自动控制原理总结之判断系统稳定性方法
控制系统的稳定性分析

自动控制原理
其中系数 b1 , b2 , b3 等;根据
下列公式计算:
b1
a1a 2 a 0a 3 a1
b2
a1a 4 a 0a 5 a1
b3
a1a 6 a 0a 7 a1
同样的方法可以计算c;d;e等各行的系数
自动控制原理
注意:
在展开的阵列中;为简化其后的数值计算;可用一个正整数去除 或乘某一个整行;并不影响稳定性结论; 劳斯判据还说明:方程式5 4中;其正实部特征根数;等于劳斯阵列中第一列的系数改变的次数;
自动控制原理
从乃氏图上看;Gjw不包围1;j0点
G ( jw ) 1
稳定
G ( jw )
G ( jw )
不稳定
自动控制原理
2 若开环系统不稳定;有p个零点在右半平面;q的零点在原点;npq个 零点在左半平面 则
argD K(jw)(n2pq)2
如果闭环是稳定的;则
argDb(jw)n 2
故
a r g 1 G (jw ) n ( n 2 p q ) p q
F是新引进的函数;其分母是系统开环特征多项式;分子是闭环特征多 项式;
对于非单位反馈系统;开环传递函数为
GsG' sHsM DK Kss
自动控制原理
2 乃奎斯特队稳定判据 1 若开环是稳定的;则根据米哈依洛夫定理
argDk
jwn
2
如果闭环系统稳定;有
于是
argDb
jwn
2
arg1G (jw )0o
0
0
a n1 0
0
an2 an
自动控制原理
系统稳定的充要条件是:主行列式
式 1,2, n1 ;均大于零;即
自动控制原理第四章-1-劳斯稳定性判据

04
劳斯稳定性判据的优缺点
优点
简单易行
劳斯稳定性判据是一种直接的方法,用于确定系统的稳定 性。它不需要求解系统的极点,只需要检查劳斯表格的第 一列。
普遍适用性
劳斯稳定性判据适用于所有线性时不变系统,无论系统是 单输入单输出(SISO)还是多输入多输出(MIMO)。
数学基础
劳斯稳定性判据基于数学中的因式分解和不等式性质,具 有坚实的数学基础。
劳斯稳定性判据的局限性在于它只能判断系统 的稳定性,无法给出系统动态性能的评估和优 化。
对自动控制原理的展望
随着科技的发展,自动控制原理的应用领域不断扩大,涉及到工业、交通、医疗、 农业等多个领域。
未来,自动控制原理将与人工智能、机器学习等先进技术相结合,实现更加智能化、 自适应的控制方案。
自动控制原理的理论体系也将不断完善和发展,以适应不断变化的应用需求和技术 环境。
2
在航空航天领域,为了确保飞行器的安全和稳定, 需要利用劳斯稳定性判据对飞行控制系统进行稳 定性分析和设计。
3
在化工领域,为了确保生产过程的稳定和安全, 需要利用劳斯稳定性判据对工业控制系统进行稳 定性分析和设计。
02
劳斯稳定性判据的基本原理
线性系统的稳定性
线性系统
01
在自动控制原理中,线性系统是指系统的数学模型可以表示为
缺点
01
对初始条件的敏感性
劳斯稳定性判据对系统的初始条件非常敏感。即使系统在大部分时间内
是稳定的,如果初始条件设置不正确,可能会导致错误的稳定性判断。
02
数值稳定性问题
在计算劳斯表格时,可能会遇到数值稳定性的问题,例如数值溢出或数
值不精确。这可能会影响判据的准确性。
自动控制原理面试知识

自动控制原理面试知识自动控制原理是现代控制工程的基础和核心,掌握自动控制原理的知识对于从事控制工程的人员来说至关重要。
在面试中,对自动控制原理的了解和掌握程度往往是面试官考察的重点之一。
本文将为大家总结一些常见的自动控制原理面试知识,希望能够帮助大家在面试中更好地展现自己的能力。
1. 什么是自动控制原理?自动控制原理是一门研究如何设计和分析控制系统的学科。
它主要研究控制系统的建模、系统响应、稳定性和性能等问题。
自动控制原理的目标是设计出稳定、快速、精确的控制系统,使系统能够按照预定的要求进行自动调节和控制。
2. 自动控制系统的基本组成自动控制系统一般由四个基本组成部分构成:输入、输出、反馈和控制器。
输入是指控制系统接收到的外部输入信号,可以是传感器测得的物理量;输出是指控制系统根据输入信号经过处理后产生的输出信号,用于控制被控对象;反馈是指将输出信号与期望输出信号进行比较,并将比较结果反馈给控制器;控制器是指根据反馈信号和期望输出信号计算出控制信号,对被控对象进行控制。
3. 自动控制系统的分类自动控制系统可以根据系统的性质和结构进行分类。
按照系统的性质分类,可以分为连续系统和离散系统;按照系统的结构分类,可以分为单输入单输出系统和多输入多输出系统;按照系统的控制方式分类,可以分为开环控制系统和闭环控制系统。
4. 控制系统的建模控制系统的建模是自动控制原理的重要内容之一。
建模的目的是将控制系统抽象成数学模型,便于进行分析和设计。
常用的建模方法包括传递函数法、状态空间法和频域法等。
传递函数法是一种将系统的输入输出关系表示为有理函数的建模方法。
传递函数是指系统输出与系统输入之间的比值关系,通常用符号G(s)表示。
传递函数法适用于线性定常系统的建模。
状态空间法是一种将系统的动态行为表示为状态变量和状态方程的建模方法。
状态是指系统在某一时刻的状态,状态方程是指描述状态随时间变化的方程。
状态空间法适用于线性时变系统和非线性系统的建模。
自动控制原理与系统--总结

总结
一、绪论
1、自动控制:是指在没有人直接参与的情况下,利用控制装置使被控对象(如机器、设备或 生产过程)的一个或数个物理量(如电压、电流、速度、位置、温度、流量、化学成分等) 自动的按照预定的规律运行(或变化)
2、自动控制系统:是指能够对被控对象的工作状态进行自动控制的系统。它一般由控制装置 和被控对象组成。被控制对象是指那些要求实现自动控制的机器、设备或生产过程。控制装 置是指对被控对象起控制作用的设备总体。
ur R1 uc1
duc1 dt
1 c1
(i1 i2 )
uc1 R2i2 uc
d uc 2 dt
1 c2
i2
由所得方程组消去中间变量得:
几种常用典型函数
1.阶跃函数:
r(t)
0,t 0 A,t 0
A是常数
单位阶跃函数:1(t)
0, t 1, t
0 0
2.斜坡函数:
r(t)
0,t 0 At,t 0
系统类别
静态误差系数 阶跃输入 r(t) R I (t) 斜坡输入r(t)=R t
K p K Ka
ess
R 1 K p
ess
R K
0 K 00
R 1 K
I K 0 0
R K
II K 0
0
III 0
0
加速度输入 r(t) Rt 2 2
ess
R Ka
R K
0
表3-1 输入信号作用下的稳态误差
系统受到扰动的作用,偏离了原来的平衡状态, 而当扰动消失后,系统又能够逐渐恢复到原来 的平衡状态,则称该系统是渐进稳定的(简称 为稳定)。否则,称该系统是不稳定的。 线性定常系统稳定的充分必要条件:闭环系统 特征方程的所有根据都具有负实部,或者说闭 环传递函数的所有极点均位于为S平面的左半部 分(不包括虚轴)。
《自动控制原理》第五章:系统稳定性

5.2 稳定的条件
当σi和λi均为负数,即特征根的 σi和λi均为负数, 均为负数 实部为负数,系统是稳定的; 实部为负数,系统是稳定的; 或极点均在左平面。 或极点均在左平面。
5.3 代数稳定性判据
定常线性系统稳定的充要条件 定常线性系统稳定的充要条件是特征方程的根具有负 充要条件是特征方程的根具有负 实部。因此,判别其稳定性,要解系统特征方程的根。为 实部。因此,判别其稳定性,要解系统特征方程的根。 避开对特征方程的直接求解,可讨论特征根的分布, 避开对特征方程的直接求解,可讨论特征根的分布,看其 是否全部具有负实部,并以此来判别系统的稳定性,这样 是否全部具有负实部,并以此来判别系统的稳定性, 也就产生了一系列稳定性判据。 也就产生了一系列稳定性判据。 其中最主要是E.J.Routh(1877 )h和Hurwitz( 其中最主要是E.J.Routh(1877年)h和Hurwitz(1895 E.J.Routh(1877年 年)分别提出的代数判据。 分别提出的代数判据 代数判据。
习题讲解: 习题讲解:
µ
G1
Q21
G1
h2
k1 k1 G1 ( s ) = , G1 ( s ) = (T1s + 1) (T1s + 1) k1k 2 G0 ( s ) = (T1s + 1)(T2 s + 1)
kp
G0 ( s ) G(s) = 1 + G0 ( s ) K p
5.4 Nyquist稳定性判据 Nyquist稳定性判据
系统稳定的条件? 系统稳定的条件?
5.2 稳定的条件
d n y (t ) d ( n −1) y (t ) dy (t ) 线性系统微分方程: 线性系统微分方程: n a + an −1 + L + a1 + a0 y (t ) n ( n −1) dt dt dt d m x(t ) d ( m −1) x(t ) dx(t ) = bm + bm−1 + L + b1 + b0 x(t ) m ( m −1) dt dt dt d n y (t ) d ( n −1) y (t ) dy (t ) + a( n −1) + L + a1 + a0 y (t ) = 0 齐次微分方程: 齐次微分方程: an n ( n −1) dt dt dt an s n + an −1s n −1 + L + a1s + a0 = 0 设系统k 设系统k个实根
自动控制原理汇总之判断系统稳定性方法

自动控制原理汇总之判断系统稳定性方法————————————————————————————————作者:————————————————————————————————日期:判断系稳定性的方法一、 稳定性判据(时域)1、 赫尔维茨判据系统稳定的充分必要条件:特征方程的各项系数全部为正; 将系统特征方程各项系数排列成如下行列式;21231425310000000000000000a a a a a a a a a a a a a n nn n n n n n n n n当主行列式及其对角线上的各子行列式均大于零时,即00031425313231211n n n n n n n n n n n n n n a a a a a a a a a a a a a则方程无正根,系统稳定。
赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。
例;若已知系统的特征方程为0516188234 s s s s试判断系统是否稳定。
解:系统特征方程的各项系数均为正数。
根据特征方程,列写系统的赫尔维茨行列式。
5181016800518100168由△得各阶子行列式;8690017281685181016801281811680884321各阶子行列式都大于零,故系统稳定。
2、 劳思判据(1)劳思判据充要条件:A 、系统特征方程的各项系数均大于零,即a i >0;B 、劳思计算表第一列各项符号皆相同。
满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。
(2)劳思计算表的求法:A 、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即:111212432134321275311642w s v s u u s c c c c s b b b b s a a a a s a a a a s n n n n n n n n n n n nB 、计算劳思表176131541213211 n n n n n n n n n n n n n n n a a a a a b a a a a a b a a a a a b系数b i 的计算要一直进行到其余的b i 值都等于零为止。
自动控制原理课件:线性系统的稳定性和稳态特性分析

上述系统在干扰作用消失后,能够恢复到 原始的平衡状态,或者说系统的零输入响应具 有收敛性质,则系统为稳定的。
由此可得到线性系统稳定的充分必要条件: 系统特征方程的所有根(系统的所有闭环极点),均位于复数s平面的左半部.
系统给定误差传递函数为
Er (s) R(s)
1 1 G(s)
1
1 K (0.5s 1)
s(s 1)(3s 1)
Er
(s)
s(s
s(s 1)(3s 1) 1)(3s 1) K (0.5s
1)
R(s)
esr
lim
s0
sEr
(s)
lim s
s0
s(s 1)(3s 1)
1
s(s 1)(3s 1) K(0.5s 1) s
3.3 劳斯稳定判据 线性系统稳定与否,取决于特征根的实部是否均为负值(复数s平面
的左半部).但是求解高阶系统的特征方程是相当困难的.而劳斯判据,
避免解特征方程,只需对特征方程的系数进行代数运算,就可以判断系统
的稳定性,因此这种数据又称为代数稳定判据.
1.劳斯判据 将系统的特征方程写成如下标准形式
下面要讨论系统跟踪输入信号的精确度或抑制干扰信号的能 力.
这里讨论的稳态误差仅限于由系统结构、参数及输入信号的不 同而导致的稳态误差,不包含由于具体元件的灵敏性、温湿度影响所 带来的误差问题。
控制系统的输入包含给定输入和扰动量, 对应的控制系统的稳态误差也分为两类:
给定稳态误差
扰动稳态误差
Er (s) R(s) B(s) R(s) Er (s)Gc (s)Go (s)H(s)
自动控制原理总结之判断系统稳定性方法

判断系稳定性的方法一、 稳定性判据(时域)1、 赫尔维茨判据系统稳定的充分必要条件:特征方程的各项系数全部为正; 将系统特征方程各项系数排列成如下行列式;21231425310000000000000000a a a a a a a a a a a a a n nn n n n n n n n n当主行列式及其对角线上的各子行列式均大于零时,即00031425313231211n n n n n n n n n n n n n n a a a a a a a a a a a a a则方程无正根,系统稳定。
赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。
例;若已知系统的特征方程为0516188234 s s s s试判断系统是否稳定。
解:系统特征方程的各项系数均为正数。
根据特征方程,列写系统的赫尔维茨行列式。
5181016800518100168由△得各阶子行列式;8690017281685181016801281811680884321各阶子行列式都大于零,故系统稳定。
2、 劳思判据(1)劳思判据充要条件:A 、系统特征方程的各项系数均大于零,即a i >0;B 、劳思计算表第一列各项符号皆相同。
满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。
(2)劳思计算表的求法:A 、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即:111212432134321275311642w s v s u u s c c c c s b b b b s a a a a s a a a a s n n n n n n n n n n n nB 、计算劳思表176131541213211 n n n n n n n n n n n n n n n a a a a a b a a a a a b a a a a a b系数b i 的计算要一直进行到其余的b i 值都等于零为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
判断系稳定性的方法
一、 稳定性判据(时域)
1、 赫尔维茨判据
系统稳定的充分必要条件:特征方程的各项系数全部为正; 将系统特征方程各项系数排列成如下行列式;
21
2
31
4253
10
000000000000000a a a a a a a a a a a a a n n
n n n n n n n n n
--------=∆
当主行列式及其对角线上的各子行列式均大于零时,即
00
03
1425
3132
3
1211>∆>=∆>=
∆>=∆-----------n n n n n n n n n n n n n n a a a a a a a a a a a a a
则方程无正根,系统稳定。
赫尔维茨稳定判据之行列式直接由系数排列而成,规律简单明确,使用也比较方便,但是对六阶以上的系统,很少应用。
例;若已知系统的特征方程为05161882
34=++++s s s s
试判断系统是否稳定。
解:系统特征方程的各项系数均为正数。
根据特征方程,列写系统的赫尔维茨行列式。
5181
016800
5
18100168=
∆
由△得各阶子行列式;
86900172816
8
518
10
168012818
11680884321>=∆=∆>==∆>==
∆>==∆
各阶子行列式都大于零,故系统稳定。
2、 劳思判据
(1)劳思判据充要条件:
A 、系统特征方程的各项系数均大于零,即a i >0;
B 、劳思计算表第一列各项符号皆相同。
满足上述条件则系统稳定,否则系统不稳定,各项符号变化的次数就是不稳定根的数目。
(2)劳思计算表的求法:
A 、列写劳思阵列,并将系统特征方程的系数按如下形式排列成列首两行,即:
1
112
124
32134321275311642w s v s u u s c c c c s b b b b s a a a a s a a a a s n n n n n n n n n n n n
----------
B 、计算劳思表
1
7
61315
41213
211-------------=-=-=n n n n n n n n n n n n n n n a a a a a b a a a a a b a a a a a b
系数b i 的计算要一直进行到其余的b i 值都等于零为止。
用同样的前两行系数交叉相乘,再除以前一行第一个元素的方法,可以计算c ,d ,e 等各行的系数。
1
2
121114
171313
151212
1311c c b b c d b b a a b c b b a a b c b b a a b c n n n n n n -=-=-=-=------
(3)劳思判据的两种特殊情况
A 、劳思计算表第一列出现零的情况
因为不能用零作为除数,故第一列出现零时,计算表不能继续排下去。
为解决该问题,其办法是用一个小的正数ε代替0进行计算,再令ε→0求极限来判别第一列系数的符号。
B 、劳思计算表中出现某一行各项全为零的情况
此时,劳思表将在全为零的一行处中断,其解决办法是将不为零的最后一行的各项组成一个“辅助方程式”,将该方程式
对s 求导数,用求得的各项系数代替原来为零的各项,然后按劳思计算表的写法继续写完以后各项,对称根可由辅助方程求得。
例1:已知系统特征方程为0126322345=+++++s s s s s
判别系统是否稳定,若不稳定,求不稳定根的数目。
解:根据特征方程可知,其各项系数均为正。
列写劳思计算表并计算得:
()1
3
6231
362301622
310
2
1
2345s s
s s s s --
-εεε
εε
当ε →0时,
23
3623,3
62→
---∞→-εεε
ε
故第一列有两次变号,系统特征方程有两个正根,系统不稳定。
例2:已知控制系统的特征方程为
016162012822
3456=++++++s s s s s s
试判定系统的稳定性。
解:根据系统的特征方程可知,其各项系数均为正。
列写劳思计算表并计算得:0
0861)16122(8
61)16122(162081344556s s s s s s
因s3行各项全为零,故以s4行的各项作系数,列写辅助方程如
下:
()862
4++=s s s A 将A(s)对s 求导,得:
()s
s s A ds d
1243+=
再将上式的系数代替s3行的各项系数,继续写出以下劳思计算表:
8
318331)124(86186116
20810
1233456s s s s s s s s
从劳思表的第一列可以看出,各项均无符号变化,故特征方程无正根。
但是因s 3行出现全为零的情况,故必有共轭虚根存在。
共轭虚根可通过辅助方程求得 0862
4=++s s
其共轭虚根为 j s j s 2;24,32,
1±=±= ,这四个根同时也是原方程的根,他们位于虚轴上,因此该控制系统处于临界状态,系统不稳定。
二、 根轨迹法(复域)
系统稳定的充要条件:所有的闭环极点都在S 平面的左半平面。
例:已知系统的开环传递函数为G (S )=k
s (s+1)(0.5s+1),试应用根轨
迹法分析系统的稳定性。
解:G(S)=2k
s(s+1)(s+2)=K∗
S(S+1)(S+2)
(K*=2k)
做根轨迹:
(a)有三条根轨迹(n=3 m=0 n-m=3)(b)实轴上(0,−1)(−2,−∞)为根轨迹段(c)渐近线的夹角与坐标:
φa=(2k+1)π
n−m ={±60°,180°},σa=(−1)+(−2)
3
=−1
(d)分离点坐标d:
1
+1
+
1
=0
解得 d1= -0.423
d2= -1.58 (舍去)因为d2不在根轨迹上(e)与虚轴的交点坐标:
D(S)=S3+3S2+2S+K∗
令S=jw 代入到式中得:
D(jw)=(jw)3+3(jw)2+2(jw)+K∗
解得:{−w3+2w=0−3w2+K∗=0
故W1=0,W2=±1.414,W3=±1.414,K∗=6,K=3根轨迹图如下所示:
三、频率特性
1、奈氏判据(奈奎斯特判据)
Z=P-2N 系统稳定时Z=0
由开环传递函数在S平面的极点个数P,奈氏曲线绕
(-1,j0)的圈数N,得到闭环传递函数在S平面的极点的个数Z
P通过G(S)可知 N:顺时针为负,逆时针为正
当V≠0时,需要做增补线 W:0→0+
从幅相曲线W=0+位置开始沿逆时针方向画 V×90°的圆弧
增补线(理论半径为∞)计算圈数时要包括所画圆弧的增补
线在内。
例:某单位负反馈系统的开环传递函数为G(S)=K
S2(TS+1)试用奈氏判据判别闭环稳定性。
解: W:0+→∞
幅值趋于0,相角趋于-270°。
N=-1,P=0,Z=P-2N=2
故闭环系统不稳定。
2、对数频率判定系统稳定性
P
N=N+−N−=
在截止频率之前,在对数幅频曲线L(W)>0.对应的频率范围对应的相角是否穿越 -180°
在V≠0时,也需要做增补线,从对数相频特性曲线上W=0+处开始,用虚线向上补90°角(补到0°或180°)
例:已知系统的开环传递函数为G(s)=10
试用对数频率稳
s(0.1s+1)
定判据判别系统闭环的稳定性。
解:N+=0,N−=0,P=0
N=(N+)-(N-)=0-0=P/2。