:AC+BC+AB=2+22+10=1023+ ……….7分 四.解答题21. 证明:(1)∵四边形ABCD 是平行四边形 ∴BC=AD,BC ∥AD ∴∠DAF=∠BCE ∵∠ADF= ∠CBE 在△AFD 和△CEB 中⎪⎩⎪⎨⎧∠=∠=∠=∠CBE ADF BCAD BCE DAF BCAD (20题图)∴AFD CEB △≌△(ASA) ……….5分(2)∵AFD CEB △≌△∴DF=BE ……….6分∴∠AFD=∠CBE∴∠DFE=∠BEF∴DF ∥BE∴四边形BFDE 是平行四边形……….10分(方法不唯一)22.(1) 20 , B , 36 。
……….6分……….10分23(1)1,21==b a ……….5分(2)OC AB S ABC ∙∙=∆21 =1321⨯⨯=23……….10分24.证明:(1)∵BG⊥AP ,AG=GE,∴BG垂直平分AE∴AB=BE在正方形ABCD中,AB=BC∴BE=BC……….4分(2)过A作AM⊥AN交NB的延长线于M ∵AB=BE∴∠1=∠2∵∠1+∠ABG=90∠GBP+∠ABG=90∴∠GBP=∠1=∠2∵AN是∠CBE的平分线∴∠NBP=∠EBN∵∠GBP+∠CBE+∠2=90∴2∠GBP+2∠NBP=90∴∠GBP+∠NBP=45∴∠GBN =45=∠BNG∵AM ⊥AN∴△AMN 是等腰直角三角形∴MN=2AN,AM=AN∵∠1+∠3=90∠1+∠4=90∴∠3=∠4在正方形ABCD 中,AB=AD在△MAB 和△NAD 中⎪⎩⎪⎨⎧=∠=∠=ADAB ANAM 43∴△MAB ≌△NAD (SAS) ……….9分∴DN=MB∵MN=BN+MB∴MN=BN+AD=2AN∴BN+AD=2AN ……….10分25.(1)根据题意得:⎩⎨⎧≤-+≤-+29)50(3.036)50(4.09.0x x x x ……….4分解得:3230≤≤xx 的取值范围是:3230≤≤x ……….5分(2)根据题意得:)50(23x x y -+= ……….8分 =x+100∵1>0∴当x=32时132=最大值y ……….10分26.解:(1)设AB 的解析式为:y=kx+b∵OA=8,OB=6,∴点A(0,8)B(6,0)∴⎩⎨⎧+==b k b 608 解得:⎪⎩⎪⎨⎧=-=834b k∴AB 的解析式为:834+-=x y ……….3分 (2)t=429 s ……….2分(3)S=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤<++-≤<-+-≤<-+-≤<)9429(716276143)4296(973425)65(251021)50(212222t t t t t t t t t t t……….9分(4)Ⅰ当0<t ≤5时,易知,∠MAN ≠90,AM=2t,AN=8-t①若∠AMN=90则t t 2)8(54=-∴716=t ②若∠ANM=90则t t -=∙8254∴1340=t Ⅱ当5<t ≤9时,易知∠MAN ≠90MH=3t-20,BM=18-2t ①∠AMN=90不存在②若∠ANM=90,则此时M,H 重合∴3t-20=0∴t=320 综上所诉当t 的值为320,1340,716时,△AMN 为直角三角形……….12分。