逆境下植物衰老及活性氧清除机理

逆境下植物衰老及活性氧清除机理
逆境下植物衰老及活性氧清除机理

逆境下植物衰老及活性氧清除机理

盐和干旱胁迫对植物生长发育的影响是非常复杂的,它不仅与植物本身的遗传背景相关,还包括植物生理、代谢和细胞结构等多方面的因素重复。干旱缺水会抑制叶片伸展,引起气孔关闭,减少CO2摄取量,降低光合作用过程中有关酶的活性,从而抑制植物的光合作用,使叶片净光合速率降低。在盐胁迫下,由于水分的亏缺,矿质营养不良、能量不足造成植物的生理过程受到干扰,细胞膜系统包括与光合作用相关的膜结构遭到破坏。这些都可能直接或间接地影响到叶绿素含量,造成植物光合强度降低,最终植物因不能从光合作用中获取足够的物质和能量而使生长受到抑制,甚至因饥饿致死。

一,干旱对植物衰老的影响

(一)旱害

陆生植物最常遭受的环境协迫是缺水,当植物耗水大于吸水时,就使组织内水分亏缺。过度水分亏缺的现象,称为干旱(drought)。旱害(drought injury)则是指土壤水分缺乏或大气相对湿度过低对植物的危害。植物抵抗旱害的能力称为抗旱性(drought resistance)。中国西北、华北地区干旱缺水是影响农林生产的重要因子,南方各省虽然雨量充沛,但由于各月分布不均,也时有干旱危害。

1.干旱类型

(1)大气干旱是指空气过度干燥,相对湿度过低,常伴随高温和干风。这时植物蒸腾过强,根系吸水补偿不了失水,从而受到危害。中国西北、华北地区常有大气干旱发生。

(2)土壤干旱是指土壤中没有或只有少量的有效水,这将会影响植物吸水,使其水分亏缺引起永久萎蔫。

(3)理干旱土壤水分并不缺乏,只是因为土温过低、土壤溶液浓度过高或积累有毒物质等原因,妨碍根系吸水,造成植物体内水分平衡失调,从而使植物受到的干旱危害。

大气干旱如持续时间较长,必然导致土壤干旱,所以这两种干旱常同时发生。在自然条件下,干旱常伴随着高温,所以,干旱的伤害可能包括脱水伤害(狭义的旱害)和高温伤害(热害)。

(二)干旱伤害植物的机理

干旱对植株最直观的影响是引起叶片、幼茎的萎蔫。萎蔫可分为暂时萎蔫和永久萎蔫,两者根本差别在于前者只是叶肉细胞临时水分失调,而后者原生质发生了脱水。原生质脱水是旱害的核心,由此可带来一系列生理生化变化并危及植物的生命。

1.改变膜的结构及透性当植物细胞失水时,原生质膜的透性增加,大量的无机离子和氨基酸、可溶性糖等小分子被动向组织外渗漏。细胞溶质渗漏的原因是脱水破坏了原生质膜脂类双分子层的排列所致。正常状态下的膜内脂类分子靠磷脂极性同水分子相互连接,所以膜内必须有一定的束缚水时才能保持这种膜脂分子的双层排列。而干旱使得细胞严重脱水,膜脂分子结构即发生紊乱(图11-12),膜因而收缩出现空隙和龟裂,引起膜透性改变。

图11-12膜内脂类分子排列

A.在细胞正常水分状况下双分子分层排列;

B.脱水膜内脂类分子成放射的星状排列。(J.Levitt,1980)

2.破坏了正常代谢过程细胞脱水对代谢破坏的特点是抑制合成代谢而加强了分解代谢,即干旱使合成酶活性降低或失活而使水解酶活性加强。

(1)对光合作用的影响水分不足使光合作用显著下降,直至趋于停止。番茄叶片水势低于-0.7MPa时,光合作用开始下降,当水势达到-1.4MPa时,光合作用几乎为零。干旱使光合作用受抑制的原因是多方面的,主要由于:水分亏缺后造成气孔关闭,CO

扩散的阻力增加;

2

叶绿体片层膜体系结构改变,光系统Ⅱ活性减弱甚至丧失,光合磷酸化解偶联;叶绿素合成速度减慢,光合酶活性降低;水解加强,糖类积累;……这些都是导致光合作用下降的因素。

(2)对呼吸作用的影响干旱对呼吸作用的影响较复杂,一般呼吸速率随水势的下降而缓慢降

低。有时水分亏缺会使呼吸短时间上升,而后下降,这是因为开始时呼吸基质增多的缘故。若缺水时淀粉酶活性增加,使淀粉水解为糖,可暂时增加呼吸基质。但到水分亏缺严重时,呼吸又会大大降低。如马铃薯叶的水势下降至-1.4MPa时,呼吸速率可下降30%左右。

(3)蛋白质分解,脯氨酸积累干旱时植物体内的蛋白质分解加速,合成减少,这与蛋白质合成酶的钝化和能源(A TP)的减少有关。如玉米水分亏缺3小时后,ATP含量减少40%。蛋白质分解则加速了叶片衰老和死亡,当复水后蛋白质合成迅速地恢复。所以植物经干旱后,在灌溉与降雨时适当增施氮肥有利于蛋白质合成,补偿干旱的有害影响。

与蛋白质分解相联系的是,干旱时植物体内游离氨基酸特别是脯氨酸含量增高,可增加达数十倍甚至上百倍之多。因此脯氨酸含量常用作抗旱的生理指标,也可用于鉴定植物遭受干旱的程度。

(4)破坏核酸代谢随着细胞脱水,其DNA和RNA含量减少。主要原因是干旱促使RNA 酶活性增加,使RNA分解加快,而DNA和RNA的合成代谢则减弱。当玉米芽鞘组织失水时,细胞内多聚核糖体解离成单体,失去了合成蛋白质(酶)的功能。因此有人认为,干旱之所以引起植物衰老甚至死亡,是同核酸代谢受到破坏有直接关系的。

(5)激素的变化干旱时细胞分裂素含量降低,脱落酸含量增加,这两种激素对RNA酶活性有相反的效应,前者降低RNA酶活性,后者提高RNA酶活性。

脱落酸含量增加还与干旱时气孔关闭、蒸腾强度下降直接相关。

干旱时乙烯含量也提高,从而加快植物部分器官的脱落。

(6)水分的分配异常干旱时植物组织间按水势大小竞争水分。一般幼叶向老叶吸水,促使老叶枯萎死亡。有些蒸腾强烈的幼叶向分生组织和其它幼嫩组织夺水,影响这些组织的物质运输。例如禾谷类作物穗分化时遇旱,则小穗和小花数减少;灌浆时缺水,影响到物质运输和积累,籽粒就不饱满。对于其它植物,也常由此造成落花落果,影响产量。

3.机械性损伤上述的旱害多属破坏正常代谢,一般不至于造成细胞或器官的立即损伤或死亡。而干旱对细胞的机械性损伤可能会使植株立即死亡。细胞干旱脱水时,液泡收缩,对原生质产生一种向内的拉力,使原生质与其相连的细胞壁同时向内收缩,在细胞壁上形成很多折叠(图11-13),损伤原生质的结构。如果此时细胞骤然吸水复原,可引起细胞质、壁不协调膨胀把粘在细胞壁上的原生质撕破,导致细胞死亡。干旱引起的伤害可由图11-14表示。

图11-13 团扇提灯苔叶细胞脱水时的细胞变形状态

上边是正常的细胞,下边是细胞脱水后萎陷状态

二,盐胁迫对植物的影响

土壤盐浸化是现代农业所面临主要问题之一,盐分胁迫影响着植物产量、蛋白质合成和光合作用以及能量代谢。为了抵御盐分胁迫,适应生存环境,植物产生了一系列生物生化的改变以调节水分及离子平衡,维持正常的光合作用。但在盐胁迫下,植物生长发育都无法进行。盐分可抑制植物组织和器官的生长和分化,提早植物的发育进程。

(一)盐旱胁迫诱导的活性氧、自由基对植物的影响

近年来研究发现有关各种环境胁迫因子对植物的伤害,都证明主要是由于逆境条件下产生大量的活性氧所致。在正常情况下,植物细胞内活性氧的产生和清除是平衡的。但是,当植物体遭受逆境胁迫时,活性氧的产生和代谢则失去平衡,破坏或降低活性氧清除剂的结构活性或含量水平,导致活性氧H2O2、O-2、HO-等的产生量积累增多。这些活性氧具有很强的氧化能力,性质活泼,对不饱和脂、蛋白质、核酸等生物分子具有破坏作用,可引起脂质过氧化、酶失活、色素脱色、蛋白降解等反应。

1956年,英国D Harman提出的自由基衰老理论认为,代谢过程中产生的活性氧基团或分子引发的氧化性损伤的积累,最终导致衰老。目前,人们普遍认为,活性氧与植物细胞的程序性死亡有关。环境胁迫对植物细胞的伤害在很大程度上是由于活性氧浓度上升所致。在低或中等浓度的条件下,能引起细胞的防御和适应反应;而高浓度的条件下则引起细胞死亡。

在盐胁迫下,叶细胞超微结构变化主要表现在细胞膜系统和叶绿体等细胞器上,其中对盐分最敏感的是叶绿体。吴永波等研究表明:盐胁迫对叶绿素的形成造成了破坏。叶绿素是重要的光合作用物质,盐分胁迫对叶绿素的合成与分解之间的平衡产生影响,进而影响到植物的光合作用强度和生长。水分胁迫下苹果属植物幼苗叶片叶绿素的降解与活性损伤直接有关。活性氧对蛋白质的损伤主要是氧化损伤,它进攻蛋白质氨基酸残基,使蛋白质发生聚合而失活,或进攻蛋白质的巯基,使蛋白质发生交联或使多肽链发生断裂而失活,随即导致蛋白质迅速降解。损伤的蛋白质半衰期延长,而衰老的细胞中蛋白质合成速率下降,导致受损伤的蛋白质更新率下降。

Hruszkewycz首先报道了在生物体系中脂质过氧化可以引起DNA损伤。胡大林等研究

认为,自由基(如ROS中的OH")易导致DNA碱基的修饰改变,可以引起DNA复制时碱基的错误配对及编码,导致基因突变[27]。

夏铁骑认为线粒体DNA对线粒体膜的脂质过氧化作用及氧应邀较敏感,易受呼吸链产生的自由基损伤,氧化损伤后可造成碱基片段丢失,碱基修复及突变[28]。

生物体内若不能及时清除活性氧就会造成氧化胁迫。活性氧代谢失调是逆境下需氧生物受害的普遍表现,也是逆境损伤的重要原因之一。

(二)清除活性氧、自由基

植物体内的抗氧化剂主要有两大类化学物质组成,一是抗氧化酶类,主要包括超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)及谷胱甘肽还原酶(GR)等;二是非酶类抗氧化剂,主要有维生素E、抗坏血酸(ASA)、谷胱甘肽(GSH),一氧化氮(N0),β-胡萝卜素等。在胁迫下抗氧化物质如SOD、POD、CA T等,它们协同抵抗胁迫诱导的氧化伤害,使细胞内的活性氧维持在较低水平,确保植物正常生长和代谢。而单一的抗氧化酶或抗氧化物不足以防御这种氧化胁迫。

在整个氧化防御系统中,SOD是所有植物在氧化作用中起重要作用的抗氧化酶,是活性氧清除反应过程中第一个发挥作用的关键抗氧化酶。它催化反应2O2-+2H+→H2O2+O2,H2O2再被POD和CA T催化除掉,清除多余的超氧根阴离子对植物的伤害作用。POD能够参与多种生理代谢,具有催化多种细胞壁结构成分的合成、控制细胞的生长发育、清除H2O2等作用,也是植物在逆境下抗氧化酶保护系统中的关键酶。CAT可专一清除H2O2,但CAT 定位于线粒体、过氧化物体与乙醛酸循环体中,叶绿体中H2O2的清除是通过Halliwell-Asada 途径进行的,APX和GR在这一途径中起着重要作用。ASA是广泛存在于植物光合组织中的一种重要的抗氧化剂,在减少膜脂过氧化,保护细胞膜透性方面有重要作用。GSH是生物体内普遍存在的一种三肽,作为清除剂,可以与有害的氧化剂作用,保护含巯基的蛋白。增强活性氧的清除系统,能对植物起到保护作用。目前很多研究表明,通过导入与氧化胁迫相关的酶的基因,使转基因植物过量表达一些酶(如SOD、CAT等),以有效地清除活性氧自由基,保护和稳定蛋白复合体和膜结构,从而提高细胞耐脱水的能力。Mckersie认为转Mn-SOD基因的苜蓿抗御旱胁迫的能力提高了。覃鹏等人认为转Mn-SOD基因的烟草抗旱力也得到了提高。这些都说明,抗氧化酶过量表达的转基因植物,确实可以抵抗活性氧伤害。

植物对胁迫的耐受性可能取决于许多因素,包括所施的胁迫条件、过量表达的同功酶、细胞内靶点、过量表达的强度、叶龄和生长条件。

植物生理学练习题及答案 第09章 植物的成熟和衰老生理习题

第九章植物的成熟和衰老生理 【主要教学目标】 ★了解种子成熟时的生理生化特点; ★了解果实成熟时的生理生化特点; ★弄清种子休眠的原因和破除; ★了解植物叶片衰老和脱落时的生理生化特点。 【习题】 一、名词解释 1.后熟 2.单性结实 3.呼吸骤变 4.衰老 5.脱落 6.休眠 二、填空题 1.油料种子成熟过程中,脂肪是由转化来的。 2.人们认为果实发生呼吸骤变的原因是由于果实中产生结果。 3.核果的生长曲线呈型。 4.未成熟的柿子之所以有涩味是由于细胞液内含有。 5.果实成熟后变甜是由于的缘故。 6.种子休眠的主要原因有、、和。 7.叶片衰老时,蛋白质含量下降的原因有两种可能:一是蛋白质;二是蛋白质。

8.叶片衰老过程中,光合作用和呼吸作用都。 9.一般说来,细胞分裂素可叶片衰老,而脱落酸可叶片衰老。10.种子成熟时,累积的磷化合物主要是。 三、选择题 1.试验证明,在空气中氧浓度升高时,对棉花叶柄的脱落产生的影响是() A.促进脱落 B.抑制脱落 C.没影响 2.在淀粉种子成熟过程中可溶性糖的含量是() A.逐渐降低 B.逐渐增高 C.变化不大 3.油料种子在成熟过程中糖类总含量是() A.不断下降 B.不降上升 C.变化不大 4.在豌豆种子成熟过程中,种子最先积累的是() A.以蔗糖为主的糖分 B.蛋白质 C.脂肪 5.小麦籽粒成熟时,脱落酸的含量是() A.大大增加 B.大大减少 C.变化不大 6.在生产上可以用作诱导果实单性结实的植物生长物质有() A.生长素类 B.赤霉素类 C.细胞分裂素类 7.在果实呼吸跃变正要开始之前,果实内含量明显升高的植物激素是() A.生长素 B.乙烯 C.赤霉素

植物的成熟和衰老生理复习题

植物的成熟和衰老生理复习题 一、名词解释: 1、单性结实; 2、天然单性结实; 3、刺激性单性结实; 4、假单性结实; 5、顽拗性种子; 6、休眠; 7、强迫休眠; 8、生理性休眠; 9、硬实; 10、后熟; 11、层积处理; 12、呼吸高峰; 13、跃变型果实; 14、非跃变型果实; 15、反义转基因果实; 16、非丁; 17、衰老; 18、老化; 19、脱落;

20、离区与离层; 21、自由基; 22、程序性细胞死亡。 二、缩写符号翻译 1、LOX;2、PCD;3、GR;4、LEA;5、GPX;6、SSGS;7、IPT;8、PME;9、PG;10、STS。 三、填空题 1、种子成熟过程中,脂肪是由______转化来的。 2、风旱不实的种子中蛋白质的相对含量______。 3、籽粒成熟期ABA的含量______。 4、北方小麦的蛋白质含量比南方的_____。北方油料种子的含油量比南方的_____。 5、温度较低而昼夜温差大时有利于______脂肪酸的形成。 6、人们认为果实发生呼吸跃变的原因是由于果实中产生______结果。 7、核果的生长曲线呈______型。 8、未成熟的柿子之所以有涩味是由于细胞液内含有______。 9、果实成熟后变甜是由于______的缘故。 10、用______破除马铃薯休眠是当前有效的方法。 11、叶片衰老时,蛋白质含量下降的原因有两种可能:一是蛋白质_____;二是蛋白质_____。 12、叶片衰老过程中,光合作用和呼吸作用都______。

13、一般来说,细胞分裂素可______叶片衰老,而脱落酸可_____叶片衰老。 14、叶片和花、果的脱落都是由于______细胞分离的结果。 15、种子成熟时,累积的磷化合物主要是______。 16、油料种子成熟时,油脂的形成有两个特点:______;______。 17、小麦种子成熟过程中,植物激素最高含量出现顺序是___、____、 ____、__。 18、油料种子成熟过程中,其酸价______。 19、果实成熟时酸味的减少是因为______、______、______。 20、将生长素施于叶柄的______端,有助于有机物从叶片流向其他器官。 21、整株植物最先衰老的器官是______和______。 22、在不发生低温伤害的条件下,适度的低温对衰老的影响是______。 23、种子成熟时最理想的温度条件是______。 24、在未成熟的柿子中,单宁存在的部位是______。 25、果实含有丰富的各类维生素主要是______。 四、选择题(单项和多项) 1、下列果实中,有呼吸跃变现象的有()。 A、桃; B、葡萄; C、番茄; D、草莓。 2、叶片衰老时,()。A、RNA含量上升;B、蛋白质合成能力减弱; C、光合速率下降 D、呼吸速率下降。 3、在豌豆种子成熟过程中,种子最先积累的是()。

植物的成熟和衰老生理习题答案

植物的成熟和衰老生理 习题答案 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

第九章植物的成熟和衰老生理 一、名词解释 1.果实的双S曲线:一些核果及某些非核果类植物在生长的中期有一个缓慢期,呈双S型。 2.后熟作用:种子在休眠期内发生的生理生化过程。 3.单性结实:不经过受精作用,子房直接发育成无籽果实的现象。 4.呼吸骤变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然增高,最后又下降,这个陡增陡降的呼吸现象称为呼吸骤变,又称呼吸跃变。 5.衰老:指一个器官或整株植物生命功能逐渐衰退的过程。 6.脱落:指植物细胞、组织或器官与植物体分离的过程。 7.种子休眠:成熟种子在合适的萌发条件下仍不菜发的现象,故也称深休眠。 8.强迫休眠:成熟种子因环境不适而引起的休眠叫做强迫休眠或浅休眠。 二、填空题 1.糖类 2.乙烯 3.双S 4.单宁 5.淀粉转变为糖

6.种皮限制种子未完成后熟胚未完全发育抑制物质的存在 7.合成能力减弱分解加快 8.迅速下降 9.延缓加速 10.磷酸肌醇(植酸) 三、选择题 1.A 2.A 3.B 4.C 5.A 6.A、B 7.B 8.C 9.A 10.A 11.B 12.B 四、是非判断与改正 1.(?) 2.(′)有关 3.(?) 4.(?) 5.(′)含量低6.(′)饱和脂肪酸 7.(?) 8.(?) 9.(′)含有很多有机酸 五、问答题 1.试述乙烯与果实成熟的关系及其作用机理。 果实的成熟是一个复杂的生理过程,果实的成熟与乙烯的诱导有关。果实开始成熟时,乙烯的释放量迅速增加,未成熟的果实与已成熟的果实一起存放,未成熟果实也加快成熟达到可食状态。用乙烯或能产主乙烯的乙烯利处理未成熟果实,也能加速果实成熟,人为地将果实中的乙烯抽去,果实的成熟便受阻。 乙烯诱导果实成熟的原因可能在下列几方面:①乙烯与细胞膜的结合,改变了膜的透性,诱导呼吸高峰的出现,加速了果实内的物质转化,促进了果实成熟;②乙烯引起酶活性的变化,如乙烯处理后,纤维素酶、过氧化物酶、苯丙氨酸解氨酶和磷酸酯酶的活性增强;③乙烯诱导新的RNA合成。已经了解到,果实成熟前,RNA和蛋白质的含量增加,这些新合成的蛋白质与形成呼吸酶有关。

第十章 植物对逆境土壤条件的适应性

第十章植物对逆境土壤条件的适应性植物正常生长发育有赖于良好的土壤环境。但在自然界中,植物生长的土壤往往存在着各种各样的障碍因素,限制着植物生长。例如,世界陆地表面大面积盐碱土中有高浓度的盐分;酸性土壤中有高浓度的H+ , A13+ , Mn 2+和Fe2+等;淹水土壤中有过量的还原性物质和Fe2+等;石灰性土壤中缺乏足够的有效磷、铁和锌等。这些具有植物生长障碍因素的土壤称为逆境土壤。逆境土壤分布的面积广泛,而且改良难度大,因此,已成为农业生产发展的限制因素。 植物在长期进化过程中对各种逆境产生了一定的适应能力。某些植物在一定程度上能够忍耐上述不良的逆境条件。了解植物对土壤环境的生理反应和抗逆机理,对发展农业生产是十分重要的。第一节植物对酸性土壤的适应性酸性土壤是低pH值土壤的总称,包括红壤、黄壤、砖红壤、赤红壤和灰化土等。酸性土壤地区降水充沛,淋溶作用强烈,盐基饱和度较低,酸度较高。酸性土壤在世界范围内分布广泛,在农业生产中占有重要地位。 一、酸性土壤的主要障碍因子 酸性土壤的主要障碍因子是低pH值,游离铝和交换性铝浓度过高(铝毒),还原态锰浓度过高(锰毒),缺磷、钾、钙和镁,有时也缺钼。各种障碍因子在不同生态条件下其危害程度不同,有时只是某一因素起主导作用,而有时则是几种因素的综合作用。 (一)氢离子毒害 当土壤pH<4时,H+对植物生长会产生直接的毒害作用,不仅根的数量减少,而且形态也会发生变化,如根系变短,变粗,根表呈暗棕色至暗灰色等症状,严重时造成根尖死亡。 1. 破坏生物膜高浓度H+通过离子竞争作用将稳定原生质膜结构的阳离子交换下来,其中最为重要的是钙,从而使质膜的酯化键桥解体,导致膜透性增加。 2. 降低土壤微生物活性根瘤菌的固氮作用对豆科植物的氮素营养有重要作用,而高浓度H+抑制根瘤菌的侵染,并降低其固氮效率,从而造成植物缺氮。土壤过酸还会严重降低土壤有机质的矿化速率。当土壤pH值过低时,多种微生物的活性都会受到严重影响。 在自然土壤中,pH值一般都不会低于4,因而H+直接产生毒害的可能性不大。更重要的是低土壤pH值所产生的间接影响。这时土壤中抑制植物生长的主要因素是铝和锰的浓度过高,即铝毒和锰毒。 (二)铝的毒害 无论是水田还是旱地,酸性土壤的铝毒现象都较为普遍。根系是铝毒危害最敏感的部位。土壤溶液中的铝可以多种形态存在,各种形态铝的含量及其比例取决于溶液的pH值。在pH<5的土壤溶液中, A13+离子浓度较高;pH值在5- 6 时, Al (0H)2+离子占优势,而在pH> 6的条件下,其他形态的可溶性铝,如Al (0H)3+和Al (OH)4-数量很多。当土壤溶液中可溶性铝离子浓度超过一定限度时,植物根就会表现出典型的中毒症状:根系生长明显受阻,根短小,出现畸形卷曲,脆弱易断。在植株地上部往往表现出缺钙和缺铁的症状。(三)锰的毒害

叶片衰老

The Annual Review of Plant Biology 叶片衰老 1Department of Science Education, Cheju National University, Jeju,Jeju, 690-756, Korea 摘要:在叶的生长发育的最后阶段是由叶片衰老所构成的,并且对于植物健康随着叶片到种子繁殖的营养转移的获得这个过程是很关键的。叶片衰老包含一个调节行为是在高度管理的遗传程序的控制之下的细胞、组织、器官、生物体水平中。在叶片衰老的分子理解水平上的主要的突破是通过各种各样的衰老突变体和衰老相关基因所获得的,而显示出调节因子和高复合分子调控网络潜在的叶片衰老的本质。从遗传学角度确定调控因子包含转录调控、激素和应激反应的接收者及信号组成、新陈代谢调控。关键的议题仍然需要说明,包含与衰老相关的细胞死亡的细胞水平分析,细胞的、器官的、生物体水平衰老的协调的原理,各种各样的衰老影响信号机理集成,和控制叶片寿命的本质。 关键词:寿命,生长老化,细胞程序化死亡,营养再调动,环境因素 目录 介绍 叶片衰老相关的细胞死亡作为细胞程序化死亡 叶片衰老相关细胞死亡的结构和生物学变化 叶片衰老相关的细胞死亡与其他程序性细胞死亡的分子比较 分析叶片衰老的分子和遗传方法

叶片衰老的含量测定 叶片衰老的遗传分析 了解叶片衰老的分子途径 叶片衰老的分子遗传调控 叶片衰老的启动 环境因素和叶片衰老 结论和未来挑战 介绍 在细胞、组织、器官、生物学水平中衰老是年龄依赖性恶化过程,导致死亡和寿命的结束。叶片衰老是一种器官水平的衰老,但是与细胞和器官的死亡密切相关。一年生植物经历叶片衰老时是同当他们达到时间生态位的终点时的器官水平的衰老相一致的,我们观察了作物领域的大豆、玉米和水稻的灌浆成熟期。树木和其他多年生植物,叶片衰老说明了叶片中灿烂秋色叶中的颜色的改变。 叶片衰老不是一个被动的和无管制的退化过程。衰老过程中,叶片细胞在细胞结构、代谢、基因表达中进行非常有序的变化。在细胞结构中最早的最重要的变化是叶绿体的分解,细胞器包含高达70%的叶蛋白。新陈代谢中,碳同化被分解的叶绿素和一些大分子如蛋白质、细胞膜脂质、核酸所代替。增加代谢活性是在叶片进入营养物输出的生长阶段对细胞物质的积累负责,提供营养给发育中的种子或者其他生长的器官。因此,尽管叶片衰老在植物器官中是一个有害过程,它也可以被视作一个有利于其他的过程:它通过确保下一代最佳生产

第十一章 植物的逆境生理 复习参考 植物生理学复习题(推荐文档)

第十一章植物的逆境生理 一、名词解释 1.CaM 2.渗透调节与逆境蛋白 3.耐逆性与御逆性 4.植物对逆境的耐性与御性 5.逆境蛋白 6.活性氧清除系统 7.膜脂相变 8.热激反应与热激蛋白 9.活性氧 10.交叉适应 二、填空 1.用来解释干旱伤害机理的假说主要是__________和_________。 2.根据所含金属元素的不同,SOD可以分三种类型:______、______和____。 3.干旱条件下,植物为了维持体内水分平衡,一方面要________,另一方面要_______。 4.干旱条件下,植物体内大量积累的氨基酸是________,大量产生的激素是______;低温锻炼后,植物体内________脂肪酸和_______水的含量增

多。 5.植物体活性氧清除系统包括________和________两种系统。 6.植物受到干旱等逆境胁迫时,渗透调节能力增强,细胞主动合成的有机溶剂是_________、________和__________。 7.在逆境下,植物体内主要有_______、_______、_______、_____等渗透调节物质。 8.经过抗寒锻炼的植物会发生的变化有: A 双硫键增加 B 自由水增加 C 膜脂双键增加 三、选择题 1.冬季植物体内可溶性糖的含量()。 A.增多 B. 减少 C.变化不大 D. 不确定 2.干旱条件下,植物体内哪一种氨基酸显著增加?() A. 丙氨酸 B.脯氨酸 C. 天冬氨酸 D. 甘氨酸 3.植物细胞中属于相容性物质的是: A、Ca B、ABA C、Pro 4. 植物抗盐的SOS途径中,与Na+外排和区域化实现不直接相关的是: A. Ca+-CaM B. Na+/H+ symporter C. Na+/H+ antiporter 三、问答 1.水稻幼苗经过0.1mol/L NaCI预处理24h后,再转移到8~10℃环境中,能表现出良好的抗冷性。试分析其原因。

9 第9章 植物的成熟与衰老生理-自测题及参考答案

第 9章 植物的成熟与衰老生理 自测题: 一、名词解释: 1. 单性结实 2. 天然单性结实 3. 刺激性单性结实 4. 假单性结实 5 休眠 6. 硬实 7. 后熟 8. 层积处理 9.呼吸高峰 10. 跃变型果实 11. 非跃变型果实 12 .衰老 13. 老化 14. 脱落 15. 离区与离层 16. 自由基 17. 程序性细胞死亡 二、缩写符号翻译: 1.LOX 2.PCD 3.GR 4.GPX 5.PME 三、填空题: 1.种子成熟过程中,脂肪是由______转化来的。 2.风旱不实的种子中蛋白质的相对含量__________。 3.籽粒成熟期ABA的含量______。 4.北方小麦的蛋白质含量比南方的__________。北方油料种子的含油量比南方的________。 5.温度较低而昼夜温差大时有利于__________脂肪酸的形成。 6.人们认为果实发生呼吸跃变的原因是由于果实中产生______________结果。 7.核果的生长曲线呈__________型。 8.未成熟的柿子之所以有涩味是由于细胞液内含有__________。 9.果实成熟后变甜是由于__________的缘故。 10.用__________破除马铃薯休眠是当前有效的方法。 11. 叶片衰老时, 蛋白质含量下降的原因有两种可能: 一是蛋白质_____________; 二是蛋白质_____________。 12.叶片衰老过程中,光合作用和呼吸作用都__________。 13.一般来说,细胞分裂素可__________叶片衰老,而脱落酸可_____________叶片衰老。 14.叶片和花、果的脱落都是由于______________细胞分离的结果。 15.种子成熟时,累积的磷化合物主要是______。 16.油料种子成熟时,油脂的形成有两个特点:__________________;__________________。 17. 小麦种子成熟过程中, 植物激素最高含量出现顺序是: __________、 __________、 __________、 __________。 18.油料种子成熟过程中,其酸价__________。 19. 果实成熟时酸味的减少是因为______________________、 ______________________、 __________________。 20.将生长素施于叶柄的______________端,有助于有机物从叶片流向其他器官。 21.整株植物最先衰老的器官是______________和__________。 22.在不发生低温伤害的条件下,适度的低温对衰老的影响是______________。 23.种子成熟时最理想的温度条件是______________。 24.在未成熟的柿子中,单宁存在的部位是______________。 25.果实含有丰富的各类维生素主要是______________。 四、 选择题(单项和多项): 1.下列果实中,有呼吸跃变现象的有( )。 A.桃 B.葡萄 C.番茄 D.草莓 2.叶片衰老时,( )。 A.RNA含量上升 B.蛋白质合成能力减弱 C.光合速率下降 D.呼吸速率下降 3.在豌豆种子成熟过程中,种子最先积累的是( )。 A.以蔗糖为主的糖分 B.蛋白质 C.脂肪 D.含氮化合物

植物细胞活性氧种类、代谢及其信号转导

植物细胞活性氧种类、 许树成 1,2 ,丁海东2, 桑建荣 2 ( 1阜阳 师院生物系,安徽阜阳 236032;2南京农业大学生命科学学院,江苏南京 210095) 摘要:越来越明显的证据表明,植物体十分活跃的产生着活性氧并将之作为信号分子、进而控制着诸如细胞程序性死亡、非生物胁迫响应、病原体防御和系统信号等生命过程,而不仅是传统意义上的活性氧是有氧代谢的附产物。日益增多的证据显示,由脱落酸、水杨酸、茉莉酸与乙烯以及活性氧所调节的激素信号途径,在生物和非生物胁迫信号的“交谈”中起重要作用。活性氧最初被认为是动物吞噬细胞在宿主防御反应时所释放的附产物,现在的研究清楚的表明,活性氧在动物和植物细胞信号途径中均起作用。活性氧可以诱导细胞程序性死亡或坏死、可以诱导或抑制许多基因的表达,也可以激活上述级联信号。近来生物化学与遗传学研究证实过氧化氢是介导植物生物胁迫与非生物胁迫的信号分子,过氧化氢的合成与作用似乎与一氧化氮有关系。过氧化氢所调节的下游信号包括钙“动员”、蛋白磷酸化和基因表达等。关键词:活性氧;MAPK ;H 2O 2;信号转导;胁迫中图分类号:Q 945 文献标识码:A 文章编号:0253-2700(2007)03-355-11 XU Shu -Cheng 1,2 ,DING Hai -Dong 2,SANG Jian -Rong 2 (1Depatment of Biology ,Fuyang Teachers College ,Fuyang 236032,China ;2College of Life Sciences ,Nanjing Agricultural University ,Nanjing 210095,China ) Traditionally ,reactive oxygen species (RO S )were considered to be toxic by -products of aerobic metabolism .However ,in recent years ,it has beco me apparent that plants actively produce ROS as signaling molecules to control pro -cesses such as programmed cell death ,abiotic stress responses ,pathogen defense and systemic signaling .Emerging evi -dence suggests that hormone signaling pathways regulated by abscisic acid ,salicylic acid ,jasmonic acid and ethylene ,as well as RO S signaling pathways ,play key roles in the crosstalk between biotic and abiotic stress signaling .Reactive oxygen species (ROS )were originally thought to only be released by phagocytic cells during their role in host defence .It is now clear that ROS have a cell signalling role in many biological systems ,both in animals and in plants .RO S induce pro -grammed cell death or necrosis ,induce or suppress the expression of many genes ,and activate cell signalling cascades ,such as those involving .Recent biochemical and genetic studies confirm that hydrogen peroxide is a signalling molecule in plants that mediates responses to abiotic and biotic stresses .The synthesis and action of hydrogen peroxide appear to be linked to those of nitric oxide .Downstream signalling events that are modulated by hydrogen peroxide include calcium mo -bilization ,protein phosphorylation and gene expression .ROS ;M APK ;H 2O 2;Signal transduction ;Stress Ever since the introduction of molecular oxygen (O 2)into our atmosphere by O 2-evolving photosynthet -ic organisms ~2.7billion years ago ,reactive oxygen species (ROS )have been the unwelcome companions of aerobic life (Halliwell and Gutteridge ,1989).In contrast to O 2,these partially reduced or activated de - 云南植物研究 2007,29(3):355~365 Acta Botanica Yunnanica 基金项目:安徽省教育厅科研资助项目(2005KJ 191)Received date :2006-09-05,Accepted date :2006-03-18 作者简介:许树成(1969-)男,博士,讲师,主要从事植物逆境生理与细胞生物学研究。E -mail :xscjack @tom .com

第九章植物的成熟和衰老生理习题答案

第九章植物的成熟和衰老生理 一、名词解释 1.果实的双S曲线:一些核果及某些非核果类植物在生长的中期有一个缓慢期,呈双S型。 2.后熟作用:种子在休眠期内发生的生理生化过程。 3.单性结实:不经过受精作用,子房直接发育成无籽果实的现象。 4.呼吸骤变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然增高,最后又下降,这个陡增陡降的呼吸现象称为呼吸骤变,又称呼吸跃变。 5.衰老:指一个器官或整株植物生命功能逐渐衰退的过程。 6.脱落:指植物细胞、组织或器官与植物体分离的过程。 7.种子休眠:成熟种子在合适的萌发条件下仍不菜发的现象,故也称深休眠。 8.强迫休眠:成熟种子因环境不适而引起的休眠叫做强迫休眠或浅休眠。 二、填空题 1.糖类 2.乙烯 3.双S 4.单宁 5.淀粉转变为糖 6.种皮限制种子未完成后熟胚未完全发育抑制物质的存在 7.合成能力减弱分解加快

8.迅速下降 9.延缓加速 10.磷酸肌醇(植酸) 三、选择题 1.A 2.A 3.B 4.C 5.A 6.A、B 7.B 8.C 9.A 10.A 11.B 12.B 四、是非判断与改正 1.(√) 2.(?)有关 3.(√) 4.(√) 5.(?)含量低 6.(?)饱和脂肪酸 7.(√) 8.(√) 9.(?)含有很多有机酸 五、问答题 1.试述乙烯与果实成熟的关系及其作用机理。 果实的成熟是一个复杂的生理过程,果实的成熟与乙烯的诱导有关。果实开 始成熟时,乙烯的释放量迅速增加,未成熟的果实与已成熟的果实一起存放,未 成熟果实也加快成熟达到可食状态。用乙烯或能产主乙烯的乙烯利处理未成熟果实,也能加速果实成熟,人为地将果实中的乙烯抽去,果实的成熟便受阻。 乙烯诱导果实成熟的原因可能在下列几方面:①乙烯与细胞膜的结合,改变 了膜的透性,诱导呼吸高峰的出现,加速了果实内的物质转化,促进了果实成熟;②乙烯引起酶活性的变化,如乙烯处理后,纤维素酶、过氧化物酶、苯丙氨酸解 氨酶和磷酸酯酶的活性增强;③乙烯诱导新的RNA合成。已经了解到,果实成熟前,RNA和蛋白质的含量增加,这些新合成的蛋白质与形成呼吸酶有关。 2.肉质果实成熟时发生了哪些生理生化变化? (1)果实变甜。果实成熟后期,淀粉可以转变成为可溶性糖,使果实变甜。

第九章植物的成熟和衰老生理习题答案

第九章植物的成熟和衰老生理 、名词解释 1.果实的双S曲线:一些核果及某些非核果类植物在生长的中期有一个缓慢期, 呈双S 型。 2.后熟作用:种子在休眠期内发生的生理生化过程。 3.单性结实:不经过受精作用,子房直接发育成无籽果实的现象。 4.呼吸骤变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然增高, 最后又下降,这个陡增陡降的呼吸现象称为呼吸骤变,又称呼吸跃变。 5.衰老:指一个器官或整株植物生命功能逐渐衰退的过程。 6.脱落:指植物细胞、组织或器官与植物体分离的过程。 7.种子休眠:成熟种子在合适的萌发条件下仍不菜发的现象,故也称深休眠。 &强迫休眠:成熟种子因环境不适而引起的休眠叫做强迫休眠或浅休眠。 二、填空题 1.糖类 2.乙烯 3.双S 4.单宁 5.淀粉转变为糖 6.种皮限制种子未完成后熟胚未完全发育抑制物质的存在7?合成能力减弱分解加快

&迅速下降 9.延缓加速 三、选择题 11. B 12. B 四、是非判断与改正 五、问答题 1 .试述乙烯与果实成熟的关系及其作用机理。 果实的成熟是一个复杂的生理过程,果实的成熟与乙烯的诱导有关。果实开 始成熟 时,乙烯的释放量迅速增加,未成熟的果实与已成熟的果实一起存放, 未 成熟果实也加 快成熟达到可食状态。用乙烯或能产主乙烯的乙烯利处理未成熟果 实,也能加速果实成 熟,人为地将果实中的乙烯抽去,果实的成熟便受阻。 乙烯诱导果实成熟的原因可能在下列几方面: ①乙烯与细胞膜的结合,改变 了膜的 透性,诱导呼吸高峰的出现,加速了果实内的物质转化,促进了果实成熟; ②乙烯引起酶 活性的变化,如乙烯处理后,纤维素酶、过氧化物酶、苯丙氨酸 解氨酶和磷酸酯酶的活性 增强; ③乙烯诱导新的RNA 合成。已经了解到,果实 成熟前,RNA 和蛋白质的含量增 加,这些新合成的蛋白质与形成呼吸酶有关。 2.肉质果实成熟时发生了哪些生理生化变化 (1) 果实变甜。 果实成熟后期,淀粉可以转变成为可溶性糖,使果实变甜。 1. A 2. A 3. B 4. C 5. A 6. A 、B 7. B 8. C 9. A 10. A 1.() 2.()有关 饱和脂肪酸 7.() 3.( 8.( )4.( ) 9. 5.()含量低 6.() )含有很多有机酸

第十章-植物的成熟、衰老与器官脱落

第十二章植物的成熟和衰老生理一、名词解释 衰老活性氧休眠一稔植物 脱落正常脱落真正休眠多稔植物 自由基胁迫脱落强迫休眠 生物自由基生理脱落程序性细胞死亡 二、写出下列符号的中文名称 O 2 1 O 2 ? OH RO ? PuFA HbFe LFP P ? PP ? P (P )nP ? MDA JA MJ GSH-PX Vitc SOD POD CAT GSH-R PCD 三、填空题 1. 活性氧是指性质活泼、氧化能力很强的含氧物质的总称,主要有()、()、()和(),植物体内活性氧主要是在()和()中产生的。 2. 植物衰老的类型包括()、()、()和()。 3. 细胞的保护酶主要有()、()、()等。 4. 膜脂过氧化产物是()。 5. 非酶类的活性氧清除剂(抗氧化剂)有()、()、()、()。

6. 植物衰老的最基本特征是()。 7. 叶片衰老最明显的标志是(),叶片衰老的顺序是从()开始,逐渐过渡到()。 8. 植物体内的氧自由基可分为两类,一是无机氧自由基,如()、()、();二是有机氧自由基,如()、()、()。 9. 在植物细胞内自由基产生的部位主要有()、()、()、()、()。 10. 自由基产生具有多渠道多途径的特点,可通过()、()、()和()四种作用产生。另外,逆境条件如()、()、()、()等亦可引起自由基的产生。 11. 自由基对核酸的损伤主要通过()反应和()反应使碱基降解破坏,造成碱基缺失或使主链断裂而实现的。 12. 自由基对脂类的伤害主要表现为()作用。 13. 被称为衰老激素的植物激素是()、(),被视为死亡激素的物质是()、()。 14. SOD 是一种含金属的酶,根据含金属的不同可分为三种类型,即()、()和()。 15. 在Cu-ZnSOD 中,Cu 与Zn 之比为(),酶的活力与()元素有关,酶结构的稳定性与()元素有关。SOD 的作用主要是清除(),通过歧化反应,生成无毒的()和毒性较低的()。后者可进一步由()酶清除掉。 16. 根据引起植物器官脱落的原因的不同,可将脱落分为三种,即()、()和()。 17. 光照强度和日照长度均能影响器官的脱落。强光()脱落,弱光()脱落。长日照()脱落,短日照()脱落。

第九章植物的成熟和衰老生理习题答案

第九章植物的成熟和衰老生理 1.果实的双S曲线:一些核果及某些非核果类植物在生长的中期有一个缓慢期, 呈双S型。 2?后熟作用:种子在休眠期内发生的生理生化过程。 3.单性结实:不经过受精作用,子房直接发育成无籽果实的现象。 4?呼吸骤变:当果实成熟到一定程度时,呼吸速率首先是降低,然后突然增高, 最后又下降,这个陡增陡降的呼吸现象称为呼吸骤变,又称呼吸跃变。 5.衰老:指一个器官或整株植物生命功能逐渐衰退的过程。 6?脱落:指植物细胞、组织或器官与植物体分离的过程。 7?种子休眠:成熟种子在合适的萌发条件下仍不菜发的现象,故也称深休眠。 8?强迫休眠:成熟种子因环境不适而引起的休眠叫做强迫休眠或浅休眠。 二、填空题 1.糖类 2.乙烯 3.双S 4.单宁 5.淀粉转变为糖 6.种皮限制种子未完成后熟胚未完全发育抑制物质的存在 7.合成能力减弱分解加快

8.迅速下降 9 ?延缓加速 10.磷酸肌醇(植酸) 三、选择题 1.A 2 .A 3 .B 4 .C 5 .A 6 .A、B 7 .B 8 .C 9 .A 10 .A 11 .B 12 . B 1 . () 2 .()有关 3 . () 4 . () 5 .()含量低 6 .() 饱和脂肪酸7 . ( ) 8 . ( ) 9 .()含有很多有机酸 五、问答题 1 .试述乙烯与果实成熟的关系及其作用机理。 果实的成熟是一个复杂的生理过程,果实的成熟与乙烯的诱导有关。果实开始成熟时,乙烯的释放量迅速增加,未成熟的果实与已成熟的果实一起存放,未成熟果实也加快成熟达到可食状态。用乙烯或能产主乙烯的乙烯利处理未成熟果实,也能加速果实成熟,人为地将果实中的乙烯抽去,果实的成熟便受阻。 乙烯诱导果实成熟的原因可能在下列几方面:①乙烯与细胞膜的结合,改变了膜的透性,诱导呼吸高峰的出现,加速了果实内的物质转化,促进了果实成熟;②乙烯引起酶活性的变化,如乙烯处理后,纤维素酶、过氧化物酶、苯丙氨酸解氨酶和磷酸酯酶的活性增强;③乙烯诱导新的RNA合成。已经了解到,果实成熟前,RNA 和蛋白质的含量增加,这些新合成的蛋白质与形成呼吸酶有关。 2.肉质果实成熟时发生了哪些生理生化变化? (1)果实变甜。果实成熟后期,淀粉可以转变成为可溶性糖,使果实变甜。 (2)酸味减少。未成熟的果实中积累较多的有机酸。在果实成熟过程中,有机 酸含量下降,这是因为:①有的转变为糖;②有的作为呼吸底物氧化为C(O和H20;

逆境下植物叶性状变化的研究进展

逆境下植物叶性状变化的研究进展 摘要: 介绍了逆境下植物叶性状变化的研究进展。在逆境下,植物的叶片形态、解剖构造和内含物质等方面产生变化或特化,以保证植物正常的生命活动。解剖构造与树木的抗旱性系密切,渗透调节是一个重要的抗旱性和抗盐性机制。植物为了减少害的发生,采用防卫和避相结合的策略保护自己。叶片中午受到强光胁迫时存在明显的“避光运动”,栅栏组织的叶绿体通过不同的运动排列方式来调整对光辐射的吸收,减少光胁迫。植物在阴蔽的环境中通过大的叶面积等方式保证在弱光条件下充分利用光能。在干旱和盐胁迫下,叶片变小或消失,叶片表皮角质化,在叶片或细胞外形成一些机械组织,叶肉质化,白天叶片气孔关闭等方式增加耐盐性。多年生落叶树木和不落叶的植物通过不同的方式增加抗寒力。基因对叶性状的影响尚有争议。叶性状的差异可能是对不同环境的反映,或者是它们的年龄和基因引起的。最后,对叶性状的研究前景作了展望。 关键词: 叶性状;抗逆性; 植物对环境变迁和不良环境有足够的适应性和抵抗能力,这种抗逆性既受其系统发育的遗传基因所控制,又受其个体发育中的生理生态状态制 约。叶片是高等植物进行光合作用的主要器官,在陆地植物生态系统功能中起至关重要的作用[1],其性状特征直接影响到植物的基本行为和功能。叶性状包括叶的形态、面积、构造、养分和渗透调节物质等。早期的叶性状主要集中在植物生理研究,如叶片的光合、呼吸和叶中物质含量。随着与叶性状相关的特性和应用研究的加深,叶性状的研究逐渐成为近几年来生理生态学领域研究的新热点,内容包括叶的基本性状和它们大范围的格局关系,从叶 水平到生态系统水平预测生态过程和生态功能对环境变化的反应[2-3],例如LUO等[4]根据大量的西藏野外观测数据,从生态系统水平上定量描述了叶性状与群落物征和气候因子之间的数量关系。WRIGHT等[1]对全球范围内175个样点的2548种植物叶性状的分析,是人们首次在全球范围阐明这些叶性状间的相关规律,这种随着温度大小的变化以及各性状间的相互关系在各种植物种群和群落中所具有的相似格局,已成为从叶片水平上区分全球生物地理群落的关键指标[1]。国内王希华等[5]从群落学的角度进行了一些相关研究,张林和罗天祥[6]对植物叶寿命以及王希群等[7]对叶面积指数的应用都曾作了总结。文章就逆境条件下植物叶性状的生理生态变化和抗逆性的关系进行介绍,这对了解植物在逆境中的生存机制,寻找林木抗逆的适宜调控措施,改善森林的生态效益都有一定的意义。 1 叶性状与抗旱性 一般认为抗旱表现为避免脱水和忍受脱水。植物通过各种方法减少干旱时水分的散失。植物一般采用较高的叶组织密度,较大的叶厚度和很小的叶面积来适应干旱[8-9]。干旱的时候,植物减小叶面积和单位面积内的叶生物量,减少新叶的产生,增加老叶的脱落和减少叶的大小[10]。DEREK[11]研究落叶植物和常绿植物季节性缺水时发现,落叶植物和常绿植物采用不同的应对策略,落叶植物在短时间内消耗大量叶中氮,叶子的寿命很短,但却能固定大量的碳。植物脱叶是对缺水的一种标志性反映[12]。常绿植物采用皮质硬叶来面对干旱,这是保护功能的一种特点;这一特点表现为叶的寿命很长[11],不大量消耗叶中的氮,同化作用率比较低,能常年地固碳。虽然植物在干旱季节或干旱地区可通过脱叶或产生细小叶子来减少植株表面水分的蒸腾,但一些缓解干旱的途径也可发生在叶结构的变化上,例如植 物产生较粗的叶脉、较小的表皮细胞、较多的叶毛以及较厚的角质层等。旱生植物的机械组织通常较为发达,表皮往往有多层细胞,有发达的角质或者密集的表皮毛以及气孔下陷以减少水分散失[13]。特别是可以通过气孔的关闭以保存水分,最大限度地利用水分,这样植可以度过长时间的干旱[14-15]。叶片的解剖构造与树木的抗旱性关系密切,GISALLE等[16]的工作表明,干旱条件下植物叶脉和叶柄中硬化组织大量增加,中脉系统带有吸湿壁的 凝胶纤维也增加,表皮增厚,气孔密度增加,叶肉中丹宁数量增大,叶柄及海绵组织增加和

植物的逆境生理复习题参考答案

植物的逆境生理复习题参考答案 一、名词解释 1、逆境(environmentalstress):又称胁迫(stress)。系指对植物生存和生长不利的各种环境因素的总称。如低温、高温、干旱、涝害、病虫害、有毒气体等。 2、抗逆性(stressresistance):植物对逆境的抵抗和忍耐能力,简称为抗性。抗性是植物对环境的一种适应性反应,是在长期进化过程中形成的。 3、抗性锻炼(hardinesshardening):在生活周期中,植物的抗逆遗传特性需要特定环境因子的诱导才能表现出来,这种诱导过程称为抗性锻炼,例如抗寒锻炼、抗旱锻炼。 4、抗寒锻炼(coldresistancehardening):植物在冬季来临之前,随着气温的降低,体内发生了一系列适应低温的生理生化变化,抗寒能力逐渐增强,这种抗寒能力逐渐提高的过程称为抗寒锻炼。 5、抗旱锻炼(droughtresistancehardening):在种子萌发期或幼苗期进行适度的干旱处理,使植物的生理代谢上发生相应的变化,从而增强对干旱的抵抗能力,这个过程称为抗旱锻炼。 6、交叉适应(crossadaptation):植物经历了某种逆境后,能提高对另一些逆境的抵抗能力,这种对不同逆境间的相互适应作用,称为交叉适应。 7、避逆性(stressavoidance):植物通过设置物理屏障或某些特殊的代谢反应和生长发育变化,从而避免或减小逆境对植物组织施加的影响,使其仍保持较正常的生理活动,这种抵抗称为避逆性。 8、耐逆性(stresstolerance):又称逆境忍耐。植物组织虽然经受逆境的影响,但可通过代谢反应阻止、降低或者修复由逆境造成的损伤,从而保持其生存能力,这种抵抗称为耐逆性。 9、逆境逃避(stressescape):指植物通过生育期的调整避开逆境,例如沙漠中的一些植物在雨季里快速生长,完成生活史,自身并不经历逆境。 10、渗透调节(osmoticadjustment.):植物细胞通过主动增加溶质降低渗透势,增强吸水和保水能力,以维持正常细胞膨压的作用。 11、寒害(coldinjury):低温导致的植物受伤或死亡。 12、冻害(feezinginjury):温度下降到零度以下,植物体内发生冰冻,因而受伤甚

植物叶片衰老过程中的基因表达与调控

植物叶片衰老过程中的基因表达与调控 张少华 (东北农业大学生命科学学院,哈尔滨,150030) 摘要:衰老是一个高度调节的程序化过程。在此过程中,植物激素和环境因子等信号通过激活或关闭某些基因的表达而启动衰老。 关键词:衰老 RNA 转译基因水解酶细胞分裂素 衰老是一种器官或组织逐步走向功能衰退和死亡的变化过程[1]。它除了代表器官或组织生命周期的终结之外,在发育生物学上也有着重要的意义。叶片的衰老是植物的一个重要发育阶段。在这段时期内,植物在成熟叶片内积累的物质,包括大量的氮、碳有机化合物和矿物质,将被分解并运送至植物其它生长旺盛的部分,其中大部分被转移到种子内,为下一代的生长做好准备[11]。对于产生种子的作物,包括绝大多数农作物,这种转移使营养重新分配,对植株保持正常的生长发育与繁殖是十分必要的[3]。衰老过程中,叶片细胞在组成成分上有很大的变化。据分析,总RNA减少了十分之一,可溶性蛋白减少了三分之一[10]。叶组织衰老的表型以叶绿素的流失为标记,随之出现叶绿体的分解,叶色褪淡。在分子水平上,衰老过程中叶绿素、蛋白质、RNA和DNA不断减少,水解酶和生长抑制因子则持续增长[13]。叶片衰老在许多物种中的发生是依赖于植株年龄的,因此靠近植株根部的叶片比顶端叶片更早进入衰老。同时它也能被一系列外部因子所诱导,其中包括阴暗、缺乏矿物质、干燥与病原体感染等[17]。其它一些发育过程也能诱导衰老的发生,如开花、受精与种子发育[6,11]。 最初RNA合成的减少被认为是衰老的主要原因,这一结论基于以下几个发现。首先,叶片衰老过程中RNA水平与蛋白质含量同步减少,而DNA的减少速度则慢得多[13]。其次,能够延迟衰老的物质能够增加RNA的合成,反之亦然[18]。但是,抑制因子研究表明叶片衰老对转录抑制因子放线菌丝素D不敏感,而在转译抑制因子放线菌酮的作用下,衰老延迟[16,20]。由此推测涉及叶片衷老的大多数事件发生在转译水平上,而非转录水平[17]。 1 衰老中基因表达产物的变化 生理与遗传研究显示衰老是一个高度程序化的调控过程[11,17]。这一过程包括了大量有序事件发生,如叶片蛋白质的分解、光合作用能力的下降、叶绿体的解体、叶绿素的流失以及分解产物的撤离等,涉及一些相关基因的表达[,11]。衰老过程中表达量上升的蛋白包括以

植物的成熟和衰老生理.

第九章植物的成熟和衰老生理植物受精后,受精卵发育成胚,胚珠发育成种子,子房壁发育成果皮,子房发育形成果实。种子和果实形成时,不只是形态上发生很大变化,在生理生化上也发生剧烈的变化。 第一节种子成熟时的生理生化变化 一、主要有机物的变化 仔细研究水稻谷粒成熟过程各种糖分的变化过程,得知葡萄糖、蔗糖等全糖的水平和淀粉累积速度比较接近,都在开花后9天达到高峰。可是乳熟期以后淀粉累积停止,而颖果中还有不少糖分。由此可见,谷粒淀粉累积的下降或停止,除了与光合产物供应充分与否有关,也与淀粉生物合成能力减弱有很大的关系。 小麦籽粒的氮素总量,从乳熟初期到完熟期变化很小。但随着成熟度的提高,非蛋白氮不断下降,蛋白氮的含量不断增加,这说明蛋白质是由非蛋白氮化物转变而来的。与这种现象相适应,成熟小麦种子的RNA含量较多,以合成丰富的蛋白质。 油料种子在成熟过程中,脂肪含量不断提高,而糖类(葡萄糖、蔗糖、淀粉)总含量不断下降,这说明脂肪是由糖类转化而来的。油脂形成有两个特点:首先是成熟期所形成的大量游离脂肪酸,随着种子的成熟,游离脂肪酸逐渐合成复杂的油脂。其次,种子成熟时先形成饱和脂肪酸,然后,由饱和脂肪酸变为不饱和脂肪酸,所以,一般油料种子如芝麻、大豆、花生等种子的油脂的碘值,是随着种子的成熟度而增加。当然,在常温下为固体油脂的油料种子(如椰子种子),其碘值变化很少。 在豌豆种子成熟过程中,种子最先积累以蔗糖为主的糖分。然后糖分转变为蛋白质和淀粉,DNA和RNA也相应增多。后来淀粉积累减少,而蛋白质保持较高的含量。 总之,在种子成熟过程中,可溶性糖类转化为不溶性糖类,非蛋白氮转变为蛋白质,而脂肪则是由糖类转化而来的。 二、其他生理变化

相关文档
最新文档