数学浙江七年级上学期期末练习卷(附答案)

合集下载

七年级数学上学期浙教版期末真题卷(含答案)

七年级数学上学期浙教版期末真题卷(含答案)

七年级上学期浙教版期末真题卷:数学1.−2021的相反数是()A.−2021B.−12021 C.12021 D.20212.浙教版初中数学课本封面长度约为26.0厘米,是精确到()A.1毫米B.1厘米C.1分米D.1米3.2020年我国武汉暴发新冠肺炎疫情,全国人民发扬“一方有难.八方支援”的精神,积极参与到武汉防疫抗疫保卫战中.据统计,参与到武汉防疫抗疫中的全国医护人员约为42000人,将42000这个数用科学记数法表示正确的是()A.42×103B. 4.2×104C.0.42×105D. 4.2×1034.下列计算正确的是()A.a 3−a 2=a B.a 6÷a 2=a 3 C.a 6−a 2=a 4 D.a 3÷a 2=a5.若4x =3y +2,则下列式子正确的是()A.8x +6y =4B.8x −4=6yC.4x +y =3y +x +2D.6x −8y =46.如图,点A 表示的实数是a ,则下列判断正确的是()A.a −1>0B.a +1<0C.a −1<0D.|a|>1期末复习与测试7.关于√8的叙述,正确的是()A.√8是有理数B.面积为4的正方形边长是√8C.√8是无限不循环小数D.在数轴上找不到可以表示√8的点8.已知点A ,B ,P 是在一条直线上的三个点,则下列等式中,一定能判断点P 是线段AB 的中点的是()A.AP =BP B.BP =12AB C.AB =2AP D.AP +BP =AB 9.如图,将一副三角板叠在一起使直角顶点重合于点O (两块三角板可以在同一平面内自由转动,且∠BOD ,∠AOC 均小于180°).下列结论一定成立的是()A.∠BOD >∠AOCB.∠BOD −∠AOC =90°C.∠BOD +∠AOC =180°D.∠BOD ≠∠AOC10.学校在一次研学活动中,有n 位师生乘坐m 辆客车,若每辆客车乘50人,则还有12人不能上车;若每辆客车乘55人,则最后一辆车空了13个座位.下列四个等式:①50m +12=55m −13;②50m −12=55m +13;③n −1250=n +1355;④n +1250=n −1355.其中正确的是()A.①② B.①③ C.③④ D.①④11.3的平方根是.12.若∠A =40°17′,则∠A 的补角的度数为.13.若2n −1=6,则4×2n −4=.期末复习与测试14.如图,点A,B在数轴上,点O为原点,OA=OB.按如图所示方法用圆规在数轴上截取BC=AB,若点C表示的数是15,则点A表示的数是.15.某快递公司在市区的收费标准为:寄一件物品,不超过1千克付费10元;超出1千克的部分加收2元/千克.乐乐在该公司寄市区内的一件物品,重x(x>1)千克,则需支付元(用含x的代数式表示).16.对于三个互不相等的有理数a,b,c,我们规定符号max{a,b,c}表示a,b,c三个数中较大的数,例如max{2,3,4}=4.按照这个规定则方程max{x,−x,0}=3x−2的解为.17.计算:(1)(−34)−(−16)+(−54)−56;(2)3√−27−8÷(−2)2.18.解方程:(1)3x+2(1−x)=−4(1−x);(2)2x−13=1−5x−26.期末复习与测试19.1号探测气球从海拔2m 处出发,以0.6m/s 的速度匀速上升.与此同时,2号探测气球从海拔8m处出发,以0.4m/s 的速度匀速上升.(1)经x 秒后,求1号、2号探测气球的海拔高度(用含x 的代数式表示).(2)出发多长时间1号探测气球与2号探测气球的海拔高度相距4m .20.在平面内有三点A ,B ,C .(1)如图,作出A ,C 两点之间的最短路线;在射线BC 上找一点D ,使线段AD 长最短.(2)若A ,B ,C 三点共线,若AB =20cm ,BC =14cm ,点E ,F 分别是线段AB ,BC 的中点,求线段EF 的长.21.如图在某居民区规划修建一个小广场(图中阴影部分).(1)用含m ,n 的代数式分别表示该广场的周长C 与面积S .(2)当m =6米,n =5米时,分别求该广场的周长和面积.期末复习与测试22.已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE ,使∠BOC =∠EOD =60°.(1)如图①,若OD 平分∠BOC ,求∠AOE 的度数.(2)如图②,将∠EOD 绕点O 按逆时针方向转动到某个位置时,使得OD 所在射线把∠BOC 分成两个角.①若∠COD ∶∠BOD =1∶2,求∠AOE 的度数.②若∠COD ∶∠BOD =1∶n(n 为正整数),直接用含n 的代数式表示∠AOE.23.如图,数轴上有A ,B 两点,A 在B 的左侧,表示的有理数分别为a ,b ,已知AB =12,原点O 是线段AB 上的一点,且OA =5OB .(1)求a ,b 的值.(2)若动点P ,Q 分别从A ,B 同时出发,向数轴正方向匀速运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,设运动时间为t 秒,当点P 与点Q 重合时,P ,Q 两点停止运动,当t 为何值时,2OP −OQ =3.(3)在(2)的条件下,若当点P 开始运动时,动点M 从点A 出发,以每秒3个单位长度的速度也向数轴正方向匀速运动,当点M 追上点Q 后立即返回,以同样的速度向点P 运动,遇到点P 后点M 就停止运动.求点M 停止时,点M在数轴上所对应的数.期末复习与测试参考答案与解析⼀、选择题1.【答案】D【解析】−2021的相反数是:2021.故选:D.2.【答案】A【解析】近似数26.0精确到十分位,即精确到1毫米.故选:A.3.【答案】B【解析】42000=4.2×104,故选:B.期末复习与测试4.【答案】D【解析】A、a3−a2无法计算,故此选项错误;B、a6÷a2=a4,故此选项错误;C、a6−a2无法计算,故此选项错误;D、a3÷a2=a,故此选项正确.故选:D.5.【答案】B【解析】A、在等式4x=3y+2的两边同时乘以2得8x=6y+4,原变形错误,故此选项不符合题意;B、在等式4x=3y+2的两边同时乘以2且减去4得8x−4=6y,原变形正确,故此选项符合题意;C、在等式4x=3y+2的两边同时加上y得4x+y=3y+y+2,原变形错误,故此选项不符合题意;D、在等式4x=3y+2的两边同时乘以2且减去6y得8x−6y=4,原变形错误,故此选项不符合题意;故选:B.6.【答案】C【解析】A、a<1,则a−1<0,故A不符合题意,B、a>−1,则a+1>0,故B不符合题意,C、a<1,则a−1<0,故C符合题意,D、−1<a<0,则|a|<1,故D不符合题意,故选:C.7.【答案】C【解析】A、√8开不尽,所以是无理数,故选项错误;B、面积为4的正方形边长是√4=2,故选项错误;C、√8是无限不循环小数,故选项正确;D、数轴上点与实数是一一对应的,故选项错误.故选:C.8.【答案】A【解析】如图所示:①∵AP=BP,∴点P是线段AB的中点;②点P在AB的延长线上时不成立,如图中P′,BP′=12AB但P′不是AB中点;③点P在BA的延长线上时不成立,如图中P″,AB=2AP″,P″不是AB中点;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点.故选:A.9.【答案】C【解析】因为是直角三角板,所以∠BOD=∠AOC=90°,所以∠BOD−∠AOC=0°,∠BOD+∠AOC=180°,故选:C.10.【答案】B【解析】按师生人数不变列方程得:50m+12=55m−13;按乘坐客车的辆数不变列方程得:n−1250=n+1355.∴等式①③正确.故选:B.期末复习与测试⼆、填空题11.【答案】±√3【解析】∵(±√3)2=3,∴3的平方根是±√3.故答案为:±√3.12.【答案】139°43′【解析】∵∠A=40°17′,∴∠A的补角的度数为180°−40°17′=139°43′.故答案为:139°43′.13.【答案】24【解析】等式2n−1=6的两边都乘以4,得4×2n−4=24,故答案为:24.14.【答案】−5期末复习与测试【解析】设点A表示的数是a,∵点O为原点,OA=OB,∴点B表示的数为−a,AB=−2a,∵BC=AB,∴点C表示的数是−3a,∴−3a=15,解得a=−5,即点A表示的数是−5.故答案为:−5.15.【答案】(2x+8)【解析】依题意可知,乐乐在该公司寄市区内的一件物品,重x(x>1)千克,则需支付10+2(x−1)=(2x+8)元.故答案为:(2x+8).16.【答案】x=1【解析】(1)x⩾0时,∵max{x,−x,0}=3x−2,∴x=3x−2,解得x =1,∵x =1>0,∴x =1是方程max{x ,−x ,0}=3x −2的解.(2)x <0时,∵max{x ,−x ,0}=3x −2,∴−x =3x −2,解得x =0.5,∵x =0.5>0,∴x =0.5不是方程max{x ,−x ,0}=3x −2的解.综上,可得:方程max{x ,−x ,0}=3x −2的解为x =1.故答案为:x =1.三、解答题17.【答案】(1)原式=(−34−54)+(16−56)=−2−23=−223;(2)原式=−3−8÷4=−3−2=−5.【解析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用实数运算法则分别化简得出答案.18.【答案】(1)去括号得:3x +2−2x =−4+4x ,移项得:3x −2x −4x =−4−2,合并得:−3x =−6,解得:x =2;(2)去分母得:2(2x −1)=6−(5x −2),去括号得:4x −2=6−5x +2,移项得:4x +5x =6+2+2,合并得:9x =10,解得:x =109.【解析】(1)方程去括号,移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.19.【答案】(1)根据题意:经x 秒后,1号探测气球的海拔高度为(0.6x +2)m ;2号探测气球的海拔高度为(0.4x +8)m ;期末复习与测试(2)分两种情况:①2号探测气球比1号探测气球海拔高4米,根据题意得(0.4x +8)−(0.6x +2)=4,解得x =10;②1号探测气球比2号探测气球海拔高4米,根据题意得(0.6x +2)−(0.4x +8)=4,解得x =50.综上所述,上升了10或50秒后1号探测气球与2号探测气球的海拔高度相距4m .【解析】(1)根据:开始的高度+上升时间×上升速度,分别计算两个探测气球上升的海拔高度,并表示出x 秒后两个气球的海拔高度;(2)两个探测气球的海拔高度相距4m ,分两种情况:①2号探测气球比1号探测气球海拔高4米;②1号探测气球比2号探测气球海拔高4米;分别列出方程求解即可.20.【答案】(1)①连接AC ,线段AC 即为所求;②做射线BC ,过点A 做射线BC 的垂线,交BC 于D ,线段AD 即为所求.(2)有两种情况:①当点C 在线段AB 的延长线上时,如图1:因为E ,F 分别是AB ,BC 的中点,AB =20cm ,BC =14cm ,所以BE =12AB =12×20=10(cm),BF =12BC =12×14=7(cm),所以EF =EB +BF =10+7=17(cm);②当点C 在线段AB 上时,如图2:根据题意,如图2,BE =12AB =10cm ,BF =12BC =7cm ,所以EF =BE −BF =10−7=3(cm),综上可知,线段EF 的长度为17cm 或3cm .【解析】(1)根据两点之间线段最短,点到直线的距离等概念,利用直尺即可作出图形;(2)根据线段的定义即可求解.21.【答案】(1)由图形可得:期末复习与测试C =2m ×2+2n ×2+2n =4m +6n ;S =2n ×2m −(2m −m −0.4m)n=4mn −0.6mn=3.4mn ;(2)当m =6米,n =5米时,C =4m +6n=4×6+6×5=24+30=54(米);S =3.4mn=3.4×6×5=102(平方米).故该广场的周长是54米,面积是102平方米.【解析】(1)观察图形,根据周长的定义计算即可;广场的面积S 等于长为2m ,宽为2m 的长方形的面积减去长为n ,宽为(2m −m −0.4m)的长方形的面积;(3)将m =6米,n =5米分别代入(1)中所得的代数式,计算即可.22.【答案】(1)∵OD 平分∠BOC ,∠BOC =∠EOD =60°,∴∠BOD =30°,∠BOE =60°+30°=90°,∴∠AOE =180°−90°=90°.(2)①∵∠BOC =60°,∠COD ∶∠BOD =1∶2,∴∠BOD =40°,∴∠BOE =60°+40°=100°,∴∠AOE =180°−100°=80°.②如图:∵∠BOC =60°,∠COD ∶∠BOD =1∶n ,∴∠BOD =60°n n +1,∴∠BOE =60°+60°n n +1,∴∠AOE =180°−(60°+60°n n +1)=120°−60°n n +1.【解析】(1)根据角平分线可得∠BOD =30°,∠BOE =90°,进而可得∠AOE 的度数;(2)①根据∠BOC =60°和∠COD ∶∠BOD =1∶2可得∠BOD =40°,∠BOE =100°,进而可得∠AOE 的度数;②根据∠BOC =60°和∠COD ∶∠BOD =1∶n 可得∠BOD =60°+60°n n +1,再由①的思路可得答案.期末复习与测试23.【答案】(1)∵AB =12,AO =5OB ,∴AO =10,OB =2,∴A 点所表示的数为−10,B 点所表示的数为2,∴a =−10,b =2.故答案为:−10;2;(2)当0<t <5时,如图1,AP =2t ,OP =10−2t ,BQ =t ,OQ =2+t ,∵2OP −OQ =3,∴2(10−2t)−(2+t)=3,解得t =3,当点P 与点Q 重合时,如图2,2t =12+t ,解得t =12,当5<t <12时,如图3,OP =2t −10,OQ =2+t ,则2(2t −10)−(2+t)=3,解得t =813,综上所述,当t 为3或813时,2OP −OQ =3;(3)设点M 运动的时间为t 秒,点M 追上点Q ,3(t −103)=2+t ,解得t =6,∴OP =2(t −5)=2,此时OM =3(t −103)=8;点P 与点M 相遇时,2t +3t =6,解得t =1.2,此时OM =8−3×1.2=4.4.故点M 停止时,点M 在数轴上所对应的数是4.4.【解析】(1)由AO =5OB 可知,将12平均分成6份,AO 占5份为10,OB 占一份为2,由图可知,A 在原点的左边,B 在原点的右边,从而得出结论;期末复习与测试(2)分两种情况:点P在原点的左侧和右侧时,OP表示的代数式不同,OQ=2+t,分别代入2OP−OQ=3列式即可求出t的值;(3)设点M运动的时间为t秒,分两种情况:点M追上点Q;点P与点M相遇时;列出方程即可解决问题.期末复习与测试。

浙江省杭州市2023—2024学年数学七年级上学期期末复习卷(含答案)

浙江省杭州市2023—2024学年数学七年级上学期期末复习卷(含答案)

浙教版数学七年级上学期期末复习卷(适用杭州)考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间120分钟。

2.答题前,必须在答题卡上填写校名,班级,姓名,座位号。

3.不允许使用计算器进行计算,凡题目中没有要求取近似值的,结果应保留根号或π一、选择题(本大题有10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.将4 000 000 000用科学记数法表示为( )A.0.4×109B.0.4×1010C.4×109D.4×10102.一天早晨的气温为-3℃,中午上升了7℃,半夜又下降了8℃,则半夜的气温是( )A.-5℃B.-4℃C.4℃D.-16℃3.已知a,b两数在数轴上对应的点如图所示,在下列结论中,①b>a;②a+b>0;③a﹣b>0;④ab<0;⑤ba>0;正确的是( )A.①②⑤B.③④C.③⑤D.②④4.若|a+9|+(b﹣8)2=0,则(a+b)2023的值为( )A.﹣1B.0C.1D.25.下列说法正确的是( )A.9的平方根是3B.-25的平方根是-5C.任何一个非负数的平方根都是非负数D.一个正数的平方根有2个,它们互为相反数6.某学校组织初一n名学生秋游,有4名教师带队,租用55座的大客车若干辆,共有3个空座位,那么用n的代数式表示租用大客车的辆数为( )A.n+155B.n+755C.n+455+3D.n+455―37.如图,数轴上的点M,N表示的数分别是m,n,点M在表示0,1的两点(不包括这两点)之间移动,点N在表示-1,-2的两点(不包括这两点)之间移动,则下列判断正确的是( )A.|3m+n|的值一定小于2B.1m―n的值可能比2020大C.m2―2n的值一定小于0D.1m+1n的值不可能比2020大8.若x+y=2,z―y=―3,则x+z的值等于( )A.5B.1C.-1D.-59.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,可列出的方程为( )A.3x+20=4x―25B.3(x+20)=4(x―25)C.3x―25=4x+20D.3x―20=4x+2510.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为( )A.4cmB.2cmC.4cm或2cmD.小于或等于4cm,且大于或等于2cm二、填空题(本大题有6个小题,每小题4分,共24分)11.绝对值小于4的所有整数的和为 .12.数轴上的A点与表示―3的点距离4个单位长度,则A点表示的数为 .13.定义新运算“&”如下:对于任意的实数a,b,若a≥b,则a&b=a―b;若a<b,则a&b=3a―b.下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上)①当a≥b时,a&b≥0;②2013&2021的值是无理数;③当a<b时,a&b<0;④2&1+1&2=0.14.若2x m-1y2与-3x6y2n是同类项,则m+n的值为 .15.如图,已知OA⊥OB,点O为垂足,OC是∠AOB内任意一条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD互余,其中正确的有 (只填写正确结论的序号).16.茶百道生产的一种由A、B两种原料按一定比例配制而成的奶茶,其中A原料成本价为10元/千克,B原料成本价为15元/千克,按现行价格销售每千克奶茶可获得4.8元的利润.由于物价上涨,A原料上涨20%,B原料上涨10%,配制后的总成本增加320.茶百道为了拓展市场,打算再投入现总成本的10%做广告宣传,使得销售成本再次增加,如果要保证每千克的利润不变,则此时这种奶茶每千克的售价与原售价之差为 元三、解答题(本大题有7小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.在数轴上表示下列各数:﹣2.5,3 1,-(-2),|-5|,并用“>”将它们连接起来.218.“低碳生活”从现在做起,从我做起,据测算,1公顷落叶阔叶林每年可吸收二氧化碳14吨,如果每台空调制冷温度在国家提倡的26摄氏度基础上调到27摄氏度,相应每年减排二氧化碳21千克.某市仅此项就大约减排相当于18000公顷落叶阔叶林全年吸收的二氧化碳,若每个家庭按2台空调计算,该市约有多少万户家庭?19.有一些分别标有7,13,19,25…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数之和为345.(1)猜猜小彬拿的3张卡片上的数各是多少?(2)小彬能否拿到相邻的3张卡片,使得3张卡片上的数字之和等于150?如果能拿到,请求出这3张卡片上的数各是多少,如果拿不到,请说明理由.20.工业园区某机械厂的一个车间主要负责生产螺丝和螺母,该车间有工人44人,其中女生人数比男生人数的2倍少10人,每个工人平均每天可以生产螺丝50个或者螺母120个.(1)该车间有男生、女生各多少人?(2)已知一个螺丝与两个螺母配套,为了使每天生产的螺丝螺母恰好配套,应该分配多少工人负责生产螺丝,多少工人负责生产螺母?21.下面是某平台2023年国庆期间河北热门景点前两名,在某个时间段内,共售出a张北戴河门票和b张避暑山庄门票.(1)在该时间段内,该平台这两种门票共售出多少元?(2)当a=3×104,b=8×103时,该平台这两种门票共售出多少元?(用科学记数法表示)22.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?23.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c―10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P运动到A、B之间,且到A点距离是到B点距离的2倍,求此时点P的对应的数;若运动到B、C之间时,是否存在点P,使它到A点距离是到B点距离的2倍,如果存在,请求出它所对应的数,如果不存在,请说明理由;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向终点C点运动,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.浙教版数学七年级上学期期末复习卷(适用杭州)参考答案1.【答案】C2.【答案】B3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】D11.【答案】012.【答案】―7或113.【答案】①③④14.【答案】815.【答案】①②④16.【答案】3.1817.【答案】解:-(-2)=2,|-5|=5,如图所示:>-(-2)>﹣2.5.用“>”将它们连接起来:|-5|>3 1218.【答案】解:由题意得:14×18000×1000÷(2×21)=14×18000×1000÷42=252000000÷42=6000000=600(万户).答:该市约有600万户家庭.19.【答案】(1)解:设小彬拿到的三张卡片为:x﹣6,x,x+6,(x﹣6)+x+(x+6)=345,解得,x=115,∴x﹣6=109,x+6=121,答:小彬拿到的三张卡片是109,115,121;(2)解:小彬不能拿到相邻的3张卡片,使得这三张卡片上的数之和等于150,理由:假设小彬拿到的三张卡片为:a﹣6,a,a+6,(a﹣6)+a+(a+6)=150,解得,a=50,由题目中的数字可知,卡片上的数字都是奇数,而50是偶数,故小彬不能拿到相邻的3张卡片,使得这三张卡片上的数之和等于150.20.【答案】(1)设该车间有男生x人,则女生人数是人,则.解得则.答:该车间有男生18人,则女生人数是26人.(2)设应分配y名工人生产螺丝,名工人生产螺母,由题意得:解得:,答:分配24名工人生产螺丝,20名工人生产螺母.21.【答案】(1)解:100a+45b(2)解:当a=3×104,b=8×103时,代入可知:100×3×104+45×8×103=3×106+3.6×105=3. 36×106(元)22.【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。

浙江省宁波市慈溪市2022-2023学年七年级上学期期末数学试卷(含答案)

浙江省宁波市慈溪市2022-2023学年七年级上学期期末数学试卷(含答案)

慈溪市2022学年第一学期七年级期末测试数学试题卷一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求)1.2023-的倒数为( )A .2023-B .12023-C .2023D .12023 2.下列四个实数中,属于无理数的是( )A .4B .0.3C .5-D .2π 3.新能源汽车日益受到大众的喜爱.公安部所发布的统计数据显示2022年前三季度全国新注册登记新能源汽车371.3万辆,其中数“371.3万”用科学记数法可表示为( )A .4371.310⨯B .537.1310⨯C .63.71310⨯D .70.371310⨯ 4.下列四个方程中,其中属于一元一次方程的是( )A .30x =B .6x y +=C .26x x +=D .26x x += 5.单项式4xy π的系数和次数分别是( ) A .14,1 B .14,2 C .4π,1 D .4π,2 6.若99.6A ∠=︒,993554B '''∠=︒,则A ∠与B ∠的大小关系是( )A .AB ∠>∠ B .A B ∠=∠C .A B ∠<∠D .无法判断7.下列四个说法:①两点确定一条直线;②过直线上一点有且只有一条直线垂直于已知直线;③连结直线外一点与直线上各点的所有线段中,垂线段最短;④从直线外一点到这条直线的垂线段,叫做点到直线的距离,其中正确..的说法的个数是( ) A .1 B .2 C .3 D .48.若a ,b 为实数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是( )A .b a b a -<<<-B .b b a a <-<<-C .a b b a <<-<-D .a b b a <-<<-9.定义一种新运算符号“Θ”,满足b a b a b a Θ=-+,则()()123-ΘΘ的值为( )A .7B .8C .9D .1110.如图是一个长方形的储物柜,它被分割成4个大小不同的正方形和一个小长方形,若要计算长方形储物柜的外围周长,则只需知道哪个正方形的边长即可( )A .①B .②C .③D .④二、填空题(每小题4分,共24分)11.9的算术平方根是______.12.通过估算比较大小:512+______112.(填“>”或“<”或“=”) 13.《莱因德纸草书》是古埃及培训年轻抄写员时可能使用的问题合集,其中记载了下列一个简单的问题:一个量与它的一半及它的三分之一加在一起变成10.若设这个量为x ,则根据题意可列出方程______.14.已知A ∠与B ∠互余,且37A ∠=︒,则B ∠的补角是______度.15.已知224x xy +=,25y xy +=,则2223x xy y +-=______.16.某外贸企业抓住优化疫情防控后的商机,投入资金生产某外贸产品,按疫情防控优化前的销售价格可获利20%,而优化疫情防控后产品价格增长了30%,生产成本仅增长了2%,最后该企业可比疫情优化前多盈利85万元,问该企业投入生产成本______万元.三、解答题(第17、18、19题各6分,第20、21题各8分,第22、23题各10分,第24题12分,共66分)17.计算:(1)384-⨯-; (2)()31212 1.256⎛⎫-+⨯-⎪⎝⎭. 18.已知2231A a b ab =+-,22223B ab a b =-++.(1)化简:2A B -.(2)当1a =,2b =-时,求代数式2A B -的值.19.如图,已知点A ,B ,C ,请你利用没有刻度的直尺.......和圆规按下列要求作图: (1)分别画直线AB 、射线AC 、线段BC .(2)在射线AC 上确定一点D ,使2AD AC BC =-.(请标出点D 位置,并保留作图痕迹)20.解方程:(1)()232x x x --=-; (2)423134x x +--=. 21.2022年足球世界杯在卡塔尔举行.某工厂设计了某款足球纪念品并进行生产,原计划每天生产10000个该款足球纪念品,但由于种种原因,实际每天的生产量与计划量相比有出入,下表是某一周的生产情况(超出记为正,不足记为负,单位:个):星期一 二 三 四 五 六 日 与计划量的差值 43+ 35- 50- 142+ 82- 21+ 29-(1)根据记录的数据可知,本周生产量最多的一天比生产量最少的一天多生产多少个?(2)本周实际生产总量是否达到了计划数量?说明理由.(3)若该款足球纪念品每个生成成本25元,并按每个30元出售,则该工厂本周的生产总利润是多少元?22.如图,数轴上点A ,B 分别表示数a ,b ,且a ,b 互为相反数,29a +是27的立方根.(1)求a ,b 的值及线段AB 的长.(2)点P 在射线BA 上,它在数轴上对应的数为x .①请用含x 的代数式表示线段BP 的长.②当x 取何值时,2BP AP =?23.2022年天猫平台“双十一”促销活动如火如荼地进行.小明发现天猫平台甲、乙、丙三家店铺在销售同一款标价均为30元的杯子,但三家的促销方式不同,具体优惠信息如下:店铺名优惠信息 是否包邮 甲任买一件商品先享受九折优惠,同时参加平台每满200减30元活动 是 乙 购物满500元即可使用一张60元的店铺优惠券(每人限用一张),同时参加平台每满300元减50元活动是丙 若购买数量不超过10个,则不打折;若购买数量超过10个但不超过50个,则超过10个部分打九折;若购买数量超过50个但不超过100个,则超过50个部分打八折;若购买数量超过100个,则超过100个部分打七折.注:不参加平台满减活动.是 (1)若小明想买25个该款杯子,请你帮小明分别计算一下甲、乙、丙三家店铺优惠后的实际价格,再挑选哪家店铺购买更优惠.(2)若小明想从丙店铺购买n 个()100n >该款杯子,请用含n 的代数式表示优惠后购买的总价.(3)若小明想花费3000元在丙店铺来购买该款杯子,且恰好用完,则他能买多少个该款杯子?(注:假设小明均一次性购买)24.如图1所示是某款手表实物图,其示意图如图2所示,已知表盘是以O 为圆心,以1.2厘米为半径的圆,BC 为圆的直径,其中时针为线段OE ,分针为线段OF ,且点A 、B 、O 、C 、D 都在同一条直线上.(1)若点B ,C 是线段AD 的三等分点,求表长AD .(2)若手表显示是9点30分.①求此时时针与分针的夹角EOF ∠的大小;②此时,作射线OG ,使30EOG ∠=︒,求FOG ∠的大小;(3)自9点30分起,至10点30分止,在这一小时期间,时针OE 和分针OF 在不停地旋转.若射线OH 是EOF ∠的平分线,它也随之运动,则经过多少分钟后,恰好能使30EOH ∠=︒?慈溪市2022学年第一学期七年级期末测试数学参考答案一、选择题1.B 2.D 3.C 4.A 5.D 6.A 7.B 8.D 9.C10.C 二、填空题11.3 12.> 13.111023x x x ++= 14.127 15.3 16.255三、解答题17.解:(1)384248-⨯-=-⨯=-(2)()311212 1.25812 1.25128152566⎛⎫-+⨯-=-+⨯-⨯=-+-= ⎪⎝⎭18.解:(1)()()22222231223C A B a b ab ab a b =-=+---++2222262223a b ab ab a b =+-+--()()()2222222622385a b a b ab ab ab =-+++--=-(2)当1a =,2b =-时,多项式()2285812532527C ab =-=⨯⨯--=-=19.解:(1)画对直线AB 、射线AC 、线段BC 各得1分(2)画对得3分,未标记D 扣1分20.解:(1)()232x x x --=-,去括号,得262x x x -+=-移项,得226x x x --=--,合并同类项,得28x -=-,两边都除以2-,得4x =(2)423134x x +--=,去分母,得()()4432312x x +--=, 去括号,得4166912x x +-+=,移项,得4612169x x -=--合并同类项,得213x -=-,两边都除以2-,得132x = 21.解:(1)因为本周生产量最多的一天是周四,最少的一天是周五,所以()1428214282224+--=+=则本周生产量最多的一天比生产量最少的一天多生产224个.(2)因为()()()()()()433550142822129++-+-+++-+++-433550142822129100=--+-+-=>所以本周实际生产总量达到了计划数量.(3)()()100007103025700105350050⨯+⨯-=⨯=(元)22.解:(1)因为29a +是27的立方根,所以293a +==,则3a =-. 又因为a ,b 互为相反数,所以3b a =-=.则()336AB =--=.(2)①线段3BP x =-②当点P 在点A 右侧时,因为2BP AP =,所以()323x x -=+,解得1x =-. 当点P 在点A 左侧时,因为2BP AP =,所以()323x x -=--,解得9x =-. 综上,当1x =-或9-时,2BP AP =.23.解:(1)甲:302590%303585⨯⨯-⨯=(元)乙:302560502590⨯--⨯=(元)丙:30103090%15705⨯+⨯⨯=(元)因为585590705<<,所以挑选甲店铺更优惠.(2)()()()30103090%50103080%100503070%100n ⨯+⨯⨯-+⨯⨯-+⨯⨯- 21480n =+(元)(3)假设花费3000元以标价30元来购买该款杯子,则能买300030100÷=个, 那么优惠后至少能买100个.由(2)可知,令214803000n +=,120n =答:他能买120个该款杯子.24.解:(1)因为点B 是线段AC 的中点,所以2 2.4AB BC OB ===, 又因为点C 是线段BD 的中点,所以2 2.4CD BC OB ===,则此时表长7.2AD AB BC CD =++=.(2)①时针每分钟走30600.5︒÷=︒,分针每分钟走360606︒÷=︒,易知9点时时针与分针的夹角为90°,则30分钟后时针与分针的夹角()()3609060.530105EOF ∠=---⨯=︒②要使30EOG ∠=︒,射线OG 有两种可能需分类讨论:当射线OG 在EOF ∠的内部时,1053075FOG EOF EOG ∠=∠-∠=︒-︒=︒; 当射线OG 在EOF ∠的外部时,10530135FOG EOF EOG ∠=∠+∠=︒+︒=︒.(3)因为射线OH 是EOF ∠的平分线,且30EOH ∠=︒,所以260EOF EOH ∠=∠=︒.设自9点30分起经过t 分钟,则060t ≤≤,因为9点30分时时针与分针所成的夹角为105°,所以当分针未追上时针前, ()60.560105t -+=,解得9011t =; 当分针追上时针后,()60.560105t --=,解得30t = 综上,经过9011或30分钟后,恰好能使30EOH ∠=︒.。

浙江省七年级数学上学期期末试卷(含解析)浙教版

浙江省七年级数学上学期期末试卷(含解析)浙教版

浙江省七年级数学上学期期末试卷(含解析)浙教版七年级上学期期末数学试卷一、仔细选一选(本大题有10小题,每小题3分,共30分。

请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分。

)1.-2016的倒数是()A。

-2016 B。

2016 C。

0答案:B2.9的平方根为()A。

3 B。

-3 C。

±3 D。

0答案:C3.如图,数轴上的点A、B、C、D、E分别对应的数是1、2、3、4、5,那么表示A。

线段AB上 B。

线段BC上 C。

线段CD上 D。

线段DE上答案:B4.下列选项是无理数的为()A。

-√8 B。

8 C。

3.xxxxxxx D。

-π答案:A、C、D5.2cm接近于()A。

珠穆朗玛峰的高度 B。

三层楼的高度 C。

XXX的身高D。

一张纸的厚度答案:D6.若x=2是关于x的方程2x+3m-1=0的解,则m的值为()A。

-1 B。

1 C。

0 D。

2答案:A7.XXX买书需用48元钱,付款时恰好用了1元和5元的纸币共12张。

设所用的1元纸币为x张,根据题意,下面所列方程正确的是()A。

x+5(12-x)=48 B。

x+5(x-12)=48 C。

x+12(x-5)=48 D。

5x+(12-x)=48答案:A8.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A。

1条 B。

2条 C。

3条 D。

4条答案:C9.在直线AB上任取一点O,过点O作射线OC、OD,使OC⊥OD,当∠AOC=30°时,∠BOD的度数是()A。

60° B。

120° C。

60°或90° D。

60°或120°答案:B10.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测+1的个位数字是()A。

0 B。

2 C。

4 D。

8答案:C二、认真填一填(本题有6小题,每小题4分,共24分。

浙教版七年级(上)期末数学试卷(含答案)

浙教版七年级(上)期末数学试卷(含答案)

浙教版七年级(上)期末数学试卷(含答案)浙教版七年级数学上册期末检测试题及答案第Ⅰ卷(选择题)一、选择题(共10小题,满分30分,每小题3分)1.1的倒数是1/1,即1÷1=1,所以选A。

2.对顶角是相互面对的两个角,即1和2是对顶角的。

所以选A。

3.2135亿元用科学记数法表示为2.135×10¹¹,所以选A。

4.-2ab的系数是-2,所以选A。

5.立方根等于它本身的实数只有0和1,所以选A。

6.将3x=2x-2化简得x=-2,不是解x=2,所以选D。

7.6和11/x是同类项,所以m+n=5,所以选B。

8.延长AB至C,使得BC=AB/3,延长BA至D,使得AD=AB,则BD=4AB/3,不等于AB,所以选C。

9.时针和分针在同一直线上的时间是整点和刻度线之间的时间,即30分,所以___做数学作业的时间是35-30=5分钟,所以选B。

10.金鱼不能用七巧板拼成,所以选D。

第Ⅱ卷(非选择题)二、填空题(共6小题,满分24分,每小题4分)11.-(-2)=2,所以填2.12.180-60-30=90,所以填90.13.2a+4b-2=2(a+2b)-2=2(1)-2=0,所以填0.14.设商品的进价为x元,则售价为1.2x元,根据题意可列出方程1.2x-20=x,解得x=100元,所以填100.15.第一个天平两边各放1个小球,第二个天平左边放2个小球,右边放1个小球,第三个天平左边放3个小球,右边应该放2个小球,所以“?”处应该放1个小球,填1.16.某校使用二维码对学生学号进行统一编排。

每个二维码由黑色和白色小正方形组成,其中黑色小正方形表示数字1,白色小正方形表示数字0.每一行数字从左到右依次记为a、b、c、d,利用公式a×23+b×22+c×21+d计算出每一行的数据。

第一行表示年级,第二行表示班级,第三行表示班级学号的十位数,___表示班级学号的个位数。

2023-2024学年浙江省杭州市拱墅区七年级(上)期末数学试卷+答案解析

2023-2024学年浙江省杭州市拱墅区七年级(上)期末数学试卷+答案解析

2023-2024学年浙江省杭州市拱墅区七年级(上)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.2023年10月,“中国空间站”入选了2023年全球十大工程成就.空间站离地球的距离约为400000米,数据400000用科学记数法可表示为()A. B.C.D.2.计算()A.B.1C.D.33.下列各式的结果是负数的是()A.B.C.D.4.下列各式的计算结果正确的是()A. B.C.D.5.一元一次方程,去括号得()A. B.C. D.6.若,则()A.B.C.D.7.如图,在操作课上,同学们按老师的要求操作:①作射线AM ;②在射线AM 上顺次截取;③在射线DM 上截取;④在线段EA 上截取,发现点B 在线段CD 上.由操作可知,线段()A. B. C. D.8.《九章算术》成书于公元1世纪,是古代中国乃至东方的第一部自成体系的数学专著,《九章算术》的算法体系至今仍在推动着计算机的发展和应用.书中记载了这样一题:“今有程传委输驿站受托运粮,空车日行七十里,重车日行五十里.今载太仓粟输上林,五日三返五天往返三趟问太仓去距离上林几何多远?”用现在的解法,设太仓到上林的距离为x里,可列方程()A. B. C. D.9.在综合与实践课上,将与两个角的关系记为,探索n的大小与两个角的类型之间的关系.()A.当时,若为锐角,则为锐角B.当时,若为钝角,则为钝角C.当时,若为锐角,则为锐角D.当时,若为锐角,则为钝角10.如图,点O在直线AD上,在直线AD的同侧作射线OB,OC,若,且和互余.作OM平分,ON平分,则()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。

11.的相反数是______.12.墙上挂着一幅中国地图,北京、杭州、成都三个城市用三个点表示,过其中任意两个点画直线,共有______条直线.13.若,,则______.14.已知是的补角,是的补角,若,,则的度数为______.15.若,都是有理数,则______.16.如图,在内部顺次有一组射线,,⋯,,满足,,,⋯,,若,则______用含n,的代数式表示三、解答题:本题共8小题,共72分。

浙江省杭州市萧山区2023-2024学年七年级上学期期末数学试题(含答案)

浙江省杭州市萧山区2023-2024学年七年级上学期期末数学试题(含答案)

2023学年第一学期期末学业水平测试七年级数学试题卷考生须知:1.本试卷满分120分,考试时间120分钟.2.答题前,在答题纸上写姓名和准考证号,并在试卷首页的指定位置写上姓名和座位号.3.必须在答题纸的对应答题位置上答题,写在其他地方无效.答题方式详见答题纸上的说明.4.如需画图作答,必须用黑色字迹的钢笔或签字笔将图形线条描黑.5.考试结束后,试题卷和答题纸一并上交.试题卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2024的相反数是( )A .2024B .C.D .2.2023年9月23日至10月8日,第19届亚运会在中国浙江杭州举行,亚运会主场馆为杭州奥体中心体育馆,又名“大莲花”.体育馆总建筑面积约为216000平方米,将数字216000用科学记数法表示为( )A .B .C .D .3.下列各数,,,中,负数有()A .1个B .2个C .3个D .4个4.在下列四个数中,最大的数是()A .B .0C .2D .5的值在( )A .8和9之间B .7和8之间C .6和7之间D .5和6之间6.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且于点B ,,则下列结论中正确的是()①线段BP 的长度是点P 到直线l 的距离;②线段AP 的长度是A 点到直线PC 的距离;2024-1202412024-60.21610⨯421.610⨯62.1610⨯52.1610⨯|2|-2(2)-23-3(2)-1-5-3+PB l ⊥90APC ∠=︒③在PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长度是点P 到直线l 的距离.A .①②③B .③④C .①③D .①②③④7.将一副三角板按如图所示位置摆放,其中与一定相等的是()A .B .C .D .8.古代名著《算学启蒙》中有一题:良马日行二百三十里,缀马日行一百三十里,驾马先行一十一日,问良马几何追及之?意思是:跑得快的马每天走230里,跑得慢的马每天走130里,慢马先走11天,快马几天可追上慢马?若设快马x 天可追上慢马,则可列方程为( )A .B .C .D .9.下列说法正确的是()A .若,则B .若,则C .若,则D .若,则10.把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形的盒子底部,按图甲和图乙两种方式摆放,若长方体盒子底部的长与宽的差a 为2,则图甲和图乙中阴影部分周长之差为()A .4B .3C .2D .1二、填空题:本大题有6个小题,每小题3分,共18分.11.单项式的系数是__________.12.若,则的补角的度数是__________.13.如果,那么的值是__________.α∠β∠230(11)13013011x x -=+⨯230(11)130130x x -=+23013011130x x =-⨯23013011130x x =+⨯a b =a c b c +=-ax ay =33ax ay -=+a b =22ac bc =22ac bc =a b=732a b c -7330α∠=︒'α∠5m n -=337m n --14.如图,直线AE 与CD 相交于点B ,,,则的度数是__________.第14题图15.若单项式与单项式的和仍是一个单项式,则的值是__________.16.设代数式,代数式为常数.观察当x 取不同值时,对应A 的值并列表如下(部分):X …123…A…567…若,则__________.三、解答题:本大题有8个小题,共72分,解答应写出文字说明、证明过程或演算步骤.17.(本题满分6分)(1);(2).18.(本题满分6分)(1);(2).19.(本题满分8分)如图,已知平面上有三点A ,B ,C .用无刻度直尺和圆规作图(请保留作图痕迹);(1)画线段AB ,直线BC ,射线CA ;(2)在线段BC 上找一点E ,使得.20.(本题满分8分)设,,(1)化简:;(2)若x 是8的立方根,求的值.60DBE ∠=︒BF AE ⊥CBF ∠15m xy +61n x y --n m 13x a A +=+33ax A a -=A B =x =(3)(7)--+33232-+÷317x x -=+3141136x x --=-CE BC AB =-223A x x =--22B x x =+-23A B -23A B -21.(本题满分10分)一根竹竿插入一水池底部的淤泥中(如图),竹竿的入泥部分占全长的,淤泥以上的入水部分比入泥部分长米,露出水面部分为米,竹竿有多长?水有多深?22.(本题满分10分)如图,点C 为线段AB 上一点,AC 与CB 的长度之比为3:4,D 为线段AC 的中点.(1)若,求BD 的长;(2)若E 是线段BD 的中点,若,求AB 的长(用含a 的代数式表示).23.(本题满分12分)综合与实践问题情境:“综合与实践”课上,老师提出如下问题:将一直角三角板的直角顶点O 放在直线AB 上,OC ,OD 是三角板的两条直角边,三角板可绕点O 任意旋转,射线OE 平分.当三角板绕点O 旋转到图1的位置时,,试求的度数;数学思考:(1)请你解答老师提出的问题.数学探究:(2)老师提出,当三角板绕点O 旋转到图2的位置时,射线OE 平分,请同学们猜想与之间有怎样的数量关系?并说明理由;深入探究:(3)老师提出,当三角板绕点O 旋转到图3的位置时,射线OE 平分,请同学们猜想与∠BOD 之间有怎样的数量关系?并说明理由.24.(本题满分12分)1512131021AB =CE a =AOD ∠35COE ∠=︒BOD ∠AOD ∠COE ∠BOD ∠AOD ∠COE ∠如图,在数轴上点A 表示数-3,点B 表示数,点C 表示数5,点A 到点B 的距离记为AB .我们规定:AB 的大小可以用位于右边的点表示的数减去左边的点表示的数来表示.例如:.(1)求线段AC 的长;(2)以数轴上某点D 为折点,将此数轴向右对折,若点A 在点C 的右边,且,求点D 表示的数;(3)若点A 以每秒1个单位长度的速度向左运动,点C 以每秒4个单位长度的速度向左运动,两点同时出发,经过t 秒时,,求出t的值.1-(1)(3)2AB =---=4AC =2AC AB =2023学年第一学期期末质量检测七年级数学参考答案一、选择题;(每小题3分,共30分)题号12345678910答案BDBCCABDCA二、填空题:(每小题3分,共18分)11.12.13.814.15.2516.三、解答题:17.解;(1)(2)18.解:(1)(2)19.解:(1)画絨后AB 直线BC 射线CA(2)在线段BC 上找一点E ,使得.20.解:(1)化简:.(2)是8的立方根,,.21.解;没竹竿有x 米,则竹竿入泥部分为米,则淤泥以上的入水部分为米,由题意可得:,解得,则,答:竹竿有3米,则水深为米.22.解:(1)由,设,,,,,解得,,,2-10630︒'()106.5︒150︒5210-7-4x =910x =CE BC AB =-()()222322332A B x x x x -=---+-2224263365x x x x x x =----+=-x 2x ∴=222352106A B x x ∴-=-=-=-15x 1152x ⎛⎫+ ⎪⎝⎭1111355210x x x +++=3x =11115210x +=1110:3:4AC BC =3AC x =4BC x =14AB = AC BC AB +=3421x x ∴+=3x =9AC ∴=12BC =为绕段AC 的中点,,.(2)如图所示.由,设,,,为线段AC 的中点,,,为BD 的中点,,,,,解得,.23.解:(1)由题可知:,,.又平分,..(2),理由如下:设,则.平分,.即.(3),理由如下:设,则,,,..24.解:(1).(2)对折后,点A 在点C 的右边,且,点A 表示的数是9,点D 表示的数是.(3)点A 以每秒1个单位长度的速度向左运动t 秒,点C 以每秒4个单位长度的速度向左运动t 秒,D 1922CD AC ∴==9331222BD CD BC ∴=+=+=:3:4AC BC =3AC m =4BC m =7AB m ∴=D 1322AD AC m ∴==311722BD AB AD a m m ∴=-=-=B 11124BE BD m ∴==115444CE BC BE m m m ∴=-=-=CE a = 54m a ∴=45m a =2875AB m a ∴==90DOC ∠=︒35COE ∠=︒ 903555DOE DOC COE ∴∠=∠-∠=︒-︒=︒OE AOD ∠2110AOD DOE ∴∠=∠=︒180********BOD AOD ∴∠=︒-∠=︒-︒=︒2BOD COE ∠=∠BOD x ∠=180AOD x ∠=︒-OE AOD ∠90DOC ∠=︒ 11909022COE DOC DOE x x ⎛⎫∴∠=∠-∠=︒-︒-= ⎪⎝⎭2BOD COE ∠=∠2360BOD COE ∠+∠=︒AOE x ∠=2AOD x ∠=902BOC x ∠=︒-1802BOD x ∴∠=︒-90COE x ∠=︒+()22901802360COE BOD x x ∴∠+∠=︒++︒-=︒5(3)8AC =--= 4AC =∴∴9(3)32+-=运动后表示的数是,运动后表示的数是.①当点C 在A 的右边时,,,,,.②当C 在A 的左边时,,,,,.(得一个答案给3分,两个答案都对给5分)A ∴3t --C ∴54t -2AB t ∴=+54(3)83AC t t t =----=-2AB AC = 2(2)83t t ∴+=-45t ∴=2AB t =+(3)(54)38AC t t t =--=-=-2AB AC = 2(2)38t t ∴+=-12t ∴=。

浙江省绍兴市2023-2024学年七年级上学期期末数学试题(含答案)

浙江省绍兴市2023-2024学年七年级上学期期末数学试题(含答案)

(2)解:
ၚ 数 ၚ
ၚ 数 =(-7a2-2ab+2)+(6a2+4ab-2)=-7a2-2ab+2+6a2+4ab-2=-a2+2ab,
当 a=-2,b=1 时,原式=-(-2)2+2×(-2)×1=-4-4=-8.
【解析】【分析】(1)根据合并同类项法则可对原式进行化简,然后将 x 的值代入计算即可;
(2)当 x<0 时,有-8=2(1-x);当 x≥0 时,有-8= +2,求解即可.
21.【答案】(1)解:设 A,B 两地的距离是 x 千米,
依题意得: Ͳ Ͳ , 解得:x=420. 答:A,B 两地的距离是 420 千米; (2)解:设客车出发 y 小时后,两车第一次相距 20 千米, 依题意得:70y+20=60(y+1), 解得:y=4. 答:客车出发 4 小时后,两车第一次相距 20 千米.
∴∠COE+∠DOF=∠COD,
∴∠COD=180°÷3=60°.
故答案为:C.
【分析】由互补两角之和为 180°可得∠EOD+∠COF=180°,即∠EOF+∠COD=180°,结合平角的概念可得
∠COD=∠AOE+∠BOF,由角平分线的概念可得∠AOE=∠COE,∠BOF=∠DOF,则∠COE+∠DOF=∠COD,
,求输出的数值 的值. ,求输入的数 的值.
21.一辆客车和一辆卡车都从 地出发沿同一条公路匀速驶向 地,客车的行驶速度为 70 千米/小时,卡车 的行驶速度为 60 千米/小时,已知卡车提前 1 小时出发,结果两车同时到达 地.
(1)求 , 两地的距离是多少? (2)客车出发多少小时后,两车第一次相距 20 千米?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学浙江七年级上学期期末练习卷一、单选题1.比-2大1的数()A.-3B.-1C.−12D.22.中国的太空空间站离地球大约400000米.则近似数400000用科学记数法表示为()A.4×104B.40×104C.4×105D.40×105 3.计算5÷(−2−3)的结果是()A.-1B.15C.−15D.−1254.在数17.−π.0.314.√2.−√64.5中.无理数的个数有()A.1个B.2个C.3个D.4个5.如图是同一时刻北京时间和莫斯科时间.若现在北京时间是x.则同一时刻莫斯科的时间可以表示为()A.x+6B.x−6C.x+5D.x−56.一个角的补角是它的余角的3倍.则这个角等于()A.30°B.45°C.60°D.90°7.我们可以用列方程的方法解决某些数学谜题.如图.小慧同学要猜出“口”中数字.列出可以求解的方程是()A.12(460+x)=21(100x+64)B.12(46+10x)=21(100x+64)C.12(46+10x)=21(10x+64)D.12(460+x)=21(10x+64)8.从杭州东站出发到金华南站的动车.中途要停靠诸暨站和义乌站.则铁路部门供旅客购买的火车票要准备()A.12种B.10种C.6种D.4种9.按图示的方法搭1个三角形需要3根火柴棒.搭2个三角形需要5根火柴棒.现有2022根火柴棒.能搭这样的三角形个数为()A.1010个B.1011个C.1012个D.1013个10.如图是一个3×3在正方形网格.将A、B、C三个棋子放在方格中.规定:每行和每列只能出现一个棋子.则一共的放法有()A.18B.27C.36D.48二、填空题11.−3的倒数是12.如图是小强与他妈妈的对话.小强说:买笔记本花了1.2元…….则小强记不清怎么使用的零花钱有元.13.如图3×3方格中.则正方形ABCD的边长是.(方格的边长为1)14.如图是一个时钟在8:00这个时刻的图形.时针与分针所成的角为度.15.如图所示.一块砖的外墙面积为x.那么图中残缺墙面的面积为 .16.一个长方形被分成四个部分的面积分别为S 1.S 2.S 3.S 4.(1)如图1.若被两条直线分成四个长方形.S 1=20.S 2=25.S 3=15.则S 4= ;(2)如图2.若被条线段分成四个三角形.在①S 1和S 2.②S 1和S 3.③S 1和S 4.④S 2和S 4中.已知 则可以求出长方形的面积(填序号).三、解答题17.计算:(1)−3+5−(−8)(2)√9−22×14+√−273×|−13|.18.解方程:(1)2(4−x)=2x . (2)1+x 0.1−0.4x−0.50.2=12.19.先化简.再求值:2a 2b −[2ab 2−2(a 2b +2ab 2)].其中a =−12,b =2.20.放置在水平地面上两个无盖(朝上的面)的长方体纸盒.大小、形状如图.小长方体的长、宽、高分别为:a (cm )、b (cm )、c (cm );大长方体的长、宽、高分别为:1.5a (cm )、2b (cm )、2c (cm ).(1)做这两个纸盒共需要材料多少平分厘米?(2)做一个大的纸盒比做一个小的纸盒多多少平分厘米材料21.如图1.已知∠BOC=40°.OE平分∠AOC.OF平分∠BOC.(1)若AO⊥BO.则∠EOF是多少度?(2)如图2.若角平分线OE的位置在射线OB和射线OF之间(包括重合).请说明∠AOC的度数应控制在什么范围.22.如图.线段AB的中点O是数轴原点.点C在点O右侧.分线段AB的长度为3:2.且OC=3.(1)求点A在数轴上代表的数是什么?请说明理由.(2)若点P从点C出发.以3个单位/秒的速度向点A运动.到点A停止;点Q从点O出发.以1个单位/秒速度向点B运动.到点B后停止.问运动时间t为几秒时.PA=QB?23.小明爸爸在一家电信公司了解到两种移动电话计费方法:计费方法A是每月收月租费30元.通话时间120分钟内免费.超过120分的部分按每分钟0.25元加收通话费;计费方法B是每月收月租费50元.通话时间200分钟内免费.超过200分的部分按每分钟0.2元收通话费.(1)若小明爸爸一个月的通话时间大约在150分钟和160分钟之间.请通过计算说明选用哪种计费方式.可以节省费用?(2)小明爸爸当前选择了计费方式A.有一个月累计通话240分钟.话费m元.若改成用计费方法B.则同样话费m元.可多通话多少分钟?(3)从节省话费的角度考虑.帮小明爸爸选择合适的计费方式.24.问题提出:如图1.A、B、C、D表示四个村庄. 村民们准备合打一口水井.(1)问题解决:若水井的位置现有P、Q两种选择方案.点P在线段BD上.点Q在线段AB上.哪一种方案的水井到各村庄的距离总和较小?请说明你判断的理由.(2)你能给出一种使水井到各村庄的距离之和最小的方案吗?若能.请图2中标出水井的位置点M.并说明理由.(3)问题拓展:如果(2)问中找出的水井经过招标.由两个工程队修建(不存在同时修建). 已知甲工程队单独完成需要80天.乙工程队单独完成需要120天.且甲工程队比乙工程队每天多修建0.5m.问水井要修建几米?(4)若甲工程队每天的施工费为0.5万元.乙工程队每天的费用是0.25万元.为了缩短工期和节约资金.则甲工程队最多施工几天才能使工程款不超过35万元?(甲、乙两队的施工时间不足一天按一天算).答案解析部分1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】B 7.【答案】A 8.【答案】A 9.【答案】A 10.【答案】C 11.【答案】-1312.【答案】16.8 13.【答案】√5 14.【答案】120 15.【答案】72x16.【答案】(1)12(2)②或④17.【答案】(1)解:−3+5−(−8)=−3+5+8=10(2)解:√9−22×14+√−273×|−13|=3−1+(−3)×13=3−1−1=118.【答案】(1)解:2(4−x)=2x去括号得:8−2x =2x 移项得:−2x −2x =8 合并同类项得:−4x =8系数化为1得:x =2 (2)解:1+x 0.1−0.4x−0.50.2=12方程整理得:10(1+x)−4x−52=12 去分母得:20(1+x)−(4x −5)=1 去括号得:20+20x −4x +5=1 移项得:20x −4x =1−20−5 合并同类项得:16x =−24系数化为1得:x =−3219.【答案】解:2a 2b −[2ab 2−2(a 2b +2ab 2)]=2a 2b −(2ab 2−2a 2b −4ab 2) =2a 2b −2ab 2+2a 2b +4ab 2=4a 2b +2ab 2当a =−12,b =2时原式=4×(−12)2×2+2×(−12)×22=−220.【答案】(1)解:小长方体纸盒所需材料:ab +2ac +2bc大长方体纸盒所需材料:3ab +6ac +8bc所以一共所需材料:ab +2ac +2bc +3ab +6ac +8bc =4ab +8ac +10bc (2)解:(3ab +6ac +8bc)−(ab +2ac +2bc)=2ab +4ac +6bc21.【答案】(1)解:∵∠BOC =40°.AO ⊥BO∴∠AOB =90°,∠AOC =∠AOB +∠BOC =130° ∵OE 平分∠AOC .OF 平分∠BOC∴∠EOC =12∠AOC =65°,∠COF =12∠BOC =20°∴∠EOF =∠EOC −∠FOC =65°−20°=45°(2)解:如图1.当OE 与OF 重合时.∠AOC 最小.∠AOC =40°如图2.当OE与OF重合时.∠AOC最大.∠AOC=2∠BOC=80°所以.40°≤∠AOC≤80°.22.【答案】(1)解:点A在数轴上代表的数是−15.理由如下:设BC=2x.AC=3x.则OB=2x+3.AO=3x−3可列方程3x−3=2x+3解得x=6所以AO=15又因为点A在数轴的负半轴上所以点A在数轴上代表的数是-15(2)解:由(1)得:OB=AO=15.AC=18①点P停止前:PA=18−3t.QB=15−t.∵PA=QB∴18−3t=15−t∴t=1.5秒②点P停止后:PA=QB点P从点C出发.以3个单位/秒的速度向点A运动.到点A停止.需要6秒点Q从点O出发.以1个单位/秒速度向点B运动.到点B后停止.需要15秒∵PA=QB∴t=15秒综上所诉:t=1.5秒或15秒23.【答案】(1)解:选择A的话.计算方法A的费用在30+(150−120)×0.25=37.5元和30+ (160−120)×0.25=40元之间;∵150<200,160<200.计算方法B需要50元.故答案为:计算方法A可以节省费用(2)解:由题意得:m=30+(240−120)×0.25=60(元)若改成用计费方法B.设通过时间为t分钟.则60=50+(t−200)×0.2解得:t=250(分钟)∴250−240=10(分钟)所以可多通话10分钟;(3)解:当通话时间t<200分钟时.30+(t−120)×0.25<50.选择计费方法A;当通话时间t>200分钟时.30+(t−120)×0.25>50.选择计费方法B;当通话时间为t=200分钟时.30+(200−120)×0.25=50.两个方案可以任选一个.24.【答案】(1)解:选P.理由如下:如图:P到A、B、C、D的距离之和为:PD+PB+PC+PA=BD+PA+PCQ到A、B、C、D的距离之和为:QD+QB+QC+QA=AB+QD+QC经测量BD+PA+PC<AB+QD+QC所以点P到各村庄的距离总和较小.故答案为:P.(2)解:如图:连接AC.当打井的位置选在AC和BD的交点时.水井到各村庄的距离之和最小.根据“两点之间线段最短” .(3)解:设乙工程队每天修建x米.则甲工程队每天修建x+0.5米可列方程:80(x+0.5)=120x.解得x=1所以水井要修建120米(4)解:设甲工程队最多施工m天才能使工程款不超过35万元可列方程:0.5m+0.25×(120−1.5m)=35.解得m=40所以.甲工程队最多施工40天才能使工程款不超过35万元。

相关文档
最新文档