人教 初三数学 22章 二次函数知识点总结及经典习题含答案
人教版九年级数学上册 第22章 二次函数 知识点总结及练习

初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式二次函数的基本形式()2y a x h k =-+的性质: a 的绝对值越大,抛物线的开口越小。
三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a-. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 交点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 3. 常数项c c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-. ② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x -1 o x 0 x 0 1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
人教版九年级数学上册第22章:二次函数专题 重要知识考点提示及例题分析(期末复习)

九年级数学上册专题:二次函数考点提示及例题分析二次函数高频考点及考查题型考点知识提示1.判断一个函数是否是二次函数要关注3点:(1)等号右边是否是整式;(2)自变量的最高次数是否是2;(3)二次函数的系数是否不为0。
例题:下列四个函数中,一定是二次函数的是()A.y=1/x2+xB.y=ax2+bx+cC.y=x2—(x+7)2D.y=(x+1)(2x—1)分析:A.自变量的最高次数不是2,故错误;B.a=0时,不是二次函数,故错误;C.原方程可得y=14x—49,是一次函数,故错误;D.原方程可得y=2x2+x—1,符合二次函数的定义,故正确2.二次函数是解决现实问题的一个工具,要特别注意实际问题中自变量的取值范围。
例题:某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(103件)的关系为:5x+90(0<x≤2)y1=—5x+130(2≤x<6)若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(103件)的关系为:100 (0<t≤2)y2=5t+110(2≤t<6)(1)用的代式表示t为t= 。
当0<x≤4时,y2与x的函数关系为y2= ;当4≤x< 时,y2=100(2)求每年该公司钠售这种健身产品的总利润w(103元)与国内的钠售数量x(103件)的函数关系式,并指出x的取值范围。
解:(1)由题意,得X+t=6,故t=6-X100 (0<t≤2)y2=5t+110(2≤t<6)当0<x≤4时,2≤6-x<6,即2≤t<6此时y2与的函数关系为:y2=5(6-X)+110=5X+80当4≤x<6时,0≤6-x<4,即0<t≤2此时y2=100故答案为:6-X;5X+80;6(2)分三种情况①当0<x≤2时W=(15x+90)x+(5x+80)(6-x)=10x2+40x+480②当2<x≤4时W=(-5x+130)x+(5x+80)(6-x)= -10x2+80x+480③当4<x<6时,W=(-5x+130)x+100(6-x)= -5x2+30x+6003.易错提示:当给出的二次函数的表达式中含有字母时,要注意二次项系数不为0这一条件。
部编数学九年级上册22.2二次函数(基础篇)(人教版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!专题22.2 二次函数(基础篇)(专项练习)一、单选题知识点一、二次函数的判断1.下列各式中,y 是x 的二次函数的是( )A .21y x =B .211y x x=++C .221y x =-D .y =2.线段5AB =.动点以每秒1个单位长度的速度从点出发,沿线段AB 运动至点B ,以线段AP 为边作正方形APCD ,线段PB 长为半径作圆.设点的运动时间为t ,正方形APCD 周长为y ,B e 的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .一次函数关系,正比例函数关系C .正比例函数关系,二次函数关系D .反比例函数关系,二次函数关系3.某长方体木块的底面是正方形,它的高比底面边长还多50cm ,把这个长方体表面涂满油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是( )A .正比例函数关系B .一次函数关系C .反比例函数关系D .二次函数关系4.下列实际问题中的y 与x 之间的函数表达式是二次函数的是( )A .正方体集装箱的体积3m y ,棱长x mB .小莉驾车以108km h 的速度从南京出发到上海,行驶x h ,距上海y kmC .妈妈买烤鸭花费86元,烤鸭的重量y 斤,单价为x 元/斤D .高为14m 的圆柱形储油罐的体积3m y ,底面圆半径x m知识点二、二次函数的参数5.若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或36.已知|1|(1)2m y m x m -=++是y 关于x 的二次函数,则m 的值为( )A .1-B .3C .1-或3D .07.设A(−2,y 1),B(1,y 2),C(2,y 3)是抛物线y=−x 2-2x+2上的三点,则y 1,y 2,y 3的大小关系为( )A .1y >2y >3yB . 1y >3y >2yC . 3y >2y >1yD . 3y >1y >2y 8.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( )A .2B .4C .6D .8知识点三、二次函数的解析式9.某城市居民2018年人均收入30000元,2020年人均收入达到y 元.设2018年到2020年该城市居民年人均收入平均增长率为x ,那么y 与x 的函数关系式是( )A .y =30000(1+2x )B .y =30000+2xC .y =30000(1+x 2)D .y =30000(1+x )210.在一个边长为2的正方形中挖去一个边长为()02x x <<的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式为( )A .22y x x=+B .24y x =-C .24y x =-D .42y x=-11.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x p p=-+B .24y x p =-C .2(2)y x p =-D .2(4)y x =-+12.如图,在ABC V 中,90C Ð=°,5AC =,10BC =.动点M ,N 分别从A ,C 两点同时出发,点M 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度移动,点N 从点C 开始沿CB 向点B 以每秒2个单位长度的速度移动.设运动时间为t ,点M ,C 之间的距离为y ,MCN △的面积为S ,则y 与t ,S 与t 满足的函数关系分别是( )A .正比例函数关系,一次函数关系B .正比例函数关系,二次函数关系C .一次函数关系,正比例函数关系D .一次函数关系,二次函数关系二、填空题知识点一、二次函数的判断13.给出下列函数:①y =②()21y x x x =-+;③21y x x=+;④()1y x x =-.其中是二次函数的有______,若把它写成2y ax bx c =++的形式,则=a ______,b =______,c =______.14.某校九(1)班共有x 名学生,在毕业典礼上每两名同学都握一次手,共握手y 次,试写出y 与x 之间的函数关系式_____________,它______(填“是”或“不是”)二次函数.15.下列函数①;②;③;④;⑤.其中是二次函数的是____________.16.把函数()()236y x x =--化成2y ax bx c =++的形式为________.知识点二、二次函数的参数17.已知抛物线21y x x =--与x 轴的一个交点为()0m ,,则代数式2332022m m -++的值为______.18.已知y =21(1)m m x +-+2x ﹣3是二次函数式,则m 的值为 _____.19.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数.20.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.知识点三、二次函数的解析式21.如图,在长方形ABCD 中,8cm AB =,6cm AD =,点M ,N 从A 点出发,点M沿线段AB 运动,点N 沿线段AD 运动(其中一点停止运动,另一点也随之停止运动).若设cm AM AN x ==,阴影部分的面积为2cm y ,则y 与x 之间的关系式为______.22.若正方体的棱长为x ,表面积为y ,则y 与x 的关系式为________.23.某种正方形合金板材的成本y (元)与它的面积成正比,设边长为x 厘米.当x =3时,y =18,那么当成本为72元时,边长为_______厘米.24.在一幅长60cm,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm 2,设金色纸边的宽度为xcm,那么y 关于x 的函数是 ___________.三、解答题25.下列函数中(x ,t 是自变量),哪些是二次函数?22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.26.一个二次函数234(1)21k k y k x x -+=-+-.(1)求k 的值.(2)求当x =3时,y 的值?27.已知函数2(||1)(1)3y m x m x =-+++.(1)若这个函数是一次函数,求m 的值(2)若这个函数是二次函数,求m 的取值范围.28.已知,如图①,在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm ,点P 从点A 沿AB 以每秒2cm 的速度向点B 运动,点Q 从点C 以每秒1cm 的速度向点A 运动,设点P 、Q 分别从点A 、C 同时出发,运动时间为t (秒)(0<t <6),回答下列问题:(1)直接写出线段AP 、AQ 的长(含t 的代数式表示):AP =______,AQ =______;(2)设△APQ 的面积为S ,写出S 与t 的函数关系式;(3)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP C ¢,那么是否存在某一时间t ,使四边形PQP C ¢为菱形?若存在,求出此时t 的值;若不存在,说明理由.参考答案1.C【分析】根据二次函数的定义依次判断.解:A 、21y x =不是二次函数,不符合题意;B 、211y x x=++,不是二次函数,不符合题意;C 、221y x =-,是二次函数,符合题意;D 、y =故选:C .【点拨】此题考查二次函数的定义:形如2(0)y ax bx c a =++¹的函数是二次函数,解题的关键是正确掌握二次函数的构成特点.2.C【分析】根据题意分别列出与,与的函数关系,进而进行判断即可.解:依题意:AP=t ,BP =5-t ,故y =4t ,S =(5-t )2故选择:C【点拨】本题考查了列函数表达式,正比例函数与二次函数的识别,根据题意列出函数表达式是解题的关键.3.D【分析】设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,则可表示出y 与x 的函数关系,根据关系式即可作出选择.解:设底面边长为x cm ,则正方体的高为(x +50)cm ,设总费用为y 元,由题意得:2216[24(50)]963200y x x x x x =++=+,这是关于一个二次函数.故选:D .【点拨】本题考查了列函数关系并判断函数形式,关键是根据题意列出函数关系式.4.D【分析】根据题意,列出关系式,即可判断是否是二次函数.解:A.由题得:3y x =,不是二次函数,故此选项不符合题意;B.由题得:108y x =,不是二次函数,故此选项不符合题意;C.由题得:86y x=,不是二次函数,故此选项不符合题意;D.由题得:214y x p =,是二次函数,故此选项符合题意.故选:D .【点拨】本题考查二次函数的定义,形如2(0)y ax bx c a =++¹的形式为二次函数,掌握二次函数的定义是解题的关键.5.C【分析】根据二次函数的定义列方程计算即可;解:∵258(3)23m m y m x x -+=-+-是关于x 的二次函数,∴2582m m -+=且30m -¹,∴12m =,23m =且3m ¹,∴2m =;故选C .【点拨】本题主要考查了二次函数的定义、一元二次方程的求解,准确计算是解题的关键.6.B【分析】根据二次函数的未知数最高次数是2,最高次项系数不为零列式计算即可;解:∵|1|(1)2m y m x m -=++是y 关于x 的二次函数,∴1210m m ì-=í+¹î,解得:3m =;故选B .【点拨】本题主要考查了二次函数的定义,准确分析计算是解题的关键.7.A【分析】把点的坐标分别代入可求得123y y y ,,的值,之后比较大小便可解:因为()12,A y -,()()2312,B y C y ,,是抛物线222y x x =--+上的三点;所以:()()212222y =---×-+=2;2212121y =--×+=-;2322226y =--×+=-所以123y y y >>故答案为A 选项【点拨】本题主要考查抛物线上点坐标之间的x 或y 对应的值的大小比较,把具体的x 或y 代入求值比大小即可8.B【分析】将A 点坐标代入抛物线解析式y =x 2-x -2即可求得a 的值解:将A 点坐标x =3代入抛物线解析式y =x 2-x -2,得:a =32-3-2=4.故选B .【点拨】本题考查了给出函数解析式求点的坐标的方法,代入已知量即可求得未知量,理解二次函数的定义是解题关键.9.D【分析】2020年人均收入y = 2018年人均收入×(1+年人均收入平均增长率为x ) 2,把相关数值代入即可.解:设2018年到2020年该城市居民年人均收入平均增长率为x ,可列方程为:y =30000(1+x )2故选: D .【点拨】本题主要考查由实际问题抽象出二次函数的知识点,解决这类问题所用的等量关系一般是:增长前的量×(1+平均增长率)2 =增长后的量.10.C【分析】根据剩下部分的面积=大正方形的面积-小正方形的面积得出y 与x 的函数关系式即可.解:设剩下部分的面积为y ,则:y =-x 2+4(0<x <2),故选:C .【点拨】此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积-小正方形的面积得出是解题关键.11.A【分析】先求出原来的圆的面积,再用x 表示挖去的圆的面积,相减得到圆环的面积.解:圆的面积公式是2S r p =,原来的圆的面积=2416p p ×=,挖去的圆的面积=2x p ,∴圆环面积216y x p p =-.故选:A .【点拨】本题考查二次函数的列式,解题的关键是根据题意用x 表示各个量,然后列出函数关系式.12.D【分析】先根据题意求出AM t =,2CN t =,则5CM AC AM t =-=-,即5y t =-,再由直角三角形的面积公式即可得到25S t t =-+,再根据一次函数与二次函数的定义即可判断.解:由题意得:AM t =,2CN t =,∴5CM AC AM t =-=-,即5y t=-∵∠C =90°,∴()211=25522MCN S CM CN t t t t ×=×-=-+△,即25S t t =-+,∴y 与t ,S 与t 满足的函数关系分别是一次函数和二次函数关系,故选D .【点拨】本题主要考查了一次函数和二次函数的定义,解题的关键在于能够准确根据题意求出y 与t ,S 与t 满足的函数关系式.13. ④ 1- 1 0【分析】根据二次函数的概念:2(0)y ax bx c a =++¹逐一进行判断即可.①②③都不满足二次函数的形式,④是二次函数解:①不满足二次函数的形式,所以不是二次函数;②()21y x x x x =-+=-,是一次函数,也不满足要求;③不满足二次函数的形式,所以不是二次函数;④()21y x x x x =-=-+是二次函数所以二次函数只有④其中1,1,0a b c =-==故答案为 ④ 1- 1 0【点拨】本题主要考查二次函数的概念,掌握二次函数的概念是解题的关键.14. y =12x 2-12 是解:设有x 人参加聚会,每个人需要和另外的(x -1)个人握手,所以共握手12x (x −1) 次,所以y =12x (x −1)=12x 2-12,是二次函数.故答案为y =12x 2-12,是.【点拨】本题考查了根据实际问题列二次函数关系式,解题的关键是了解握手问题中两人之间相互握手一次.15.②④解:根据二次函数的定义,函数式为整式且自变量的最高次数为2,二次项系数不为0,逐一判断.解:①y=5x-5为一次函数;②y=3x 2-1为二次函数;③y=4x 3-3x 2自变量次数为3,不是二次函数;④y=2x 2-2x+1为二次函数;⑤y=21x 函数式为分式,不是二次函数.故答案为②④.16.232012y x x =-+【分析】把函数()()236y x x =--右边相乘展开合并成2y ax bx c =++形式即可.解:()()22236=12218+332012y x x x x x x x =----=-+,则232012y x x =-+.【点拨】本题是对二次函数基础的考查,熟练把二次函数其他形式化成一般式是解决本题的关键.17.2019【分析】先将点(m ,0)代入函数解析式,然后求代数式的值即可得出结果.解:将(m ,0)代入函数解析式得,m 2-m -1=0,∴m 2-m =1,∴-3m 2+3m +2022=-3(m 2-m )+2022=-3+2022=2019.故答案为:2019.【点拨】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m ,0)代入函数解析式得到有关m 的代数式的值.18.-1【分析】若y =21(1)m m x +-+2x ﹣3是二次函数式,则二次项系数不等于零,可得答案;解:由题意得:21012m m -¹ìí+=î,解得:m =-1,故答案为:-1.【点拨】本题考查了二次函数的定义,理解二次函数的定义是解题关键.19. 4,-2 4【分析】根据二次函数的定义可得当2280m m --¹时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当2280m m --=且20m +¹时,这个函数是一次函数.解:由函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数,得m 2﹣2m ﹣8≠0.解得m ≠4,m ≠﹣2,由y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是一次函数,得228020m m m ì--=í+¹î,解得m =4,故答案为:4,﹣2;4.【点拨】本题考查了二次函数的定义求参数,熟知相关定义是解本题的关键.20.3【分析】根据二次函数图象过原点,把()0,0代入解析式,求出m 的值,还需要考虑二次项系数不能为零.解:根据二次函数图象过原点,把()0,0代入解析式,得209m =-,整理得29m =,解得3m =±,∵30m +¹,∴3m ¹-,∴3m =.故答案为:3.【点拨】本题考查二次函数图象的性质,需要注意解出的解要满足二次项系数不能为零的隐藏条件.21.y =-212x +48【分析】先求出212AMN S x =V ,进而即可得到答案.解:由题意得:21122AMN S AM AN x =×=V ,∴阴影部分的面积=6×8-212x ,即:y =-212x +48.故答案是:y =-212x +48.【点拨】本题主要考查列二次函数解析式,解题的关键是掌握割补法求面积.22.26y x =【分析】正方体有6个面,每一个面都是边长为x 的正方形,这6个正方形的面积和就是该正方体的表面积.解:∵正方体有6个面,每一个面都是边长为x 的正方形,∴表面积26y x =.故答案为:26y x =.【点拨】本题考查了列二次函数关系式,理解两个变量之间的关系是得出关系式的关键.23.6【分析】设y 与x 之间的函数关系式为y=kx 2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.解:设y 与x 之间的函数关系式为y=kx 2,由题意,得18=9k ,解得:k=2,∴y=2x 2,当y=72时,72=2x 2,∴x=6,故答案为:6.【点拨】本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.24.y =(60+2x )(40+2x )解:整个挂图仍是矩形,长是:60+2x ,宽是:40+2x ,由矩形的面积公式得y =(60+2x )(40+2x ).故答案为y =(60+2x )(40+2x ).【点拨】本题考查了根据实际题意列函数解析式,根据题意,找到所求量的等量关系是解决问题的关键.本题需注意长和宽的求法.25.2132y x =-+和215s t t =++是二次函数【分析】根据二次函数的定义逐一判断即可.解:2132y x =-+是y 关于x 的二次函数;231252y x x =-+不是二次函数;222y x =+是一次函数,不是二次函数;215s t t =++是s 关于t 的二次函数,故2132y x =-+和215s t t =++是二次函数.【点拨】本题主要考查二次函数的定义,解题的关键是掌握其定义:一般地,形如2(y ax bx c a =++、b 、c 是常数,0)a ¹的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.2(y ax bx c a ==++、b 、c 是常数,0)a ¹也叫做二次函数的一般形式.26.(1)k =2;(2)14【分析】(1)根据二次函数的定义列出关于k 所满足的式子,求解即可;(2)在(1)的基础上,先求出二次函数解析式,然后代入x =3求解即可.解:(1)依题意有234210k k k ì-+=í-¹î,解得:k =2,∴k 的值为2;(2)把k =2代入函数解析式中得:221y x x =+-,当x =3时,y =14,∴y 的值为14.【点拨】本题考查二次函数的定义,以及求二次函数的函数值,理解并掌握二次函数的基本定义是解题关键.27.(1)1m =;(2)1m ¹±【分析】(1)根据一次函数的定义即可解决问题;(2)根据二次函数的定义即可解决问题;解:(1)由题意得,1010m m ì-=í+¹î解得1m =;(2)由题意得,||10m -¹,解得1m ¹且1m ¹-.【点拨】本题考查一次函数的定义、二次函数的定义,解题的关键是熟练掌握基本概念,(1)根据二次项的系数等于零,一次项的系数不等于零;(2)根据二次项的系数不等于零,可得方程,根据解方程,可得答案.28.(1)2t ,6t -;(2)2S =+;(3)存在,t =4时,四边形PQP C ¢是菱形.【分析】(1)根据∠A =60°,AB =12cm ,得出AC 的长,进而得出AP =2t ,6AQ t =-.(2)过点P 作PH ⊥AC 于H .由AP =2t ,AH =t ,得出PH ,从而求得S 与t 的函数关系式;(3)过点P 作PM ⊥AC 于M ,根据菱形的性质得PQ =PC ,则可得出,CM MQ AQ ==求得t 即可.解:(1)∵在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm ,∴AC =6,∴由题意知:AP =2t ,6,AQ t =-故答案为:2,6.t t -(2)如图①过点P 作PH ⊥AC 于H .∵∠C =90°,∠A =60°,AB =12cm ,∴∠B =30°,∴∠HPA =30°,∵AP =2t ,AH =t ,∴,PH ===∴()2116,22S AQ PH t ==-=+g g (3)当t =4时,四边形PQP′C 是菱形,理由如下:证明:如图②过点P 作PM ⊥AC 于M ,∵CQ =t ,由(2)可知,AM =12AP =t ,∴QC =AM ,,CM AQ \=Q 由对折可得:,,PC P C PQ P Q ¢¢==\ 当PC =PQ 时,四边形PQP C ¢是菱形,,CM MQ \=\ CM =MQ =AQ =13AC =2,4,CQ \=4.t \= 当t =4时,四边形PQP C ¢是菱形.【点拨】本题考查的是含30°的直角三角形的性质,勾股定理的应用,列二次函数关系式,菱形的判定与性质,掌握以上知识是解题的关键.。
九年级数学上册第二十二章二次函数全部重要知识点(带答案)

九年级数学上册第二十二章二次函数全部重要知识点单选题1、已知二次函数y=ax2+bx+c的图象开口向下,对称轴为直线x=−1,且经过点(−3,0),则下列结论正确的是()A.b>0B.c<0C.a+b+c>0D.3a+c=0答案:D=−1,得b=2a,则b<0,图象经过(−3,0),根据对分析:图象开口向下,得a<0,对称轴为直线x=−b2a称性可知,图象经过点(1,0),故c>0,当x=1时,a+b+c=0,将b=2a代入,可知3a+c=0.解:∵图象开口向下,∴a<0,∵对称轴为直线x=−b=−1,2a∴b=2a,∴b<0,故A不符合题意;根据对称性可知,图象经过(−3,0),∴图象经过点(1,0),当x=1时,a+b+c=0,故C不符合题意;∴c=-a-b,∴c>0,故B不符合题意;将b=2a代入,可知3a+c=0,故D符合题意.故选:D.小提示:本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.2、在平面直角坐标系中,将二次函数y=x2的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x−2)2+1B.y=(x+2)2+1C.y=(x+2)2−1D.y=(x−2)2−1答案:B分析:先求出平移后抛物线的顶点坐标,进而即可得到答案.解:∵y=x2的顶点坐标为(0,0)∴将二次函数y=x2的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-2,1),∴所得抛物线对应的函数表达式为y=(x+2)2+1,故选B小提示:本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键.3、如图,抛物线y=ax2+bx+c与x轴相交于点A(−2,0),B(6,0),与y轴相交于点C,小红同学得出了以下结论:①b2−4ac>0;②4a+b=0;③当y>0时,−2<x<6;④a+b+c<0.其中正确的个数为()A.4B.3C.2D.1答案:B分析:根据二次函数的图像与性质,逐一判断即可.解:∵抛物线y=ax2+bx+c与x轴交于点A(−2,0)、B(6,0),∴抛物线对应的一元二次方程ax2+bx+c=0有两个不相等的实数根,即△=b2−4ac>0,故①正确;对称轴为x=−b2a =6−22,整理得4a+b=0,故②正确;由图像可知,当y>0时,即图像在x轴上方时,x<-2或x>6,故③错误,由图像可知,当x=1时,y=a+b+c<0,故④正确.∴正确的有①②④,故选:B.小提示:本题考查二次函数的性质与一元二次方程的关系,熟练掌握相关知识是解题的关键.4、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4√3cm,CD⊥AB,垂足为点D,动点M从点A出发沿AB方向以√3cm/s的速度匀速运动到点B,同时动点N从点C出发沿射线DC方向以1cm/s的速度匀速运动.当点M停止运动时,点N也随之停止,连接MN,设运动时间为t s,△MND的面积为S cm2,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.答案:B分析:分别求出M在AD和在BD上时△MND的面积为S关于t的解析式即可判断.解:∵∠ACB=90°,∠A=30°,AB=4√3,∴∠B=60°,BC=1AB=2√3,AC=√3BC=6,2∵CD⊥AB,∴CD=12AC=3,AD=√3CD=3√3,BD=12BC=√3,∴当M在AD上时,0≤t≤3,MD=AM−AD=3√3−√3t,DN=DC+CN=3+t,∴S=12MD·DN=12(3√3−√3t)(3+t)=−√32t2+9√32,当M在BD上时,3<t≤4,MD=AD−AM=√3t−3√3,∴S=12MD·DN=12(√3t−3√3)(3+t)=√32t2−9√32,故选:B.小提示:本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.5、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4√3米B.5√2米C.2√13米D.7米答案:B分析:根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=32,设大孔所在抛物线解析式为y =ax 2+32, ∵BC =10,∴点B (﹣5,0),∴0=a ×(﹣5)2+32, ∴a =-350, ∴大孔所在抛物线解析式为y =-350x 2+32,设点A (b ,0),则设顶点为A 的小孔所在抛物线的解析式为y =m (x ﹣b )2,∵EF =14,∴点E 的横坐标为-7,∴点E 坐标为(-7,-3625), ∴-3625=m (x ﹣b )2, ∴x 1=65√−1m +b ,x 2=-65√−1m +b ,∴MN =4,∴|65√−1m +b -(-65√−1m +b )|=4 ∴m =-925, ∴顶点为A 的小孔所在抛物线的解析式为y =-925(x ﹣b )2, ∵大孔水面宽度为20米,∴当x =-10时,y =-92, ∴-92=-925(x ﹣b )2, ∴x 1=52√2+b ,x 2=-5√22+b , ∴单个小孔的水面宽度=|(52√2+b )-(-52√2+b )|=5√2(米),故选:B .小提示:本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.6、如图,顶点为(−3,−6)的抛物线y =ax 2+bx +c 经过点(−1,−4),则下列结论中正确的是( )A .b 2−4ac ≥0B .若点(−2,m),(−4,n)都在抛物线上,则m >nC .当x <−3时,y 随x 的增大而减小D .关于x 的一元二次方程ax 2+bx +c =−7有两个不等的实数根答案:C分析:由抛物线与x 轴有两个交点则可对A 进行判断;根据抛物线上的点离对称轴的远近,则可对B 进行判断;由抛物线的增减性可直接判断C 选项;根据二次函数的最值可对D 进行判断.解:A 、图像与x 轴有两个交点,方程ax 2+bx +c =0有两个不相等的实数根,b 2-4ac >0,故A 选项不符合题意;B、抛物线的对称轴为直线x=-3,因为-2离对称轴的距离等于-4离对称轴的距离,所以m=n,故B选项不符合题意;C、顶点为(-3,-6),则对称轴为直线x=-3,抛物线开口向上,则当x<-3时,y随x的增大而减小,故C 选项符合题意;D、由抛物线开口向上及顶点为(-3,-6)可知,此函数的最小值为-6,则ax2+bx+c=-7(a≠0)没有实数根,故D选项不符合题意.故选:C.小提示:本题综合考查了二次函数的性质,属于基础题,且难度适中;考查了根的判别式、最值与顶点坐标的关系,及一元二次方程与二次函数的关系等方面的内容,掌握相关基础知识是解题关键.7、已知实数x,y满足x+y=12,则xy−2的最大值为()A.10B.22C.34D.142答案:C分析:利用二次函数的性质求解即可.解:∵x+y=12,∴y=12-x,∴xy-2=x(12-x)-2=-x2+12x-2=-(x-6)2+34,∵-1<0,∴当x=6时,xy-2有最大值,最大值为34,故选:C.小提示:本题考查二次函数的性质,会利用二次函数的性质求最值是解答的关键.8、已知二次函数y=ax2+2ax+a−1的图象只经过三个象限,下列说法正确的是()A.开口向下B.顶点在第一象限C.a≥1D.当x>1时,y的最小值为-1答案:C分析:二次函数y=ax2+2ax+a−1的图象只经过三个象限,要满足条件,常数项大于等于0,解不等式即得.∵二次函数y =ax 2+2ax +a −1的图象只经过三个象限,∴a -1≥0,∴a ≥1.故选C .小提示:本题考查了二次函数y =ax 2+2ax +a −1的图象只经过三个象限,运用函数图象与x 轴的两个交点横坐标的积大于等于0,即常数项大于等于0,是解决此类问题的关键.9、抛物线y =ax 2+bx +c 上部分点的横坐标x ,纵坐标y 的对应值如表:下列结论不正确的是( )A .抛物线的开口向下B .抛物线的对称轴为直线x =12C .抛物线与x 轴的一个交点坐标为(2,0)D .函数y =ax 2+bx +c 的最大值为254 答案:C 分析:利用待定系数法求出抛物线解析式,由此逐一判断各选项即可解:由题意得{4a −2b +c =0a −b +c =4c =6,解得{a =−1b =1c =6,∴抛物线解析式为y =−x 2+x +6=−(x −12)2+254, ∴抛物线开口向下,抛物线对称轴为直线x =12,该函数的最大值为254,故A 、B 、D 说法正确,不符合题意;令y =0,则−x 2+x +6=0,解得x =3或x =−2,∴抛物线与x 轴的交点坐标为(-2,0),(3,0),故C 说法错误,符合题意;故选C .小提示:本题主要考查了二次函数的性质,正确求出二次函数解析式是解题的关键.10、如图,某公司准备在一个等腰直角三角形ABC 的绿地上建造一个矩形的休闲书吧PMBN ,其中点P 在AC 上,点NM 分别在BC ,AB 上,记PM=x ,PN=y ,图中阴影部分的面积为S ,若NP 在一定范围内变化,则y 与x ,S与x 满足的函数关系分别是( )A .反比例函数关系,一次函数关系B .二次函数关系,一次函数关系C .一次函数关系,反比例函数关系D .一次函数关系,二次函数关系答案:D分析:先求出AM =PM ,利用矩形的性质得出y =﹣x +m ,最后利用S =S △ABC -S 矩形PMBN 得出结论. 设AB =m (m 为常数).在△AMP 中,∠A =45°,AM ⊥PM ,∴△AMP 为等腰直角三角形,∴AM =PM ,又∵在矩形PMBN 中,PN =BM ,∴x +y =PM +PN =AM +BM =AB =m ,即y =﹣x +m ,∴y 与x 成一次函数关系,∴S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +12m 2, ∴S 与x 成二次函数关系.故选D .小提示:本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式.填空题11、在平面直角坐标系中,已知抛物线y =mx -2mx +m -2(m >0).(1)抛物线的顶点坐标为_________;(2)点M(x1,y1)、N(x2,y2)(x1<x2≤3)是拋物线上的两点,若y1<y2,x2-x1=2,则y2的取值范围为_________(用含m的式子表示)答案:(1,-2)m−2<y2≤4m−2分析:(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,得到当2<x2≤3时,y1<y2,再将x=2、x=3代入函数关系式进行求解即可.(1)∵y=mx2-2mx+m-2=m(x−1)2−2,∴抛物线顶点坐标为(1,-2),故答案为(1,-2).(2)∵抛物线的对称轴为直线x=1,∴当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,∴当2<x2≤3时,y1<y2,对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,∴m−2<y2≤4m−2.小提示:本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系.12、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(−1,0)和点(2,0),以下结论:①abc<0;②4a−2b+c<0;③a+b=0;④当x<1时,y随x的增大而减小.其中正确的结论有2___________.(填写代表正确结论的序号)答案:①②##②①分析:根据二次函数的对称轴位置和抛物线开口方向确定①③,根据x=-2时判定②,由抛物线图像性质判定④.解:①抛物线的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故正确;②x=-2时,函数值小于0,则4a-2b+c<0,故正确;③与x轴交于点(−1,0)和点(2,0),则对称轴x=−b2a =−1+22=−12,故a=b,故③错误;④当x<12时,图像位于对称轴左边,y随x的增大而减大.故④错误;综上所述,正确的为①②.所以答案是:①②.小提示:本题考查了二次函数的图像和性质,要求熟悉掌握函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.13、阳光超市里销售的一种水果,每千克的进价为10元,销售过程中发现,每天销量y(kg)与销售单价x (元)之间满足一次函数y=−x+50的关系.若不计其他成本(利润=售价-进价),则该超市销售这种水果每天能够获得的最大利润是_________元.答案:400分析:设超市销售这种水果每天能够获得的利润是w元,由题意得w=-(x-30)2+400,再根据二次函数的性质可得答案.解:设超市销售这种水果每天能够获得的利润是w元,由题意得,w=(x−10)(−x+50)=−x2+60x−500=−(x−30)2+400,∵a=-1<0,∴当x=30时,w最大为400元,所以答案是:400.小提示:本题考查二次函数的实际应用,根据题意得到二次函数的关系式是解题关键.14、某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y(个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为______________元(利润=总销售额-总成本).答案:121分析:利用待定系数法求一次函数解析式,然后根据“利润=单价商品利润×销售量”列出二次函数关系式,从而根据二次函数的性质分析其最值.解:当10≤x ≤20时,设y =kx +b ,,把(10,20),(20,10)代入可得:{10k +b =2020k +b =10, 解得{k =−1b =30, ∴每天的销售量y (个)与销售价格x (元/个)的函数解析式为y =−x +30,设该食品零售店每天销售这款冷饮产品的利润为w 元,w =(x −8)y =(x −8)(−x +30)=−x 2+38x −240=−(x −19)2+121,∵−1<0,∴当x =19时,w 有最大值为121,所以答案是:121.小提示:本题考查二次函数的应用,理解题意,掌握“利润=单价商品利润×销售量”的等量关系及二次函数的性质是解题关键.15、已知点(3,a )在抛物线y =-2x 2+2x 上,则a =______.答案:-12分析:把点(3,a )代入解析式即可求得a 的值.解:∵点(3,a )在抛物线y =-2x 2+2x 上,∴a =-2×32+2×3=-18+6=-12,所以答案是:-12.小提示:本题考查了二次函数图象上点的坐标特征,图象上点的坐标适合解析式是解题的关键.解答题16、已知y=(k+2)x k2+k−4是二次函数,且当x<0时,y随x的增大而增大.(1)求k的值;(2)直接写出顶点坐标和对称轴.答案:(1)k=-3;(2)顶点坐标是(0,0),对称轴是y轴.分析:(1)根据二次函数的次数是二,可得方程,根据二次函数的性质,可得k+2<0,可得答案;(2)根据二次函数的解析式,可得顶点坐标,对称轴.解:(1)由y=(k+2)x k2+k−4是二次函数,且当x<0时,y随x的增大而增大,得{k 2+k−4=2k+2<0,解得k=-3;(2)由(1)得二次函数的解析式为y=-x2,y=-x2的顶点坐标是(0,0),对称轴是y轴.小提示:本题考查了二次函数的定义以及二次函数的性质,利用二次函数的定义得出方程是解题关键.17、如图,抛物线y=−x2+bx+c与x轴交于A,B两点,y与轴交于点C,抛物线的对称轴交x轴于点D.已知A(-1 ,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点M ,使得MA +MC 的值最小,求此点M 的坐标;(3)在抛物线的对称轴上是否存在P 点,使△PCD 是等腰三角形,如果存在,求出点P 的坐标,如果不存在,请说明理由.答案:(1)y =−x 2+2x +3(2)点M 坐标(1,2)(3)存在,点P 坐标为(1,6),(1,√10),(1,−√10),(1,53) 分析:(1)把A 、C 两点的坐标代入y =-x 2+bx +c ,利用待定系数法即可求出二次函数的解析式;(2)由抛物线的对称性可知点A 与点B 关于对称轴对称,所以BC 与抛物线对称轴的交点为M ,此时MA+MC 最小,即MA+MC 最小值等于线段BC 长,求出直线BC 与抛物线对称轴交点M 坐标即可;(3)分两种情况讨论:i )当△PCD 是以CD 为腰的等腰三角形时,又可分两种情况讨论:①PC =CD ;②PD =CD .设出点P 的坐标,利用两点间的距离公式列出方程求解即可; ii )当△PCD 是以CD 为底的等腰三角形时,点P 在CD 的垂直平分线上,PC=PD ,利用两点间的距离公式列出方程求解即可.(1)解:把A (-1,0),C (0,3)代入y =-x 2+bx +c ,得:{−1−b +c =0c =3 ,解得:{b =2c =3, ∴抛物线的解析式为:y =-x 2+2x +3; (2)解:由抛物线的对称性可知点A 与点B 关于抛物线的对称轴对称,所以设BC 与抛物线对称轴的交点为M ,此时MA+MC 最小,即MA+MC 最小值=BC ,如图,∵y =-x 2+2x +3=-(x -1)2+4;∴抛物线的对称轴为直线x =1,∵A (-1,0),点A 与点B 关于抛物线的对称轴对称,∴B (3,0),设直线BC 解析式为y =kx +m ,则{−k +m =0m =3 ,解得{k =−1m =3, ∴直线BC 解析式为y =-x +3,当x =1时,y =2,∴M (1,2).(3)解:∵y =-x 2+2x +3=-(x -1)2+4,∴对称轴为直线x =1,∴D (1,0).设点P 的坐标为(1,t ),∵C (0,3),∴CD 2=12+32=10. 分两种情况讨论:i )当△PCD 是以CD 为腰的等腰三角形时,又可分两种情况讨论:①若PC =CD ,则12+(t -3)2=10,解得t =0(舍弃)或6,所以点P 的坐标为(1,6);②若PD =CD ,则t 2=10,解得t=±√10,所以点P 的坐标为(1,√10)或(1,-√10); ii )当△PCD 是以CD 为底的等腰三角形时,PC =PD ,则1+(t -3)2=t 2,解得:t =53, 所以点P 的坐标为(1,53);综上所述,点P 的坐标有三个,分别是(1,6)或(1,√10))或(1,-√10)或(1,53).小提示:本题是二次函数的综合题,考查了利用待定系数法求二次函数和一次函数的解析式、二次函数的性质、利用轴对称求最短距离;难度适中,在考虑构建等腰三角形时,采用了分类讨论的思想.18、园林部门计划在某公园建一个长方形苗圃ABCD .苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留2米宽的门(门不用木栏),建成后所用木栏总长32米,设苗圃ABCD 的一边CD 长为x 米.(1)BC 长为________米(包含门宽,用含x 的代数式表示);(2)若苗圃ABCD 的面积为96m 2,求x 的值;(3)当x 为何值时,苗圃ABCD 的面积最大,最大面积为多少?答案:(1)(36-3x )(2)8(3)当x 为223米时,苗圃ABCD 的最大面积为3083平方米分析:(1)根据木栏总长32米,两处各留2米宽的门,设苗圃ABCD 的一边CD 长为x 米,即得BC 的长为(36-3x )米;(2)根据题意得,x ·(36−3x )=96,即可解得x 的值;(3)设苗圃ABCD 的面积为w ,w =x ·(36−3x )=−3(x −6)2+108,由二次函数的性质可得答案.(1)∵木栏总长32米,两处各留2米宽的门,设苗圃ABCD 的一边CD 长为x 米,BC 的长为32-3x +4=(36-3x )米,所以答案是:(36-3x );(2)根据题意得,x ·(36−3x )=96,解得,x =4或x =8,∵当x =4时,36-3x =24>14,∴x =4舍去,∴x 的值为8;(3)设苗圃ABCD 的面积为w ,w =x ·(36−3x )=−3(x −6)2+108,∵4<36-3x ≤14,∴223≤x <323,∵-3<0,图象开口向下,∴当x =223时,w 取得最大值,w 最大为3083; 答:当x 为223米时,苗圃ABCD 的最大面积为3083平方米.小提示:本题考查了二次函数的应用,解题的关键是读懂题意,根据已知列方程和函数关系式.。
人教版初中九年级数学上册第二十二章《二次函数》知识点(含答案解析)

一、选择题1.抛物线y =ax 2+bx +c (a ≠0)的图象大致如图所示,下列说法: ①2a +b =0;②当﹣1<x <3时,y <0;③若(x 1,y 1)(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④9a +3b +c =0, 其中正确的是( )A .①②④B .①④C .①②③D .③④2.函数y =ax 2与y =ax +a ,在第一象限内y 随x 的减小而减小,则它们在同一直角坐标系中的图象大致位置是( )A .B .C .D .3.在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )A .B .C .D .4.已知抛物线()20y ax bx c a =++<过()30A -,、()1,0O 、()15,B y -、()25,C y 四点,则1y 与2y 的大小关系是( ) A .12y y >B .12y y <C .12y y =D .不能确定5.()11,y -()20,y ()34,y 是抛物线22y xx c =-++上三点的坐标,则1y ,2y ,3y 之间的大小关系为( ) A .123y y y <<B .213y y y <<C .312y y y <<D .321y y y <<6.如图是抛物线y =ax 2+bx+c (a≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论: ①a ﹣b+c >0; ②3a+b =0; ③b 2=4a (c ﹣n );④一元二次方程ax 2+bx+c =n ﹣1有两个不相等的实数根. 其中正确结论的个数是( )A .1个B .2个C .3个D .4个7.某同学在利用描点法画二次函数y =ax2+bx+c (a≠0)的图象时,先取自变量x 的一些值,计算出相应的函数值y ,如下表所示: x … 0 1 2 3 4 … y…﹣3﹣13…接着,他在描点时发现,表格中有一组数据计算错误,他计算错误的一组数据是( )A .03x y =⎧⎨=-⎩B .21x y =⎧⎨=-⎩C .30x y =⎧⎨=⎩D .43x y =⎧⎨=⎩8.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:x ﹣1 0 2 3 4 y5﹣4﹣3下列结论正确的是( ) A .抛物线的开口向下 B .抛物线的对称轴为直线x =2 C .当0≤x ≤4时,y ≥0D .若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 29.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .10.如图,在ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm /s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ △的面积S 随出发时间t 的函数图象大致是( )A .B .C .D .11.已知2(0)y ax bx c a =++≠的图象如图所示,则点(,)A ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限12.抛物线()2512y x =--+的顶点坐标为( ) A .()1,2-B .()1,2C .()1,2-D .()2,113.关于抛物线223y x x =-+-,下列说法正确的是( ) A .开口方向向上 B .顶点坐标为()1,2- C .与x 轴有两个交点D .对称轴是直线1x =-14.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<15.对于二次函数2(2)7y x =---,下列说法正确的是( ) A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小二、填空题16.如图,抛物线y =﹣x 2+bx+c 交x 轴于A ,B 两点,交y 轴于点C ,则bc 的值为_____(填正或负).17.一条抛物线与x 轴相交于A ,B 两点(点A 在点B 的左侧),若点M ,N 的坐标分别为(-1,-2),(1,-2),抛物线顶点P 在线段MN 上移动.点B 的横坐标的最大值为3,则点A 的横坐标的最小值为__________.18.已知二次函数2y ax bx c =++的图象过点(1,2)A ,(3,2)B ,(5,7)C .若点1(2,)M y ,2(1,)N y -,3(8,)K y 也在二次函数2y ax bx c =++的图象上,则1y ,2y ,2y 的从小到大的关系是___.19.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可). 20.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)21.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.22.抛物线y =x 2+2x-3与x 轴的交点坐标为____________________. 23.已知抛物线243y x x =-+与x 轴交于A 、B 两点,P 为抛物线上一点,且1APB S ∆=,则P 的坐标为_______.24.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.25.定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:()3,0B 、()1,3C -都是“整点”.抛物线()2220y ax ax a a =++->与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是_______.26.若函数21y mx x =++的图象与x 轴只有一个公共点,则m 的值是_______.参考答案三、解答题27.“新冠肺炎”疫情期间某工厂为支持国家抗击疫情每天连夜生产急缺的消毒液,已知每瓶消毒液的生产成本为20元,为了合理定价,根据市场调查发现,当销售单价为30元时,每天的销售量为6000瓶,若销售单价每降低1元,则每天能多销售1000瓶,但要求销售单价不能低于成本且不高于30元.(1)求每天的销售量y (瓶)与销售单价x (元)之间的函数关系式; (2)求每天的利润w (元)与销售单价x (元)之间的函数关系式;(3)该工厂负责人决定将每天的利润全部捐献出来进一步支持国家抗击“新冠肺炎”疫情,则当销售单价为多少元时,每天的销售利润最大?最大利润是多少? 28.(1)若抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值; (2)已知点()3,0在抛物线()233y x k x k =-++-上,求此抛物线的对称轴.29.如图,在平面直角坐标系中,边长为2的正方形ABCD 的顶点A 与原点重合,顶点B 在x 轴的正半轴上,点D 在y 轴的正半轴上.抛物线2y x bx c =-++经过点B 与点D .(1)求这个二次函数的表达式;(2)将正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,若点Q 纵坐标是点P 纵坐标的2倍,求m 的值.30.如图①,抛物线23y ax bx =++与x 轴交于()3,0A 、()1,0B -两点,与y 轴交于点C .(1)求抛物线23y ax bx =++的解析式;(2)如图②,连接AC ,点E 是第一象限内抛物线上的动点,过点E 作EF AC ⊥于点F ,//EG y 轴交AC 于点G ,求EFG 面积的最大值及此时点E 的坐标;(3)如图③,若抛物线的顶点坐标为点D ,点P 是抛物线对称轴上的动点,在坐标平面内是否存在点Q ,使得以A 、D 、P 、Q 为顶点的四边形是菱形?若存在,求出点P 的坐标;若不存在,请说明理由.。
九年级数学上册第二十二章二次函数知识点总结归纳完整版(带答案)

九年级数学上册第二十二章二次函数知识点总结归纳完整版单选题1、已知实数a ,b 满足b −a =1,则代数式a 2+2b −6a +7的最小值等于( )A .5B .4C .3D .2答案:A分析:由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解. 解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .小提示:本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.2、点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上.若y 1<y 2,则m 的取值范围为()A .m >2B .m >32C .m <1D .32<m <2答案:B分析:根据y 1<y 2列出关于m 的不等式即可解得答案.解:∵点A (m -1,y 1),B (m ,y 2)都在二次函数y =(x -1)2+n 的图象上,∴y 1=(m -1-1)2+n =(m -2)2+n ,y 2=(m -1)2+n ,∵y 1<y 2,∴(m -2)2+n <(m -1)2+n ,∴(m-2)2-(m-1)2<0,即-2m+3<0,∴m>3,2故选:B.小提示:本题考查了二次函数图象上点的坐标特征,解题的关键是根据已知列出关于m的不等式.3、抛物线y=x2−x−1经过点(m,3),则代数式m2−m−1的值为()A.0B.1C.2D.3答案:D分析:将点(m,3)代入代数式中即可得到结果.解:将点(m,3)代入m2−m−1中得,m2−m−1=3,故代数式m2−m−1的值为3,故选:D.小提示:本题考查代数式的值,根据函数图象经过的点求函数解析式,能够掌握属性结合思想是解决本题的关键.4、小明在研究抛物线y=−(x−ℎ)2−ℎ+1(h为常数)时,得到如下结论,其中正确的是()A.无论x取何实数,y的值都小于0B.该抛物线的顶点始终在直线y=x−1上C.当−1<x<2时,y随x的增大而增大,则ℎ≥2D.该抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,则y1>y2答案:C分析:根据二次函数的对称轴、二次函数图象上点的坐标特征、二次函数的性质,判断即可.解:A.∵y=−(x−ℎ)2−ℎ+1,∴当x=ℎ时,y max=−ℎ+1,当ℎ<1时,y max=−ℎ+1>0,故错误;B.∵抛物线y=−(x−ℎ)2−ℎ+1的顶点坐标为(ℎ,−ℎ+1),当x=ℎ时,y=−ℎ−1≠−ℎ+1,故错误;C.∵抛物线开口向下,当−1<x<2时,y随x的增大而增大,∴ℎ≥2,故正确;D.∵抛物线上有两点A(x1,y1),B(x2,y2),若x1<x2,x1+x2<2ℎ,∴x1+x2<ℎ,∴点A到对称轴的距离大2于点B到对称轴的距离,∴y1<y2,故错误.故选C.小提示:本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.5、根据表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,可以判断方程ax2+bx+c=0的一个解x 的范围是()C.1<x<1.5D.1.5<x<2答案:B分析:利用二次函数和一元二次方程的性质.解:观察表格可知:当x=0.5时,y=-0.5;当x=1时,y=1,∴方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是0.5<x<1.故选:B.小提示:本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y由正变为负时,自变量的取值即可.6、某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元,用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果用相同的工时生产,总获利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于()A.5B.8C.9D.10答案:C分析:第k档次产品比最低档次产品提高了(k−1)个档次,则数量在60的基础上减少了3(k−1),每件产品利润在8的基础上增加2(k−1),据此可求出总利润关系,求出最值即可.解:设总利润为y元,∵第k档次产品比最低档次产品提高了(k−1)个档次,∴每天利润为y=[60−3(k−1)][8+2(k−1)]=−6(k−9)2+864,∴当k=9时,产品利润最大,每天获利864元,故选C.小提示:本题考查了二次函数的实际应用,借助二次函数解决实际问题是本题的关键.7、已知抛物线y=x2+bx+c与x轴的两个交点之间的距离为6,对称轴为x=3,则抛物线的顶点P关于x轴对称的点P′的坐标是()A.(3,9)B.(3,−9)C.(−3,9)D.(−3,−9)答案:A分析:根据抛物线y=x2+bx+c与x轴两个交点间的距离为6.对称轴为直线x=3,可以得到b、c的值,然后即可得到该抛物线的解析式,再将函数解析式化为顶点式,即可得到点P的坐标,然后根据关于x轴对称的点的特点横坐标不变,纵坐标互为相反数,即可得到点P关于x轴的对称点的坐标.解:设抛物线y=x2+bx+c与x轴两个交点坐标为(x1,0),(x2,0),∵抛物线y=x2+bx+c与x轴两个交点间的距离为6,对称轴为直线x=3,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=36,−b=3,2×1∴(﹣b)2﹣4×c=36,b=﹣6,解得:c=0,∴抛物线的解析式为y=x2﹣6x=(x﹣3)2﹣9,∴顶点P的坐标为(3,﹣9),∴点P关于x轴的对称点的坐标是(3,9),故选:A.小提示:本题考查抛物线与x轴的交点、二次函数的性质、关于x轴对称的点的坐标特点,解答本题的关键是求出点P的坐标,利用二次函数的性质解答.8、已知a是不为0的常数,函数y=ax和函数y=﹣ax2+a在同一平面直角坐标系内的图象可以是()A.B.C.D.答案:C分析:根据题意分a>0,a<0两种情况讨论,结合函数图象即可求解.解:A.正比例函数中a<0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故A 不正确;B.正比例函数中a>0,二次函数开口向上,−a>0,与y轴的交点在y轴正半轴,则a>0,矛盾,故B不正确;C.正比例函数中a>0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,故C正确;D. .正比例函数中a<0,二次函数开口向下,−a<0,与y轴的交点在y轴正半轴,则a>0,矛盾,故D不正确;故选C小提示:本题考查了正比例函数与二次函数的图象的性质,掌握正比例函数与二次函数的图象的性质是解题的关键.9、二次函数y=ax2+bx+c(a≠0)的图像如图所示,则关于x的一元二次方程ax2+bx+c=0的根的情况描述正确的是()A.有两个相等的实数根B.有两个异号的实数根C.有两个同号的实数根D.有两个无法确定符号的实数根答案:B分析:根据二次函数的图像判断与x轴有两个交点,且在原点两侧,故关于x的一元二次方程ax2+bx+c= 0有两个异号的实数根.解:∵二次函数的图像与x轴有两个交点,且在原点两侧,∴关于x的一元二次方程ax2+bx+c=0有两个异号的实数根,故选:B.小提示:本题考查二次函数图像与一元二次方程根的关系,掌握二次函数y=ax2+bx+c(a≠0)的图像与x 轴有交点的横坐标即为关一元二次方程ax2+bx+c=0的根是解答本题的关键.10、已知抛物线y=2(x−3)2−5,其对称轴是()A.直线x=−3B.直线x=3C.直线x=−5D.直线x=5答案:B分析:直接根据抛物线的顶点式进行解答即可.解:∵y=2(x−3)2−5,∴抛物线对称轴为直线x=3.故选:B.小提示:本题考查二次函数的性质,解题关键是掌握二次函数图像与系数的关系.填空题11、已知二次函数y=(x−1)2+3,当x=_______时,y取得最小值.答案:1分析:根据抛物线的顶点坐标和开口方向即可得出答案.解:∵y=(x−1)2+3,∴该抛物线的顶点坐标为(1,3),且开口方向向上,∴当x=1时,y取得最小值,所以答案是:1.小提示:本题考查二次函数的最值,求二次函数最大值或最小值有三种方法:第一种可有图象直接得出,第二种是配方法,第三种是公式法.12、如图,过点D(1,3)的抛物线y=-x2+k的顶点为A,与x轴交于B、C两点,若点P是y轴上一点,则PC+PD的最小值为____.答案:3√2分析:由两点之间线段最短可知,当D、P、B在同一直线上时就可使PC+PD的值最小,解答即可.解:连接PB,对于抛物线y=-x2+k,对称轴是y轴,∴PC=PB,∴当D、P、B在同一直线上时,PC+PD的值最小,最小值为BD的长,∵抛物线y=-x2+k过点D(1,3),∴把x=1,y=3代入y=-x2+k,解得:k=4,把y=0代入y=-x2+4,解得:x=2或x=-2,所以点B的坐标为(-2,0),所以BD=√(−2−1)2+32=3√2,所以答案是:3√2.小提示:本题考查了抛物线与x轴的交点,轴对称-最短路线问题,找到P点是本题的关键.13、已知实数a、b满足a-b2=4,则代数式a2-3b2+a-14的最小值是________.答案:6分析:根据a-b2=4得出b2=a−4,代入代数式a2-3b2+a-14中,通过计算即可得到答案.∵a-b2=4∴b2=a−4将b2=a−4代入a2-3b2+a-14中得:a2-3b2+a-14=a2−3(a−4)+a−14=a2−2a−2a2−2a−2=a2−2a+1−3=(a−1)2−3∵b2=a−4≥0∴a≥4当a=4时,(a−1)2−3取得最小值为6∴a2−2a−2的最小值为6∵a2-3b2+a-14=a2−2a−2∴a2-3b2+a-14的最小值6所以答案是:6.小提示:本题考查了代数式的知识,解题的关键是熟练掌握代数式的性质,从而完成求解.14、已知二次函数y =−x 2−2x +3,当a ⩽x ⩽12时,函数值y 的最小值为1,则a 的值为_______. 答案:−1−√3##−√3−1分析:先把函数解析式化为顶点式可得当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,然后分两种情况讨论:若a ≥−1;若a <−1,即可求解.解:y =−x 2−2x +3=−(x +1)2+4,∴当x <−1时,y 随x 的增大而增大,当x >−1时,y 随x 的增大而减小,若a ≥−1,当a ⩽x ⩽12时,y 随x 的增大而减小, 此时当x =12时,函数值y 最小,最小值为74,不合题意,若a <−1,当x =a 时,函数值y 最小,最小值为1,∴−a 2−2a +3=1,解得:a =−1−√3或−1+√3(舍去);综上所述,a 的值为−1−√3.所以答案是:−1−√3小提示:本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.15、已知二次函数y =ax 2+bx +c(a ≠0)的图像的顶点为(2,−2),与x 轴交于点(1,0)、(3,0),根据图像回答下列问题:当x _______时,y 随x 的增大而减小:方程ax 2+bx +c =0的两个根是___________.答案: x <2 x 1=1,x 2=3分析:利用开口向上和对称轴以及二次函数与一元二次方程的联系即可得到答案.解(1)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴二次函数的对称轴为直线x=2,∵抛物线的开口向上,∴当x<2时,y随x的增大而减小;(2)∵二次函数图像与x轴的两个交点坐标为(1,0)、(3,0),∴方程ax2+bx+c=0的两个根是x1=1,x2=3.小提示:本题考查了二次函数的图像与性质以及二次函数与一元二次方程的联系,属于常考题型.解答题16、在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直..以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.答案:(1)v=−12t+10,y=−14t2+10t(2)6cm/s(3)黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球分析:(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入两组数值求解即可;根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入三组数值求解即可;(2)当黑球减速后运动距离为64cm时,代入(1)式中y关于t的函数解析式求出时间t,再将t代入v关于t的函数解析式,求得速度v即可;(3)设黑白两球的距离为w cm,得到w=70+2t−y=14t2−8t+70,化简即可求出最小值,于是得到结论.(1)根据黑球的运动速度v与运动时间t之间成一次函数关系,设表达式为v=kt+b,代入(0,10),(1,9.5)得,{10=b 9.5=k+b ,解得{k=−12b=10,∴v=−12t+10,根据运动距离y与运动时间t之间成二次函数关系,设表达式为y=at2+bt+c,代入(0,0),(1,9.75),(2,19)得{0=c9.75=a+b19=4a+2b,解得{a=−14b=10c=0,∴y=−14t2+10t;(2)依题意,得−14t2+10t=64,∴t2−40t+256=0,解得,t1=8,t2=32;当t1=8时,v=6;当t2=32时,v=−6(舍);答:黑球减速后运动64cm时的速度为6cm/s.(3)设黑白两球的距离为w cm,w=70+2t−y=14t2−8t+70=14(t−16)2+6,∵14>0,∴当t=16时,w的值最小为6,∴黑、白两球的最小距离为6cm,大于0,黑球不会碰到白球.小提示:本题考查一次函数和二次函数的实际应用,待定系数法求解析式,解决本题的关键是明确题意求出函数表达式.17、已知抛物线y=ax2−4ax+3(a≠0)的图象经过点A(−2,0),过点A作直线l交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.答案:(1)y=−14x2+x+3;(2,4)(2)3;2分析:(1)把点A(−2,0)代入y=ax2−4ax+3(a≠0),求出a的值即可;再运用顶点坐标公式求出顶点坐标即可;(2)把C(4,m)代入y=−14x2+x+3可求出m的值;再运用待定系数法求出直线AB的解析式,从而可求出平移后押物线的顶点坐标,进一步可得结论.(1)将A(−2,0)代入y=ax2−4ax+3得:0=4a+8a+3,解得a=−14,∴抛物线的函数表达式为y=−14x2+x+3,∵−b2a =−12×(−14)=2,4ac−b24a=4×(−14)×3−124×(−14)=4,∴顶点坐标为(2,4);(2)把C(4,m)代入y=−14x2+x+3得,m =−4+4+3=3,设直线AB 的解析式为y =kx +b ,将A (−2,0),B (4,3)代入y =kx +b 得{0=−2k +b 3=4k +b, 解得{k =12b =1, ∴直线AB 的解析式为y =12x +1, ∵顶点的横坐标为2,∴把x =2代入y =12x +1得:y =2,∴n =4−2=2.小提示:本题主要考查了运用待定系数法求函数关系式以及二次函数图象的平移,正确理解题意是解答本题的关键.18、戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒(1)若每盒售价降低x 元,则日销量可表示为_______盒,每盒口罩的利润为______元.(2)若日利润保持不变,商家想尽快销售完该款口罩,每盒售价应定为多少元?(3)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.答案:(1)(20+2x )盒,(20-x ) 元(2)每盒售价应定为60元(3)每盒售价应定为65元时,最大日利润是450元分析:(1)根据题意列出代数式即可;(2)设每盒售价x 元,则每件的销售利润为(x −50)元,日销售量为[20+2(70−x )]件,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合商家想尽快销售完该款商品,即可求解;(3)设日利润为y ,由(2)列出函数关系式,根据二次函数的性质即可求解.(1)设每盒售价降低x 元,则日销量可表示为(20+2x )盒,每盒口罩的利润为70−50−x =20−x (元)所以答案是:(20+2x);(20−x)(2)设每盒售价x元,则每件的销售利润为(x−50)元,日销售量为[20+2(70−x)]件,根据题意得,(x−50)[20+2(70−x)]=(70−50)×20解得x1=70,x2=60又∵商家想尽快销售完该款商品,∴x=60.答:每件售价应定为60元;(3)设日利润为y,则y=(x−50)[20+2(70−x)]=−2x2+260x−8000=−2(x−65)2+450∴x=65时,y的最大值为450,即每盒售价应定为65元时,最大日利润是450元.小提示:本题考查了一元二次方程的应用,二次函数的应用,根据题意列出方程和函数关系式是解题的关键.。
九年级数学上册第二十二章二次函数知识点总结(新版)新人教版

九年级数学上册:第22章 二次函数知识点归纳及相关典型题第一部分 基础知识1.定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2ax y =的图像与a 的符号关系.①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a . 3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5. 二次函数由特殊到一般,可分为以下几种形式: ①2axy =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越大,抛物线的开口越小;a 越小,抛物线的开口越大。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.(3)抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线a b x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab(即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧,“左同右异”.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴.10.几种特殊的二次函数的图像特征如下:11.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点(1)y 轴与抛物线c bx ax y ++=2得交点为(0, c ).(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故ac x x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121中考回顾1.(2017天津中考)已知抛物线y=x 2-4x+3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M.平移该抛物线,使点M 平移后的对应点M'落在x 轴上,点B 平移后的对应点B'落在y 轴上,则平移后的抛物线解析式为( A )A.y=x 2+2x+1B.y=x 2+2x-1C.y=x 2-2x+1D.y=x 2-2x-12.(2017四川成都中考)在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c 的图象如图所示,下列说法正确的是( B )A. abc<0, b 2-4ac>0B. abc>0, b 2-4ac>0C. abc<0, b 2-4ac<0D. abc>0, b 2-4ac<03.(2017内蒙古赤峰中考)如果关于x 的方程x 2-4x+2m=0有两个不相等的实数根,那么m 的取值范围是 m<2 .4.(2017内蒙古赤峰中考)如图,二次函数y=ax 2+bx+c (a ≠0)的图象交x 轴于A ,B 两点,交y 轴于点D ,点B 的坐标为(3,0),顶点C 的坐标为(1,4).备用图(1)求二次函数的解析式和直线BD 的解析式;(2)点P 是直线BD 上的一个动点,过点P 作x 轴的垂线,交抛物线于点M ,当点P 在第一象限时,求线段PM 长度的最大值;(3)在抛物线上是否存在异于B ,D 的点Q ,使△BDQ 中BD 边上的高为2,若存在求出点Q 的坐标;若不存在请说明理由.解:(1)设二次函数的解析式为y=a (x-1)2+4.∵点B (3,0)在该二次函数的图象上, ∴0=a (3-1)2+4,解得:a=-1.∴二次函数的解析式为y=-x 2+2x+3.∵点D 在y 轴上,所以可令x=0,解得:y=3. ∴点D 的坐标为(0,3).设直线BD 的解析式为y=kx+3,把(3,0)代入得3k+3=0,解得:k=-1. ∴直线BD 的解析式为y=-x+3.(2)设点P 的横坐标为m (m>0), 则P (m ,-m+3), M (m ,-m 2+2m+3),PM=-m2+2m+3-(-m+3)=-m2+3m=-, PM最大值为(3)如图,过点Q作QG∥y轴交BD于点G,作QH⊥BD于点H,则QH=2设Q(x,-x2+2x+3),则G(x,-x+3),QG=|-x2+2x+3-(-x+3)|=|-x2+3x|.∵△DOB是等腰直角三角形,∴∠3=45°,∴∠2=∠1=45°.∴sin∠1=,∴QG=4.得|-x2+3x|=4,当-x2+3x=4时,Δ=9-16<0,方程无实数根.当-x2+3x=-4时,解得:x1=-1,x2=4,Q1(4,-5),Q2(-1,0).模拟预测1.已知二次函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是(D)A.k<3B.k<3,且k≠0C.k≤3D.k≤3,且k≠02.若点M(-2,y1),N(-1,y2),P(8,y3)在抛物线y=-x2+2x上,则下列结论正确的是(C)A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2解:x=-2时,y1=-x2+2x=-(-2)2+2×(-2)=-2-4=-6,x=-1时,y2=-x2+2x=-(-1)2+2×(-1)=--2=-2,x=8时,y3=-x2+2x=-82+2×8=-32+16=-16.∵-16<-6<-2,∴y3<y1<y2.故选C.3.已知一元二次方程ax2+bx+c=0(a>0)的两个实数根x1,x2满足x1+x2=4和x1·x2=3,则二次函数y=ax2+bx+c(a>0)的图象有可能是()解析:∵x1+x2=4,∴-=4.∴二次函数的对称轴为x=-=2.∵x1·x2=3,=3.当a>0时,c>0,∴二次函数图象交于y轴的正半轴.4.小明在用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x…-2 -1 0 1 2 …y…-6-4 -2-2 -2…根据表格中的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y=-4.5.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为k=0或k=-1.6.抛物线y=-x2+bx+c的图象如图,若将其向左平移2个单位长度,再向下平移3个单位长度,则平移后的解析式为.解析:由题中图象可知,对称轴x=1, 所以- =1,即b=2.把点(3,0)代入y=-x2+2x+c,得c=3.故原图象的解析式为y=-x2+2x+3,即y=-(x-1)2+4,然后向左平移2个单位,再向下平移3个单位,得y=-(x-1+2)2+4-3,即y=-x2-2x. 答案:y=-x2-2x7.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1,L2互称为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有很多条.(1)如图②,已知抛物线L3:y=2x2-8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的对称点D的坐标;(2)请求出以点D为顶点的L3的“友好”抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;(3)若抛物线y=a1(x-m)2+n的任意一条“友好”抛物线的解析式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由.解:(1)∵抛物线L3:y=2x2-8x+4,∴y=2(x-2)2-4.∴顶点为(2,-4),对称轴为x=2,设x=0,则y=4,∴C(0,4).∴点C关于该抛物线对称轴对称的对称点D的坐标为(4,4).(2)∵以点D(4,4)为顶点的L3的友好抛物线L4还过点(2,-4),∴L4的解析式为y=-2(x-4)2+4.∴L3与L4中y同时随x增大而增大的自变量的取值范围是2≤x≤4.(3)a1=-a2,理由如下:∵抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,∴可以列出两个方程由①+②,得(a1+a2)(m-h)2=0,∴a1=-a2.。
人教 初三数学 22章 二次函数知识点总结及经典习题含答案

八、二次函数的图象与各项系数之间的关系
1. 二次项系数 a ⑴ 当 a 0 时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大; ⑵ 当 a 0 时,抛物线开口向下, a 的值越小,开口越小,反之 a 的值越大,开口越大. 2. 一次项系数 b
y=ax2
向上(k>0)【或向下(k<0)】平移|k|个单位
y=ax 2+k
向右(h>0)【或左(h<0)】 平移|k|个单位
y=a(x-h)2
向右(h>0)【或左(h<0)】 平移 |k|个单位
向上(k>0)【或下(k<0)】 平移|k|个单位
向右(h>0)【或左(h<0)】 平移|k|个单位
向上(k>0)【或下(k<0)】平移|k|个单位
初三数学 二次函数 知识点总结
一、二次函数概念:
1.二次函数的概念:一般地,形如 y = ax2 + bx + c( a,b,c 是常数, a 0 )的函数,叫做二次函数。 这里需要强调:和一元二次方程类似,二次项系数 a 0 ,而 b,c 可以为零.二次函数的
定义域是全体实数.
2. 二次函数 y = ax2 + bx + c 的结构特征:
当 x − b 时, y 随 x 的增大而增大; 2a
当 x = − b 时, y 有最小值 4ac − b2 .
2a
4a
2.
当
a
0
时,抛物线开口向下,对称轴为
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学 二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()00, y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0. 0a < 向下()00,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0c , y 轴0x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y 轴0x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()0h ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值0. 0a < 向下()0h ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.三、二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 四、二次函数()2y a x h k =-+与2y a x b x c =++的比较 从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a<-时,y 随x 的增大而减小; 当2bx a>-时,y 随x 的增大而增大; 当2b x a =-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,a 的符号 开口方向 顶点坐标 对称轴 性质0a >向上()h k ,X=hx h >时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h =时,y 有最小值k . 0a < 向下()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a =-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式(交点式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴) 3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根..② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;二次函数对应练习试题一、选择题1. 二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3) 2. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+B. 22(1)y x =--C. 221y x =-+D. 221y x =-- 3.函数2y kx k =-和(0)ky k x=≠在同一直角坐标系中图象可能是图中的( )4.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个5.已知二次函数2(0)y ax bx c a =++≠的顶点坐标(-1,-3.2)及部分图象(如图),由图象可知关于x 的一元二次方程20ax bx c ++=的两个根分别是121.3x x ==和( )A.-1.3 B.-2.3 C.-0.3 D.-3.36. 已知二次函数2y ax bx c =++的图象如图所示,则点(,)ac bc 在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.方程222x x x-=的正根的个数为( ) A.0个 B.1个 C.2个. 3 个8.已知抛物线过点A(2,0),B(-1,0),与y 轴交于点C,且OC=2.则这条抛物线的解析式为A. 22y x x =-- B. 22y x x =-++C. 22y x x =--或22y x x =-++D. 22y x x =---或22y x x =++二、填空题9.二次函数23y x bx =++的对称轴是2x =,则b =_______。
10.已知抛物线y=-2(x+3)²+5,如果y 随x 的增大而减小,那么x 的取值范围是_______.11.一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量x 的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可)。
12.抛物线22(2)6y x =--的顶点为C ,已知直线3y kx =-+过点C ,则这条直线与两坐标轴所围成的三角形面积为 。
13. 二次函数2241y x x =--的图象是由22y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= 。
14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是 (π取3.14).三、解答题:15.已知二次函数图象的对称轴是30x +=,图象经过(1,-6),且与y 轴的交点为(0,52-). (1)求这个二次函数的解析式;(2)当x 为何值时,这个函数的函数值为0?(3)当x 在什么范围内变化时,这个函数的函数值y 随x 的增大而增大?16.某种爆竹点燃后,其上升高度h (米)和时间t (秒)符合关系式2012h v t gt =-(0<t≤2),其中重力加速度g 以10米/秒2计算.这种爆竹点燃后以v 0=20米/秒的初速度上升,(1)这种爆竹在地面上点燃后,经过多少时间离地15米?(2)在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.17.如图,抛物线2y x bx c =+-经过直线3y x =-与坐标轴的两个交点A 、B ,此抛物线与x 轴的另一个交点为C ,抛物线顶点为D. (1)求此抛物线的解析式;(2)点P 为抛物线上的一个动点,求使APC S ∆:ACD S ∆=5 :4的点P 的坐标。