电子元器件温度控制标准

电子元器件温度控制标准
电子元器件温度控制标准

导线类

规格

42#-30#线275℃±10℃≤3s 28 300℃±10℃≤3s 26 ≤5s 24 ≤5s 22 ≤6s 20 ≤6s 18 350℃±10℃≤8s

16 350℃±10℃≤8s

14 350℃±10℃≤10s

千山工艺文件规定

焊接温度270℃~380℃

焊接时间2s~3s

搪锡温度240℃~280℃

搪锡时间2s

电子元件分类与编码标准

电子元件分类与编码标准 为了方便电子元器件的购买及生产管理, 且为以后元器件的电脑化管理提供可能, 本说明对可能涉及到的电子元器件的编号进行规定。 1: 总体原则 1.1 总体规定: 电子元器件的编号统一设想采用字母与数字混合编号方 式且统一为9位. 具体以器件分类名称的字母缩写(2位)开始, 后续6 位数字或字母表示器件的具体规格或型号,第7位是附加的备注或特 殊的识别标记(除电容的命名方式外) 1.2 对于不同规格与不同厂家的元器件原则上采用不同的编号. 1.3 对于一些通用类电子元器件, 如: 电阻, 电容, 电感等如规格及外 形相同则不同厂家的产品也可采用统一编号. 1.4 对于元器件应有相非通用类电子应的图纸存档. 图纸中应包含器件 的外形尺寸, 主要规格参数, 产品型号, 生产厂家等. 1.5 电阻, 电容,电感的标称值原则上在具体规格上说明 1.6 对于一些开发项目专用或关联较大以及根据本说明无法明确归类的 电子元器件的编号如: PWB, PCB组装单元, 可以用项目编号取代编 号的前4位, 后6位表示某具体元器件. 若该器件也在别的项目中使 用, 采用同一编号, 保证编号的唯一性。 2.0、编码结构说明: XX-XX-XXXXXX-XXX-X | | | | | 空位(环保区分时备 用) | | | | 误差/封装信息/引脚 数/修正编号/空位 | | | | | | 元件种类/电气参数/型号 | | 供应商名代码 | 物品代码 注:编码长度一至,编码中间的“—”不纳入ERP系统,例: RE0120000061280 2.1、电子元器件物品(电子元器件的命名字母缩写): 器件名称字母缩写器件名称字母缩写器件名称字母缩写 电阻RE混合厚膜电路HB 导线WR 电阻阵列、 RA /RG传感器SN磁珠FR 可变 电容CP继电器RL 线圈CL

【CN110099548A】一种电子器件散热装置与方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910359479.0 (22)申请日 2019.04.30 (71)申请人 西安交通大学 地址 710049 陕西省西安市咸宁西路28号 (72)发明人 魏进家 袁博 张永海  (74)专利代理机构 西安通大专利代理有限责任 公司 61200 代理人 安彦彦 (51)Int.Cl. H05K 7/20(2006.01) (54)发明名称一种电子器件散热装置与方法(57)摘要一种电子器件散热装置与方法,包括设置在流动通道内的电子器件,电子器件布置在流动通道的底面上;流动通道顶面上开设有第一出口与第二出口,与第一出口相连的第一管道上设置有第一电磁阀,与第二出口相连的第二管道上设置有第二电磁阀,流动通道底面上开设第一入口和第二入口,与第一入口相连的第三管道上设置有第三电磁阀;与第二入口相连的第四管道上设置有第四电磁阀。由一台PLC控制四枚电磁阀两两一组进行交替的开启与闭合,通过往复流动的液体对电子器件表面气泡的进行持续高效冲击,促使气泡脱离加热表面,并离开流道,显著提升了换热系数和临界热流密度,达到高热流密度条件 下电子器件散热的需求。权利要求书1页 说明书4页 附图3页CN 110099548 A 2019.08.06 C N 110099548 A

权 利 要 求 书1/1页CN 110099548 A 1.一种电子器件散热装置,其特征在于,包括设置在流动通道(5)内的电子器件,电子器件布置在流动通道(5)的底面上;流动通道(5)顶面上开设有第一出口与第二出口,与第一出口相连的第一管道(13)上设置有第一电磁阀(1),与第二出口相连的第二管道(14)上设置有第二电磁阀(2),流动通道(5)底面上开设第一入口和第二入口,与第一入口相连的第三管道(15)上设置有第三电磁阀(7);与第二入口相连的第四管道(16)上设置有第四电磁阀(11)。 2.根据权利要求1所述的一种电子器件散热装置,其特征在于,流动通道(5)的横截面为矩形。 3.根据权利要求1所述的一种电子器件散热装置,其特征在于,第一入口与第二入口之间的距离以及第一出口与第二出口之间的距离均大于电子器件的长度10mm。 4.根据权利要求1所述的一种电子器件散热装置,其特征在于,第一电磁阀(1)、第二电磁阀(2)、第三电磁阀(7)与第四电磁阀(11)均与可编程逻辑控制器相连。 5.根据权利要求1所述的一种电子器件散热装置,其特征在于,第三电磁阀(7)与第四电磁阀(11)的入口均与流量计(6)相连。 6.根据权利要求5所述的一种电子器件散热装置,其特征在于,流量计(6)与离心泵(12)相连。 7.根据权利要求1所述的一种电子器件散热装置,其特征在于,电子器件连接有直流电源(10)。 8.根据权利要求1所述的一种电子器件散热装置,其特征在于,当第一电磁阀(1)与第四电磁阀(11)开启时,第二电磁阀(2)与第三电磁阀(7)闭合;当第二电磁阀(2)与第三电磁阀(7)开启时,第一电磁阀(1)与第四电磁阀(11)闭合。 9.一种基于权利要求1-8中任意一项所述散热装置的散热方法,其特征在于,通过可编程逻辑控制器相连控制第一电磁阀(1)与第四电磁阀(11)开启,第二电磁阀(2)与第三电磁阀(7)闭合,流动通道(5)内液体从右向左流过电子器件表面,进行流动沸腾换热;在经过一个动作周期后,第二电磁阀(2)与第三电磁阀(7)开启,第一电磁阀(1)与第四电磁阀(11)闭合,液体反向,从左向右流过电子器件表面;如此反复切换电磁阀工作状态,实现液体的高频往复流动,从而实现对电子器件的散热。 10.一种根据权利要求(9)所述的散热方法,其特征在于,一个动作周期为50ms。 2

温度控制系统

《单片机技术》课程设计任务书 一、设计题目:数字电子钟、数字频率计、数字电压表、交通灯、抢答器、密码 锁、波形发生器、数字温度计、计算器、数字式秒表。 二、适用班级: 三、指导教师: 四、设计目的与任务: 学生通过理论设计和实物制作解决相应的实际问题,巩固和运用在《单片机技术》中所学的理论知识和实验技能,掌握单片机应用系统的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 五、设计内容与要求 设计内容 1、数字电子钟 设计一个具有特定功能的电子钟。该电子钟上电或按键复位后能自动显示系统提示符“P.”,进入时钟准备状态;第一次按电子钟启动/调整键,电子钟从0时0分0秒开始运行,进入时钟运行状态;再次按电子钟启动/调整键,则电子钟进入时钟调整状态,此时可利用各调整键调整时间,调整结束后可按启动/调整键再次进入时钟运行状态。 2、数字频率计 设计一个能够测量周期性矩形波信号的频率、周期、脉宽、占空比的频率计。该频率计上电或按键复位后能自动显示系统提示符“P.”,进入测量准备状态。按频率测量键则测量频率;按周期测量键则测量周期;按脉宽测量键则测量脉宽;按占空比测量键则测量占空比。 3、数字电压表 设计一个能够测量直流电压的数字电压表。测量电压范围0~5V,测量精度小数点后两位。该电压表上电或按键复位后能自动显示系统提示符“P.”,进入测量准备状态,按测量开始键则开始测量,并将测量值显示在显示器上,按测量结束键则自动返回“P.”状态。 4、交通灯 设计一个具有特定功能的十字路口交通灯。该交通灯上电或按键复位后能自动显示系统提示符“P.”,进入准备工作状态。按开始键则开始工作,按结束键则返回“P.”状态。要求甲车道和乙车道两条交叉道路上的车辆交替运行,甲车道为

电子器件冷却技术概况与进展

电子器件冷却技术概况与进展1.引言 随着科技的发展,人们平时生活普遍用电子产品。这些给人们带来了很大的方便。所以人们现在最热门研究科目之一就是电子产品的性能提高。电子器件的冷却是非常重要的。由于高温导致的实效在所有电子设备是小中所占的比例大于50%,传热问题甚至成为电力电子装置向小型化发展的瓶颈。电子器件用于 电子计算机容量和速度的快速发展以及导弹,卫星,宇宙探索和军用雷达等等。这些对高性能模块和高可靠大功率器的要求,一方面器件的特征尺寸愈小愈好,已从微米量级向亚微米发展;另一方面器件的集成度持续快速增加。空间微尺度和时间微尺度条件下的流动和传热问题的研究显得十分重要。 传热是最普遍的一种自然现象。几乎所有的工程领域都会遇到一些在特定条件下的传热问题,包括有传质同时发生的复杂传热问题。现代科学技术突飞猛进,传热学的工程应用研究也已跨越传统的能源动力,工艺过程节能的范畴,在材料的制备和加工、航天技术的发展、信息器件的温控、生物技术、医学、环境净化与生态维护、以及农业工程化、军备现代化等不同领域都有所牵涉。特别是高技术的迅猛发展,正面临着温度场、速度场、浓度场、电磁场、光场、声场、化学势场等各种场相互耦合下的热量传递过程和温度控制,从而使传热学迅速发展为当今技术科学中了解各种热物理现象和创新相应技术的重要基础学科。现就电子器件冷却方面的传热学最新研究动态作简要的介绍。 2.冷却技术 (1)微通道冷却技术 微通道换热器是指在基体上用光刻或其它刻蚀法制成截面尺寸仅有几十到上百微米的槽道,换热介质在这些小槽道中流过与换热器基体并通过基体与别的换热介质进行换热. 换热器的基体材料可以是金属、玻璃、硅或其它任何合适的材料. 这种换热器的突出优点是: ① 热系数大,换热效果很好。由于几何尺寸极小,流体流过通道时 的流动状态与常规换热器有很大区别。雷诺数一般增大一个数量级,因 而换热系数明显增大. 换热介质与基体之间温差很小。 ② 体积很小,特别适合电子器件的冷却。 ③ 制造工艺采用电子器件制造工艺,有利于降低成本、批量生产。 ④ 由于换热介质与基体间温差小,槽道间距离短,所以基体本身的 导热系数对总的换热导数影响小,所以,基体导热系数差一些也影响不大,因此可以选用多种材料作换热器。

电子元器件综合标准(最新)

电子元器件综合标准(最新) G4210《GB/T4210-2001 电工术语:电子设备用机电元件》 G5597《GB/T5597-1999 固体电介质微波复介电常数的测试方法》 G16523《GB/T16523-1996 圆形石英玻璃光掩模基板规范》 G16524《GB/T16524-1996 光掩对准标记规范》 G16525《GB/T16525-1996 塑料有引线片式载体封装引线框架规范》 G16526《GB/T16526-1996 封装引线间电容和引线负载电容测试方法》 G16527《GB/T16527-1996 硬面感光板中光致抗蚀剂和电子束抗蚀剂规范》 G16595《GB/T16595-1996 晶片通用网格规范》 G16596《GB/T16596-1996 确定晶片坐标系规范》 G16879《GB/T16879-1997 掩模嚗光系统精密度和准确度的表示准则》 G16880《GB/T16880-1997 光掩模缺陷分类和尺寸定义的准则》 G17564.1《GB/T 17564.1-2005 电气元器件的标准数据元素类型和相关分类模式:定义-原则和方法》 G17564.2《GB/T 17564.2-2005 电气元器件的标准数据元素类型和相关分类模式:EXPRESS 字典模式》 G17564.3《GB/T 17564.3-1999 电气元器件的标准数据元素:维护和确认的程序》G17564.4《GB/T 17564.4-2001 电气元器件的标准数据元素类型和相关分类模式:IEC标准数据元素类型、元器件类别和项的基准集》 G17564.5《GB/T 17564.5-2007 电气元器件的标准数据元素类型和相关分类模式:EXPRESS字典模式扩展》 G17866《GB/T17866-1999 掩摸缺陷检查灵敏度分析所用的特制缺陷掩摸和评估》G18501.1《GB/T18501.1-2001 有质量评定的直流和低频模拟及处理用连接器:总规范》 G18501.2《GB/T18501.2-2001 有质量评定的圆形连接器分规范》 G19405.1《GB/T19405.1-2003 表面安装技术:表面安装元器件规范的标准方法》G19405.2《GB/T19405.2-2003 表面安装技术:表面安装元器件的运输和贮存条件-应用指南》 G19921《GB/T 19921-2005 硅抛光片表面颗粒测试方法》 G19922《GB/T 19922-2005 硅片局部平整度非接触式标准测试方法》 G21194《GB/T 21194-2007 通信设备用的光电子器件的可靠性通用要求》 G22586《GB/T 22586-2008 高温超导薄膜微波表面电阻测试》 G22587《GB/T 22587-2008 基体与超导体体积比测量 Cu/Nb-Ti复合超导体铜-超[体积]比的测量》 GJ35《GJB/Z35-1993 元器件降额准则》 GJ221《GJB/Z 221-2005 军用密封元器件检漏方法实施指南》 GJ360B《GJB360B-2009 电子及电气元件试验方法》 GJ546B《GJB546B-2011 Z 电子元器件质量保证大纲》 GJ548B《GJB 548B-2005 微电子器件试验方法和程序》 GJ978《GJB978A-1997 单列、双列插入式电子元器件插座总规范》 GJ2649《GJB2649-1996 军用电子元件失效率抽样方案和程序》 GJ2650《GJB2650-1996 微波元器件性能测试方法》 GJ2823《GJB2823-1997 电子元器件产品出厂平均质量水平评定方法》

详解最新PCB冷却技术

随着消费者对更小、更快要求的进一步加强,在解决密度日益提高的印刷电路板(PCB)散热问题方面出现了艰巨的挑战。随着堆叠式微处理器和逻辑单元达到GHz工作频率范围,高性价比的热管理也许已经成为设计、封装和材料领域的工程师亟需解决的最高优先级问题。 制造3D IC以获得更高的功能密度已经成为当前趋势,这进一步增加了热管理的难度。仿真结果表明,温度上升10℃会使3D IC芯片的热密度翻一倍,并使性能降低三分之一以上。 微处理器的挑战 国际半导体技术蓝图(ITRS)的预测表明,在今后三年内,微处理器内难以冷却区域中的互连走线将消耗高达80%的芯片功率。热设计功耗(TDP)是评估微处理器散热能力的一个指标。它定义了处理器达到最大负荷时释放出的热量以及相应的壳温。 Intel和AMD公司最新微处理器的TDP在32W至140W之间。随着微处理器工作频率的提高,这个数字还会继续上升。 拥有数百个计算机服务器的大型数据中心特别容易遭遇散热问题。根据一些估计数据,服务器的冷却风扇(可能消耗高达15%的电能)实际上已经成为服务器中及其本身的一个相当大的热源。另外,数据中心的冷却成本可能占数据中心功耗的约40%至50%.所有这些事实对局部和远程温度检测及风扇控制提出了更高的要求。 热量管理挑战在遇到安装包含多内核处理器的PCB时将变得更加艰巨。虽然处理器阵列中的每个处理器内核与单内核处理器相比可能消耗较少的功率(因而散发较少的热量),但对大型计算机服务器的净效应是给数据中心的计算机系统增加了更多的散热。简言之,在给定面积的PCB板上运行更多的处理器内核。 另外一个棘手的IC热管理问题涉及到芯片封装上出现的热点。热通量可以高达 1000W/cm2,这是一种难以跟踪的状态。 PCB在热管理中发挥着重要作用,因此需要热量设计版图。设计工程师应该尽可能使大功率元件相互间隔得越远越好。另外,这些大功率元件应尽可能远离PCB的角落,这将有助于最大化功率元件周围的PCB面积,加快热量散发。 将裸露的电源焊盘焊接到PCB上是常见的做法。一般来说,裸露焊盘类型的电源焊盘可以传导约80%的通过IC封装底部产生并进入PCB的热量。剩下的热量将从封装侧面和引线散发掉。 散热帮手 设计工程师现在可以向许多改良的热管理产品寻求帮助。这些产品包括散热器、热导管和风扇,可以用来实现主动和被动的对流、辐射和传导冷却。即使是PCB上安装芯片的互连方式也有助于减轻散热问题。 例如,用于将IC芯片互连到PCB的普通裸露焊盘方法可能会增加散热问题。当把裸露的路径焊接到PCB上时,热量会很快逸出封装并进入电路板,然后通过电路板的各个层散发进周围的空气。 德州仪器(TI)发明了一种PowerPAD方法,能把IC裸片安装到金属盘上(图1)。这个裸片焊盘将在制造过程中支撑裸片,并作为良好的散热路径将热量从芯片中散发出去。

电子元器件检验标准

WORD格式 一、适用范围及检验方案 1、适用范围 本检验标准中所指电子元器件仅为PCBA上的贴片件或接插件,具体下表清单所示: 序号物料名称页码序号物料名称页码序号物料名称页码 1电阻类13晶振25MOS管 2电容类P214端子(排)插/座26防雷管 P4 3发光LED类15软排线/卡扣27IGBT P6 4电感类16变压器28RJ45插座/ 5PCB板17电压/电流互感器29半/双排插针/6二极管类18霍尔电流传感器30支撑柱/隔离柱/ P3 7IC类19LCD显示屏31光纤收发模块/ 8数码管20保险片/管P532电源模块/ 9蜂鸣器21散热片33保险座/卡扣/ 10开关按键22稳压管34插片端子/ 11继电器P423温度保险丝35 12三极管24光耦P636 2、检验方案 2.1每批来料的抽检量(n)为5只,接收质量限(AQL)为:CR与MA=0,MI=(1,2),当来料少于5只时则 全检,且接收质量限CR、MA与MI=0。 2.2来料检验项目=通用检验项目+差异检验项目,差异检验项目清单中未列出部件,按通用检验项目执行。 二、通用检验项目 序号检验项目标准要求检验方法判定水准 1规格型号检查型号规格是否符合要求(送货单、实物、BOM表三者上的信息 必须一致) 目视MI 2 检查包装是否符合要求(有防静电要求的必须有防静电袋/盒等包 装,易碎易损的必须用专用包装或气泡棉包装等) 目视MI 3 包装外包装必须有清晰、准确的标识,明确标明产品名称、规格/型 号、 数量等。或内有分包装则其上必须有型号与数量等标识。 目视MI 4盘料或带盘包装时,不应有少料、翻面、反向等。目视MI 5外观产品表面应该完好;产品引脚无氧化、锈蚀、变形;本体应无破 损、 无裂纹; 目视MI 6 贴片件其长/宽/高/直径等应符合部品技术规格书要求,若没有标明的公 差的按±0.2mm控制,但不可影响贴装。 卡尺MA 尺寸测量本体长、宽、高,引脚长度、直径、间距应符合部品技术规格 7插件类书要求,若没有标明的公差的按±0.5mm控制,但不可影响插装与卡尺MA 焊接(需实物装配验证)。 制定/日期审核/日期批准/日期

温度控制器的工作原理

温度控制器的工作原理 据了解,很多厂家在使用温度控制器的过程中,往往碰到惯性温度误差的问题,苦于无法解决,依靠手工调压来控制温度。创新,采用了PID模糊控制技术,较好地解决了惯性温度误差的问题。传统的温度控制器,是利用热电偶线在温度化变化的情况下,产生变化的电流作为控制信号,对电器元件作定点的开关控制器。电脑控制温度控制器:采用PID模糊控制技术*用先进的数码技术通过Pvar、Ivar、Dvar(比例、积分、微分)三方面的结合调整形成一个模糊控制来解决惯性温度误差问题。 传统的温度控制器的电热元件一般以电热棒、发热圈为主,两者里面都用发热丝制成。发热丝通过电流加热时,通常达到1000℃以上,所以发热棒、发热圈内部温度都很高。一般进行温度控制的电器机械,其控制温度多在0-400℃之间,所以,传统的温度控制器进行温度控制期间,当被加热器件温度升高至设定温度时,温度控制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 要解决温度控制器这个问题,采用PID模糊控制技术,是明智的选择。PID模糊控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。当然,在电压稳定工作的速度不变、外界气温不变和空气流动速度不变的情况下,这样做是完全可以的,但要清楚地知道,以上的环境因素是不断改变的,同时,用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有采用PID模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。例如烫金机,其温度要求比较稳定,通常在正负2℃以内才能较好运作。高速烫金机烫制同一种产品图案时,随着速度加快,加热速度也要相应提高。这时,传统的温度控制器方式和采用调压器操作就不能胜任,产品的质量就不能保证,因为烫金之前必须要把烫金机的运转速度调节适当,用速度来迁就温度控制器和调压器的弱点。但是,如果采用PID模糊控制的温度控制器,就能解决以上的问题,因为PID中的P,即Pvar功率变量控制,能随着烫金机工作速度加快而加大功率输出的百分量。 有机械式的和电子式的, 机械式的采用两层热膨胀系数不同金属亚在一起,温度改变时,他的弯曲度会发生改变,当弯曲到某个程度是,接通(或断开)回路,使得制冷(或加热)设备工作。

电子器件散热技术现状及进展

电子器件散热技术现状及进展 随着电子及通讯技术的迅速发展,高性能芯片和集成电路的使用越来越广泛。电子器件芯片的功率不断增大,而体积却逐渐缩小,并且大多数电子芯片 的待机发热量低而运行时发热量大,瞬间温升快。高温会对电子器件的性能产 生有害的影响,据统计电子设备的失效有55 %是温度超过规定值引起的,电子器件散热技术越来越成为电子设备开发、研制中非常关键的技术。电子器件散 热的目的是对电子设备的运行温度进行控制(或称热控制),以保证其工作的稳 定性和可靠性,这其中涉及了与传热有关的散热或冷却方式、材料等多方面内容,目前主要有空气冷却技术和液体冷却技术两大类。 1 空气冷却技术 空气冷却技术是目前应用最广泛的电子冷却技术,包括自然对流空气冷却技 术和强制对流空气冷却技术。自然对流空气冷却技术主要应用于体积发热功率 较小的电子器件,利用设备中各个元器件的空隙以及机壳的热传导、对流和辐 射来达到冷却目的。 自然对流依赖于流体的密度变化,所要求的驱动力不大,因此在流动路径中 容易受到障碍和阻力的影响而降低流体的流量和冷却速率。对于体积发热功率 较大的电子器件,如单一器件功耗达到7 W(15~25 W-cm-2),板级(印制电路板) 功耗超过300 W(2~3W-cm-2)时,一般则采用强制对流空气冷却技术。强制散热或冷却方法主要是借助于风扇等设备强迫电子器件周边的空气流动,从而将 器件散发出的热量带走,这是一种操作简便、收效明显的散热方法。提高这种 强迫对流传热能力的方法主要有增大散热面积(散热片)以及提高散热表面的强 迫对流传热系数(紊流器、喷射冲击、静电作用)。对一些较大功率的电子器件,可以根据航空技术中的扰流方法,通过在现有型材散热器中增加小片扰流片,

国外军用电子元器件质量等级与国内对应一览表

国外军用电子元器件质量等级与国内对应一览 表 The manuscript was revised on the evening of 2021

国外军用电子元器件质量等级与国内对应一览表 为了保证元器件的质量,我国制定了一系列的元器件标准。在上世纪70年代末期制定了“七专”7905技术协议和80年代初制定了“七专”8406技术协议,已具备了军用器件标准的雏形,但标准是在改革开放之前制定的,有很多局限性,很难与国际接轨。 从80年代开始,我国标准化部门参照了美国军用标准(MIL)体系建立了GJB 体系,元器件的标准有规范、标准、指导性文件等三种形式。 一、国内军用元器件质量分级 二、美国军标质量等级体系: MIL-PRF-19500半导体器件试验总规范(依次低→高等级) 单片微电路规范(依次低→高等级) B-2级:不完全符合MIL-STD-883的节的要求,并按照政府批准文件,包括卖方等效的B级要求进行采购。 B-1级:完全符合MIL-STD-883(微电子器件试验方法和程序)的节所要求,并按照标准军用图样(SMD – Standard Microcicuit Drawing),国防电子供应

中心(DESC –DefenceElectronic Supply Center)图样或政府批准的其它文件进行采购。即通常称883级,器件上有5962 – xxx号。 S-1级:完全按照MIL-STD-975(NASA标准的电子电气和机电源器件目录)或MIL-STD-1547(航天飞行器和运载火箭用元器件、材料和工艺技术要求)进行采购,并有采购机关的规范批准。 MIL-PRF-38534D混合集成电路规范(依次低→高等级) 电阻、电容、电感元件 MIL 标准中有可靠性指标的元件失效等级分五级MIL 标准中有可靠性指标的失效率等级和失效率的对应关系 三、欧空局元器件 半导体分立器件: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)5000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 微电路: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)9000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 电阻、电容、电感器件: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)3000和4000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 四、国外军用元器件与我国军用元器件质量等级对应关系 半导体分立器件质量等级对应关系

散热器高效散热技术及应用研究阚宏伟

散热器高效散热技术及应用研究 摘要:随着电子技术的发展,使得电子器件的热流密度不断增加,这样势必对电子器有更高的散热要求,因此有效地解决散热问题已成为电子设备必须解决的关键技术。针对现代电子设备所面临的散热问题,就散热基本原理以及各种主流散热技术,包括自然对流散、强制风冷散热、液体冷却、热管、微槽道冷却、集成热路、热电致冷等常用的电子设备散热技术及某些前沿的研究现状、发展趋势及存在问题分别予以阐述。 关键词:热传递自然对流强制风冷热管散热热电制冷 引言:据统计,55%的电子设备失效是由温度过高引起的。可见,电子设备的主要故障形式为过热损坏,因此对电子设备进行有效的散热是提高产品可靠性的关键。电子设备的主要散热技术电子设备的高效散热问题与传热学(包括热传导、对流和热辐射)和流体力学(包括质量、动量和能量守恒三大定律)等原理的应用密切相关。 一:热传递主要有三种方式: 传导:物质本身或当物质与物质接触时,能量的传递就被称为热传导,这是最普遍的一种热传递方式,由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量。相对而言,热传导方式局限于固体和液体,因为气体的分子构成并不是很紧密,它们之间能量的传递被称为热扩散。 热传导的基本公式为“Q=K×A×ΔT/ΔL”。其中Q代表为热量,也就是热传导所产生或传导的热量;K为材料的热传导系数,热传导系数类似比热,但是又与比热有一些差别,热传导系数与比热成反比,热传导系数越高,其比热的数值也就越低。举例说明,纯铜的热传导系数为396.4,而其比热则为0.39;公式中A代表传热的面积(或是两物体的接触面积)、ΔT代表两端的温度差;ΔL则是两端的距离。因此,从公式我们就可以发现,热量传递的大小同热传导系数、热传热面积成正比,同距离成反比。热传递系数越高、热传递面积越大,传输的距离越短,那么热传导的能量就越高,也就越容易带走热量。 对流:对流指的是流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。 具体应用到实际来看,热对流又有两种不同的情况,即:自然对流和强制对流。自然对流指的是流体运动,成因是温度差,温度高的流体密度较低,因此质量轻,相对就会向上运动。相反地,温度低的流体,密度高,因此向下运动,这种热传递是因为流体受热之后,或者说存在温度差之后,产生了热传递的动力;强制对流则是流体受外在的强制驱动(如风扇带动的空气流动),驱动力向什么地方,流体就向什么地方运动,因此这种热对流更有效率和可指向性。

电子器件冷却技术概况与进展

电子器件冷却技术概况与进展 1.引言随着科技的发展,人们平时生活普遍用电子产品。这些给人们带来了很大的方便。所以人们现在最热门研究科目之一就是电子产品的性能提高。电子器件的冷却是非常重要的。由于高温导致的实效在所有电子设备是小中所占的比例大于50%,传热问题甚至成为电力电子装置向小型化发展的瓶颈。电子器件用于电子计算机容量和速度的快速发展以及导弹,卫星,宇宙探索和军用雷达等等。这些对高性能模块和高可靠大功率器的要求,一方面器件的特征尺寸愈小愈好,已从微米量级向亚微米发展;另一方面器件的集成度持续快速增加。空间微尺度和时间微尺度条件下的流动和传热问题的研究显得十分重要。传热是最普遍的一种自然现象。几乎所有的工程领域都会遇到一些在特定条件下的传热问题,包括有传质同时发生的复杂传热问题。现代科学技术突飞猛进,传热学的工程应用研究也已跨越传统的能源动力,工艺过程节能的范畴,在材料

的制备和加工、航天技术的发展、信息器件的温控、生物技术、医学、环境净化与生态维护、以及农业工程化、军备现代化等不同领域都有所牵涉。特别是高技术的迅猛发展,正面临着温度场、速度场、浓度场、电磁场、光场、声场、化学势场等各种场相互耦合下的热量传递过程和温度控制,从而使传热学迅速发展为当今技术科学中了解各种热物理现象和创新相应技术的重要基础学科。现就电子器件冷却方面的传热学最新研究动态作简要的介绍。 2.冷却技术(1)微通道冷却技术微通道换热器是指在基体上用光刻或其它刻蚀法制成截面尺寸仅有几十到上百微米的槽道,换热介质在这些小槽道中流过与换热器基体并通过基体与别的换热介质进行换热. 换热器的基体材料可以是金属、玻璃、硅或其它任何合适的材料. 这种换热器的突出优点是: ①?? 热系数大,换热效果很好。由于几何尺寸极小,流体流过通道时的流动状态与常规换热器有很大区别。雷诺数一般增大一个数量级,因而换热系数明显增大. 换热介质与基体之间温差很小。②?? 体积很小,特别

电子系统设计温度控制系统实验报告

电子系统设计实验报告温度控制系统的设计 姓名:杨婷 班级:信息21 学校:西安交通大学

一、问题重述 本次试验采用电桥电路、仪表放大器、AD转化器、单片机、控制通断继电器和烧水杯,实现了温度控制系统的控制,达到的设计要求。 设计制作要求如下: 1、要求能够测量的温度范围是环境温度到100o C。 2、以数字温度表为准,要求测量的温度偏差最大为±1o C。 3、能够对水杯中水温进行控制,控制的温度偏差最大为±2o C,即温度波 动不得超过2o C,测量的精度要高于控制的精度。 4、控制对象为400W的电热杯。 5、执行器件为继电器,通过继电器的通断来进行温度的控制。 6、测温元件为铂热电阻Pt100传感器。 7、设计电路以及使用单片机学习板编程实现这些要求,并能通过键盘置入预期温度,通过LCD显示出当前温度。 二、方案论证 1、关于R/V转化的方案选择 方案一是采用单恒流源或镜像恒流源方式,但是由于恒流源的电路较复杂,且受电路电阻影响较大,使输出电压不稳定。 方案二是采用电桥方式,由电阻变化引起电桥电压差的变化,电路结构简单,且易实现。 2、关于放大器的方案选择 方案一是采用减法器电路,但是会导致放大器的输入电阻对电桥有影响,不利于电路的调节。 方案二是采用仪表放大器电路,由于仪表放大器内部的对称,使电路影响较小,调整放大倍数使温度从0到100度,对应的电压为0-5V。 三、电路的设计 1、电桥电路 通过调节电位器R3使其放大器输出端在0度的时候输出为0实现调零,然后合理选择R1、R2的阻值配合后面放大器的放大倍数实现热电阻阻值向电压值的转化。 通过调节电位器R3使其放大器输出端在0度的时候输出为0实现调零,然后合理选择R1、R2的阻值配合后面放大器的放大倍数实现热电阻阻值向电压值的转化。本次实验中:R1=R2=10KΩ,R3为500Ω的变阻器。

国外军用电子元器件质量等级与国内对应一览表

国外军用电子元器件质量等级与国内对应一览表 为了保证元器件的质量,我国制定了一系列的元器件标准。在上世纪70年代末期制定了“七专”7905技术协议和80年代初制定了“七专”8406技术协议,已具备了军用器件标准的雏形,但标准是在改革开放之前制定的,有很多局限性,很难与国际接轨。 从80年代开始,我国标准化部门参照了美国军用标准(MIL)体系建立了GJB体系,元器件的标准有规范、标准、指导性文件等三种形式。 一、国内军用元器件质量分级 二、美国军标质量等级体系: MIL-PRF-19500半导体器件试验总规范(依次低→高等级) 单片微电路规范(依次低→高等级) B-2级:不完全符合MIL-STD-883的1.2.1节的要求,并按照政府批准文件,包括卖方等效的B级要求进行采购。 B-1级:完全符合MIL-STD-883(微电子器件试验方法和程序)的1.2.1节所要求,并按照标准军用图样(SMD –Standard Microcicuit Drawing),国防电子供应中心(DESC –DefenceElectronic Supply Center)图样或政府批准的其它文件进行采购。即通常称883级,

器件上有5962 –xxx号。 S-1级:完全按照MIL-STD-975(NASA标准的电子电气和机电源器件目录)或MIL-STD-1547(航天飞行器和运载火箭用元器件、材料和工艺技术要求)进行采购,并有采购机关的规范批准。 MIL-PRF-38534D混合集成电路规范(依次低→高等级) 电阻、电容、电感元件MIL 标准中有可靠性指标的元件失效等级分五级 MIL 标准中有可靠性指标的失效率等级和失效率的对应关系 三、欧空局元器件 半导体分立器件: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)5000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 微电路: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)9000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 电阻、电容、电感器件: ESA/SCC(Europe SpaceAgency/Space Componet Cooperation)3000和4000标准 试验等级:B级、C级(从高到低) 批接收等级:1级、2级、3级(从高到低) 四、国外军用元器件与我国军用元器件质量等级对应关系 半导体分立器件质量等级对应关系

电子元器件老化标准

一、外观质量检查 拿到一个电子元器件之后,应看其外观有无明显损坏。比如变压器,要看其所有引线有否折断,外表有无锈蚀,线包、骨架有无破损等。又如三极管,要看其外表有无破损,引脚有无折断或锈蚀,还要检查一下器件上的型号是否清晰可辨。对于电位器、可变电容器之类的可调元件,还要检查在调节范围内,其活动是否平滑、灵活,松紧是否合适,无机械噪声,手感好,并保证各触点接触良好。 各种不同的电子元器件都有自身的特点和要求,爱好者平时应多了解一些有关各元件的性能和参数、特点,积累经验。 二、电气性能的筛选 要保证试制的电子装置能够长期稳定地通电工作,并且经得起应用环境和其他可能因素的考验,这是对电子元器件的筛选必不可少的一道工序。所谓筛选,就是对电子元器件施加一种应力或多种应力试验,暴露元器件的固有缺陷而不破坏它的完整性。筛选的理论是:如果试验及应力等级选择适当,劣质品会失效,而优良品则会通过。人们在长期的生产实践中发现新制造出来的电子元器件,在刚投入使用的时候,一般失效率较高,叫做早期失效,经过早期失效后,电子元器件便进入了正常的使用期阶段,一般来说,在这一阶段中,电子元器件的失效率会大大降低。过了正常使用阶段,电子元器件便进入了耗损老化期阶段,那将意味着寿终正寝。这个规律,恰似一条浴盆曲线,人们称它为电子元器件的效能曲线。 电子元器件失效,是由于在设计和生产时所选用的原材料或工艺措施不当而引起的。元器件的早期失效十分有害,但又不可避免。因此,人们只能人为地创造早期工作条件,从而在制成产品前就将劣质品剔除,让用于产品制作的元器件一开始就进入正常使用阶段,减少失效,增加其可靠性。 在正规的电子工厂里,采用的老化筛选项目一般有:高温存储老化;高低温循环老化;高低温冲击老化和高温功率老化等。其中高温功率老化是给试验的电子元器件通电,模拟实际工作条件,再加上+80℃~+180℃的高温经历几个小时,它是一种对元器件多种潜在故障都有检验作用的有效措施,也是目前采用得最多的一种方法。对于业余爱好者来说,在单件电子制作过程中,是不太可能采取这些方法进行老化检测的,在大多数情况下,采用了自然老化的方式。例如使用前将元器件存放一段时间,让电子元器件自然地经历夏季高温和冬季低温的考验,然后再来检测它们的电性能,看是否符合使用要求,优存劣汰。对于一些急用的电子元器件,也可采用简易电老化方式,用一台输出电压可调的脉动直流电源,使加在电子元器件两端的电压略高于元件额定值的工作电压,调整流过元器件的电流强度,使其功

基于快速热响应相变材料的电子器件散热技术

华南理工大学学报(自然科学版) 第35卷第7期Journal of Sou th C hina U n iversity of Technology V ol .35 N o .7 2007年7月 (N atu ral Science Edition )July 2007 文章编号:10002565X (2007)0720052205    收稿日期:2006209226 3基金项目:广东省自然科学基金资助项目(05006551) 作者简介:尹辉斌(19802),男,博士生,主要从事传热强化与数值模拟研究.E 2mail:peppy222@https://www.360docs.net/doc/762957230.html, 通讯作者:高学农,副教授,E 2mail:cexngao@scut .edu .cn 基于快速热响应相变材料的电子器件散热技术 3 尹辉斌1  高学农1  丁 静2  张正国 1 (1.华南理工大学传热强化与过程节能教育部重点实验室,广东广州510640;2.中山大学工学院,广东广州510006) 摘 要:以石蜡为相变材料,利用膨胀石墨的高导热系数和多孔吸附特性,制备出高导热系数的快速热响应复合相变材料,其导热系数可达41676W /(m ?K ).将该材料应用于电子器件散热装置,在不同的发热功率条件下,储热材料散热实验系统的表观传热系数是传统散热系统的1136~2198倍,其散热效果明显优于传统散热系统,可有效提高电子元器件抗高负荷热冲击的能力,保证电子电器设备运行的可靠性和稳定性.关键词:相变材料;热性能;电子器件;散热 中图分类号:TK124;T Q 021.3 文献标识码:A 随着电子及通讯技术的迅速发展,高性能芯片和大规模及超大规模集成电路的使用越来越广泛.电子器件芯片的集成度、封装密度以及工作频率不断提高,而体积却逐渐缩小(例如,微处理器的特征尺寸在1990至2000年内从0135μm 减小到0118μm ),这些都使得芯片的热流密度迅速升高 [1] .由于高温会 对电子元器件的性能产生有害的影响,如过高的温度会危及半导体的结点,损伤电路的连接界面,增加导体的阻值和形成机械应力损伤 [2] .随着温度的升 高,其失效率呈指数增长趋势,甚至有的器件在环境温度每升高10℃,失效率增大1倍以上,被称为10℃法则.据统计,电子设备的失效率有55%是温度超过规定的值引起的 [3] .同时,大多电子芯片的待机 发热量低而运行时发热量大,使瞬间温升快.因此抗热冲击和散热问题已成为芯片技术发展的瓶颈.相变储热材料由于具有蓄能密度大、蓄放热过程近似等温、过程易控制等优点,备受研究者的关注,而提高其热性能更成为了研究热点 [426] .近年来,将相变 储热材料应用于电子元件的散热技术在国外已受到 广泛重视,并在航空、航天和微电子等高科技系统及军事装备中 [7211] 得到一定应用. 将快速热响应复合相变储热材料应用于电子器件的散热器中,针对大多数电子器件满负荷工作时间短而待机时间长的特点,对电子器件及芯片因散热而引起的表面温度升高可起到移峰填谷的作用.当电子器件满负荷工作时可将部分热量储存起来,而在其待机发热量低时再释放出储存的热量,这样可有效提高电子器件抗高负荷热冲击的能力,保证电子电器设备运行的可靠性和稳定性,同时在低温环境中电子器件可不经过预热便能正常工作.复合相变储热材料的散热技术可广泛应用于各类电子产品中,具有良好的应用前景. 1 复合相变材料的热性能 与传统的散热方式不同,对于基于快速热响应储热材料的散热技术除要求相变材料的储热密度大之外,还要求材料具有较高的导热系数,传热速率快.为解决传统相变材料高储热密度和低导热系数之间的矛盾,根据电子元件散热技术领域对快速热响应相变储热材料的性能(如密度、相变温度、储热密度)要求,实验选定导热系数高且密度低的膨胀石墨作为无机支撑材料,石蜡作为有机相变材料,利用石蜡与膨胀石墨间的固、液表面张力,孔隙结构的

电子元器件规范标准

电阻 分类:固定电阻;排阻;可变电阻;特殊电阻 固定电阻: 1.主要参数:阻值材料类型精度功率封装 2.示例: 4.7K SMD +/-5% 1/16W 0603 备注:常用材料:SMD;碳膜;金属膜;合成膜;玻璃釉;水泥电阻; 常见封装:0603;0805;1206;AXIAL0.3; 派瑞电子选型参数: 排阻: 1.主要参数:阻值材料类型精度功率封装 2.示例: 4.7K SMD +/-5% 1/16W 0603*3 备注:常用材料:SMD;碳膜;金属膜;合成膜;玻璃釉; 常见封装:0603*3;0603*4;0805*3;AXIAL0.3*5;AXIAL0.5*6;派瑞电子选型参数: 可变电阻 1.主要参数:总调电阻变化类型精度功率封装 2.示例: 20K 线性 +/-10% 1W VR-6 备注:变化类型:线性;对数 常见封装:VR-6 派瑞电子选型参数:

特殊电阻 常见分类:热敏电阻;压敏电阻 1.热敏电阻: 1.1主要参数:型号类型标称电阻最大电压封装 1.2示例: MZ72-7RM PTC 7欧 220V RAD0.2 备注:类型:PTC;NTC; 常见封装:RAD0.2;DO-35; 风华高科选型参数:. 2.压敏电阻: 1.1主要参数:型号工作电压压敏电压功耗峰值电流封装 1.2示例: FPV100505G3R3 DC=3.3V,AC= 2.5V 5V 0.05W 20A RAD0.2 备注:常见封装:RAD0.2 风华高科选型参数: 电容 常用分类:瓷电容;其他电容 瓷电容: 1.主要参数:材料类型容值精度耐压值封装 2.示例: X7R 100nF +/-10% 25V 0805 备注:常用材料类型:X7R; X5R; Y5V; Z5U; NPO(COG) 常用封装分类:0402;0603;0805;1206;1210;1812;2220; 派瑞电子选型参数:.

相关文档
最新文档