小船渡河问题

合集下载

小船渡河问题

小船渡河问题

小船渡河问题1.船的实际运动是水流的运动和船相对静水的运动的合运动。

2.三种速度:船在静水中的速度v 1、水的流速v 2、船的实际速度v 。

3.三种情况(1)渡河时间最短:船头正对河岸,渡河时间最短,t min =d v 1(d 为河宽)。

(2)渡河路径最短(v 2<v 1时):合速度垂直于河岸,航程最短,x min =d 。

(3)渡河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法垂直河岸渡河。

确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短。

由图可知sin θ=v 1v 2,最短航程x min =d sin θ=v 2v 1d 。

【题型1】已知某船在静水中的速度为v 1=5 m/s ,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m ,水流速度为v 2=3 m/s ,方向与河岸平行,(1)欲使船以最短时间渡河,渡河所用时间是多少?位移的大小是多少;(2)欲使船以最小位移渡河,渡河所用时间是多少?(3)若水流速度为v 2′=6 m/s ,船在静水中的速度为v 1=5 m/s 不变,船能否垂直河岸渡河?【答案】(1)20 s 2034 m (2)25 s (3)不能【解析】(1)由题意知,当船在垂直于河岸方向上的分速度最大时,渡河所用时间最短,河水流速平行于河岸,不影响渡河时间,所以当船头垂直于河岸渡河时,所用时间最短,最短时间为t =d v 1=1005s =20 s. 如图甲所示,当船到达对岸时,船沿平行于河岸方向也发生了位移,由几何知识可得,船的位移为l =d 2+x 2,由题意可得x =v 2t =3×20 m =60 m ,代入得l =2034 m.(2)当船的实际速度方向垂直于河岸时,船的位移最小,因船在静水中的速度为v 1=5 m/s ,大于水流速度v 2=3 m/s ,故可以使船的实际速度方向垂直于河岸.如图乙所示,设船斜指向上游河对岸,且与河岸所成夹角为θ,则有v 1cos θ=v 2,cos θ=v 2v 1=0.6,则sin θ=1-cos 2 θ=0.8,船的实际速度v =v 1sin θ=5×0.8 m/s =4 m/s ,所用的时间为t =d v =1004s =25 s.(3)当水流速度v 2′=6 m/s 时,则水流速度大于船在静水中的速度v 1=5 m/s ,不论v 1方向如何,其合速度方向总是偏向下游,故不能垂直河岸渡河.【题型2】一小船在静水中的速度为3 m/s ,它在一条河宽为150 m ,水流速度为4 m/s 的河流中渡河,则该小船( )A .能到达正对岸B .渡河的时间可能少于50 sC .以最短时间渡河时,它沿水流方向的位移大小为200 mD .以最短位移渡河时,位移大小为150 m【答案】C【解析】因为小船在静水中的速度小于水流速度,所以小船不能到达正对岸,故A 错误;当船头与河岸垂直时渡河时间最短,最短时间t =d v 船=50 s ,故渡河时间不能少于50 s ,故B 错误;以最短时间渡河时,沿水流方向位移x =v 水t =200 m ,故C 正确;当v 船与实际运动方向垂直时渡河位移最短,设此时船头与河岸的夹角为θ,则cos θ=34,故渡河位移s =d cos θ=200 m ,故D 错误。

小船过河问题三种情况及其公式

小船过河问题三种情况及其公式

小船过河问题三种情况及其公式
小船渡河三种情况公式推导是:
1、小船过江时的水流速度与船过江的时间无关,只与船的速度有关。

从船的速度都是用来过河的,而不是作为分速度来说,可以推导出沿河岸垂直过河是最短的过河方式,公式为t=s/v船。

2、当船速大于水速时,当前速度和船速的组合速度可以垂直于河岸。

当船速与流速的夹角为时,即当船向(-90)度方向向上游倾斜时,船可以垂直过河,此时的渡河时间可以表示为T=S/cos(-90)V 船。

3、如果满足流速大于船速的前提,流速和船速的组合速度不能垂直于河岸。

但不要忘了船的位移最短,就是画一个以船速的长度为半径,以速度的箭头末端为圆心的圆。

这时圆上有无数条切线,所以要求出速度初始位置的切线,也就是这条切线与最短位移重合,所以此时的公式是s=河宽*v水/v船。

小船渡河问题归纳总结

小船渡河问题归纳总结

小船渡河问题归纳总结小船渡河问题是物理学中的一个经典问题,它涉及到相对运动、速度、时间和距离等多个物理概念。

以下是关于小船渡河问题的归纳总结,详细介绍:一、基本概念1. 小船渡河:指的是一个船只在河流中从一岸行驶到另一岸的过程。

2. 静水速度:船只在静止的水中行驶的速度,通常记为vc。

3. 河流速度:河流的流速,通常记为vs。

4. 合速度:船只在河流中的实际速度,是静水速度和河流速度的矢量和。

5. 渡河时间:船只从一岸出发到达另一岸所需要的时间。

6. 渡河距离:船只在水面上实际行驶的距离。

二、问题分类1. 最短时间渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短时间。

2. 最短距离渡河:在给定河宽和船只静水速度的条件下,求船只渡河的最短距离。

3. 指定地点渡河:船只需要在河对岸的指定地点登陆,求船只的行驶方向和速度。

三、解题方法1. 最短时间渡河:-当静水速度大于河流速度时,船只应该以静水速度垂直于河岸行驶,这样渡河时间最短。

-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河时间取决于静水速度与河流速度的比值。

-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河时间也是最短的。

2. 最短距离渡河:-当静水速度大于河流速度时,船只应该以静水速度与河流速度的比值确定合速度的方向,使得合速度垂直于河岸,这样渡河距离最短。

-当静水速度小于河流速度时,船只无法垂直于河岸行驶,此时渡河距离取决于静水速度与河流速度的比值。

-当静水速度等于河流速度时,船只可以垂直于河岸行驶,渡河距离也是最短的。

3. 指定地点渡河:-确定船只的合速度方向,使得合速度的方向与指定地点的连线垂直。

-计算合速度的大小,使得船只能够准确到达指定地点。

四、实际应用1. 航海导航:在航海过程中,船只需要在不同的水流速度和方向下,选择合适的行驶方向和速度,以达到目的地。

2. 水上救援:在进行水上救援时,救援船只需要根据河流的流速和救援地点的位置,选择合适的行驶方向和速度,以尽快到达救援地点。

(完整版)高中物理小船渡河模型典型例题(含答案)【经典】..

(完整版)高中物理小船渡河模型典型例题(含答案)【经典】..

考点四:小船渡河模型1.(1.(小船渡河问题小船渡河问题小船渡河问题))小船在200 m 宽的河中横渡,水流速度是2 m/s 2 m/s,小船在静水中的航速是,小船在静水中的航速是4 m/s.4 m/s.求:求:求:(1)(1)要使小船渡河耗时最少,应如何航行?最短时间为多少?要使小船渡河耗时最少,应如何航行?最短时间为多少?要使小船渡河耗时最少,应如何航行?最短时间为多少?(2)(2)要使小船航程最短,应如何航行?最短航程为多少?要使小船航程最短,应如何航行?最短航程为多少?要使小船航程最短,应如何航行?最短航程为多少?答案 (1)船头正对河岸航行耗时最少,最短时间为50 s.(2)船头偏向上游,与河岸成60°角,最短航程为200 m.解析 (1)如图甲所示,船头始终正对河岸航行时耗时最少,即最短时间tmin =d v 船=2004s =50 s. (2)如图乙所示,航程最短为河宽d ,即最短航程为200 m ,应使v 合的方向垂直于河岸,故船头应偏向上游,与河岸成α角,有 cos α=v 水v 船=24=12,解得α=60°. 2、一小船渡河,河宽d =180 m 180 m,水流速度,水流速度v1v1==2.5 m/s.2.5 m/s.若船在静水中的速度为若船在静水中的速度为v2v2==5 m/s 5 m/s,求:,求:,求: (1)(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?答案 (1)船头垂直于河岸 36 s 90 5 m (2)船头向上游偏30° 24 3 s 180 m3、已知某船在静水中的速率为v1v1==4 m/s m/s,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽,现让船渡过某条河,假设这条河的两岸是理想的平行线,河宽为d =100 m 100 m,河水的流动速度为,河水的流动速度为v2v2==3 m/s 3 m/s,方向与河岸平行,方向与河岸平行,方向与河岸平行..试分析:试分析:(1)(1)欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移欲使船以最短时间渡过河去,船的航向怎样?最短时间是多少?到达对岸的位置怎样?船发生的位移是多大?是多大?(2)(2)欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?欲使船渡河过程中的航行距离最短,船的航向又应怎样?渡河所用时间是多少?解析 (1)根据运动的独立性和等时性,当船在垂直河岸方向上的分速度v⊥最大时,渡河所用时间最短.设船头指向上游且与上游河岸夹角为α,其合速度v 与分运动速度v1、v2的矢量关系如图所示.河水流速v2平行于河岸,不影响渡河快慢,船在垂直河岸方向上的分速度v⊥=v1sin α,则船渡河所用时间为t =d v1sin α. 显然,当sin α=1即α=90°时,v⊥最大,t 最小,此时船身垂直于河岸,船头始终垂直指向对岸,但船实际的航向斜向下游,如图所示.渡河的最短时间tmin =d v1=1004s =25 s 船的位移为l =v 21+v 22tmin =42+32×25 m=125 m 船渡过河时到达正对岸的下游A 处,其顺水漂流的位移为x =v2tmin =3×25 m=75 m.(2)由于v1>v2,故船的合速度与河岸垂直时,船的航行距离最短.设此时船速v1的方向(船头的指向)斜向上游,且与河岸成θ角,如图所示,则cos θ=v2v1=34,θ=arccos 34. 船的实际速度为v 合=v 21-v 22=42-32 m/s =7 m/s 故渡河时间:t′=d v 合=1007 s =10077 s. 答案 (1)t=25s ,x=75m ,l=125m (2)t=10077s 4、河宽60 m 60 m,水流速度,水流速度v1v1==6 m/s 6 m/s,小船在静水中的速度,小船在静水中的速度v2v2==3 m/s 3 m/s,则:,则:,则:(1)(1)它渡河的最短时间是多少?它渡河的最短时间是多少?它渡河的最短时间是多少?(2)(2)最短航程是多少?最短航程是多少?最短航程是多少?答案 (1)20 s (2)120 m5.(单选单选))一小船在静水中的速度为3 m/s 3 m/s,它在一条河宽为,它在一条河宽为150 m 150 m,水流速度为,水流速度为4 m/s 的河流中渡河,则该小船该小船( ( ). 答案答案 CA .能到达正对岸.能到达正对岸B B B.渡河的时间可能少于.渡河的时间可能少于50 s甲 乙 AC .以最短时间渡河时,它沿水流方向的位移大小为200 mD 200 m D.以最短位移渡河时,位移大小为.以最短位移渡河时,位移大小为150 m6. 6.一只小船在静水中的速度为一只小船在静水中的速度为5 m/s 5 m/s,它要渡过一条宽为,它要渡过一条宽为50 m 的河,河水流速为4 m/s 4 m/s,则,则,则( ( ) ) 答案答案 CA.A.这只船过河位移不可能为这只船过河位移不可能为50 mB.B.这只船过河时间不可能为这只船过河时间不可能为10 sC.C.若河水流速改变,船过河的最短时间一定不变若河水流速改变,船过河的最短时间一定不变若河水流速改变,船过河的最短时间一定不变D.D.若河水流速改变,船过河的最短位移一定不变若河水流速改变,船过河的最短位移一定不变若河水流速改变,船过河的最短位移一定不变7.(7.(运动的合成和分解运动的合成和分解运动的合成和分解))某河宽为600 m 600 m,河中某点的水流速度,河中某点的水流速度v 与该点到较近河岸的距离d 的关系如图所示.船在静水中的速度为4 m/s 4 m/s,要想使船渡河的时间最短,下列说法正确的是,要想使船渡河的时间最短,下列说法正确的是,要想使船渡河的时间最短,下列说法正确的是( ( ) ) 答案答案 ADA.A.船在航行过程中,船头应与河岸垂直船在航行过程中,船头应与河岸垂直船在航行过程中,船头应与河岸垂直B.B.船在河水中航行的轨迹是一条直线船在河水中航行的轨迹是一条直线船在河水中航行的轨迹是一条直线C.C.渡河的最短时间为渡河的最短时间为240 sD.D.船离开河岸船离开河岸400 m 时的速度大小为2 5 m/s8. ( (多选多选多选))小船横渡一条两岸平行的河流,船本身提供的速度小船横渡一条两岸平行的河流,船本身提供的速度((即静水速度即静水速度))大小不变、船身方向垂直于河岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则岸,水流速度与河岸平行,已知小船的运动轨迹如图所示,则( ( ) ) 答案答案 ACA .越接近河岸水流速度越小.越接近河岸水流速度越小B .越接近河岸水流速度越大.越接近河岸水流速度越大C .无论水流速度是否变化,这种渡河方式耗时最短.无论水流速度是否变化,这种渡河方式耗时最短D .该船渡河的时间会受水流速度变化的影响.该船渡河的时间会受水流速度变化的影响 9. ( (单选单选单选))有一条两岸平直、河水均匀流动、流速恒为v 的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为同,则小船在静水中的速度大小为( ( ) ) 答案答案 BA.kv k2k2--1B.v 1-k2C.kv 1-k2D.v k2k2--1解析 设大河宽度为d ,小船在静水中的速度为v0,则去程渡河所用时间t1=d v0,回程渡河所用时间t2=d v 20-v2.由题知t1t2=k ,联立以上各式得v0=v1-k2,选项B 正确,选项A 、C 、D 错误. 10. 10. (单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为(单选)如图所示,甲、乙两船在同一条河流边同时开始渡河,河宽为H ,河水流速为u ,划船速度为v ,出发时两船相距H 332,甲、乙船头均与岸边成o 60角,且乙船恰好能直达对岸的A 点,则下列判断正确的是点,则下列判断正确的是(( D )A .甲、乙两船到达对岸的时间不同.甲、乙两船到达对岸的时间不同B .两船可能在未到达对岸前相遇.两船可能在未到达对岸前相遇C .甲船在A 点右侧靠岸点右侧靠岸D .甲船也在A 点靠岸点靠岸11.11.如图所示,一艘轮船正在以如图所示,一艘轮船正在以4 m/s 的速度沿垂直于河岸方向匀速渡河,河中各处水流速度都相同,其大小为v1v1==3 m/s 3 m/s,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船,行驶中,轮船发动机的牵引力与船头朝向的方向相同.某时刻发动机突然熄火,轮船牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:牵引力随之消失,轮船相对于水的速度逐渐减小,但船头方向始终未发生变化.求:(1)(1)发动机未熄火时,轮船相对于静水行驶的速度大小;发动机未熄火时,轮船相对于静水行驶的速度大小;发动机未熄火时,轮船相对于静水行驶的速度大小;(2)(2)发动机熄火后,轮船相对于河岸速度的最小值.发动机熄火后,轮船相对于河岸速度的最小值.发动机熄火后,轮船相对于河岸速度的最小值.答案 (1)5 m/s (2)2.4 m/s解析 (1)发动机未熄火时,轮船运动速度v 与水流速度v1方向垂直,如图所示,故此时船相对于静水的速度v2的大小:v2=v2+v 21=42+32 m/s =5 m/s ,设v 与v2的夹角为θ,则cos θ=v v2=0.8.(2)熄火前,船的牵引力沿v2的方向,水的阻力与v2的方向相反,熄火后,牵引力消失,在阻力作用下,v2逐渐减小,但其方向不变,当v2与v1的矢量和与v2垂直时,轮船的合速度最小,则vmin =v1cos θ=3×0.8 m/s =2.4 m/s.12.12.如图所示,河宽如图所示,河宽d =120 m 120 m,设小船在静水中的速度为,设小船在静水中的速度为v1v1,河水的流速为,河水的流速为v2.v2.小船从小船从A 点出发,在渡河时,船身保持平行移动若出发时船头指向河对岸上游的B 点,经过10 min 10 min,小船恰好到达河正对岸的,小船恰好到达河正对岸的C 点;若出发时船头指向河正对岸的C 点,经过8 min 8 min,小船到达,小船到达C 点下游的D 点.求:求:(1)(1)小船在静水中的速度小船在静水中的速度v1的大小;的大小;(2)(2)河水的流速河水的流速v2的大小;的大小;(3)(3)在第二次渡河中小船被冲向下游的距离在第二次渡河中小船被冲向下游的距离sCD.答案 (1)0.25 m/s (2)0.15 m/s (3)72 m解析 (1)小船从A 点出发,若船头指向河正对岸的C 点,则此时v1方向的位移为d ,故有v1=d tmin =12060×8m/s =0.25 m/s. (2)设AB 与河岸上游成α角,由题意可知,此时恰好到达河正对岸的C 点,故v1沿河岸方向的分速度大小恰好等于河水的流速v2的大小,即v2=v1cos α,此时渡河时间为t =d v1sin α,所以sin α=d v1t=0.8,故v2=v1cos α=0.15 m/s. (3)在第二次渡河中小船被冲向下游的距离为sCD =v2tmin =72 m.。

小船渡河问题

小船渡河问题
船头指向与上游河岸成θ:
运动的合成与分解的应用
小船渡河问题与绳拉物牵连速度问题
合运动与分运动有什么关系?
同时性:
独立性: 等效性: 同一性:
运动的合成和分解的应用 1.小船渡河
例1:一艘小船在宽为d的河中横渡 到对岸,已知水流速度是v水,小船 在静水中的速度是v船,求: (1)当v船>v水时,欲使航行距离 最短,船应该怎样渡河?渡河时间 多长?
小试牛刀
• 某人乘船横渡一条小河,船速和水速
一定,且船速大于水速,若渡河的最
短时间为t1,用最短位移渡河的时间为
t1 1 t t2,则水速与船速之比为__________ 2
2
V船
d
θ
(一)渡河时间探究
分析:假设船在静水中渡河,我们可以把v船如
图分解,从图上可以看出:真正起到渡河效果
的是v船在垂直于河岸方向上的分速度v1,故船
d d 在静水中的渡河时间为:t v v sin 1 船
V船
V1 d θ V2
注意:
① θ=900时,即船头垂直对岸行驶时,渡 d 河时间最短,且最短时间为: t
s1
200m
s
s1 200 t 50s 解: vb 4
s1 vbt 200m s2 vr t 100m
Vb V s2 Vr
s s s2 223.6m
2 1 2
解:小船该向上游与河岸 s1
200m
Vb α(
s V s2 Vr
成α行驶
vr 1 cos vb 2 60
v船
v船 v船
v水
v水
v v船 船 v船
v船
θ θ

小船渡河问题分析及模型求解方法总结

小船渡河问题分析及模型求解方法总结

小船渡河问题分析及模型求解方法总结小船渡河问题是一种经典的约束规划问题,它可以应用在工程实践中,最近几年受到了广泛的关注。

它的本质是将一组人、物从一岸渡到另一岸,要求每条船上的人和物的数量不能超过船的最大载重量,同时保证每个人和物都安全地渡河。

此外,小船渡河问题还要求尽可能地减少渡河次数(使用最少的船来渡河)。

小船渡河问题可以用代数式描述为:在一条河上有n 个人和物,分别用变量 Xi (i=1,2,…,n)表示;n个人和物要渡河,每条小船的最大载重量为C,小船的装载过程有以下几个约束:(1)t每条船上的人数和物品数S必须小于C,即S≤C(2)t每个人和物都必须在一次渡河中安全渡河,即∑Xi≤C(3)t每个人和物都必须通过渡河,即Xi≥1 (i=1,2,…,n)另外,问题还要求尽可能地减少渡河次数,即最小化Z=∑Xi(i=1,2,…,n)对于小船渡河问题,模型求解可以采用禁忌搜索法、遗传算法、人工神经网络、动态规划、贝叶斯网络等多种方法进行求解。

禁忌搜索法是一种模拟退火算法,具有搜索范围大、解空间大、可以接受较差解等优点,是一种非常有效的求解小船渡河问题的方法。

它根据小船渡河问题的特点,采用选择最优方案的操作,让解在解空间内搜索,人工调整算子以达到解的可控性。

此外,禁忌搜索法还可以设置“禁忌表”来限制未来的搜索,从而更好地改进搜索效率。

遗传算法是一种基于自然进化的模拟算法,可以用来求解小船渡河问题,它将解的搜索用种群的行为模拟,具有全局搜索的能力,能够有效的利用历史信息,可以得到比较满意的解,但局限在算法的参数调整,这使得实际应用中还存在改进的空间。

人工神经网络是一种机器学习技术,可以用来求解小船渡河问题,它是由输入、隐藏和输出三层组成,输入层使用小船渡河数据,每个神经元代表一条小船;隐藏层以及输出层使用激活函数,用来检测小船数量,以及小船上的总人和物数量。

通过训练可以获得一个局部最优的解,它比较适用于小规模的小船渡河问题,但对于大规模问题,效果可能不太好。

高中物理小船过河问题含答案讲解

高中物理小船过河问题含答案讲解

小船过河问题轮船渡河问题:(1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的船的运动),船的实际运动是合运动。

1.渡河时间最少:在河宽、船速一定时,在一般情况下,渡河时间sin1船d dt,显然,当90时,即船头的指向与河岸垂直,渡河时间最小为vd ,合运动沿v 的方向进行。

2.位移最小若水船结论船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船水cos若水船v v ,则不论船的航向如何,总是被水冲向下游,怎样才能使漂下的距离最短呢?如图所示,设船头v 船与河岸成θ角。

合速度v 与河岸成α角。

可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α角最大呢?以v 水的矢尖为圆心,v 船为半径画圆,当v与圆相切时,α角最大,根据水船v v cos船头与河岸的夹角应为v水θv αABEv船v 水v船θvV水v 船θv 2v 1水船v v arccos,船沿河漂下的最短距离为:sin)cos (min 船船水v dv v x 此时渡河的最短位移:船水v dv d scos【例题】河宽d =60m ,水流速度v 1=6m /s ,小船在静水中的速度v 2=3m /s ,问:(1)要使它渡河的时间最短,则小船应如何渡河?最短时间是多少? (2)要使它渡河的航程最短,则小船应如何渡河?最短的航程是多少?★解析: (1)要使小船渡河时间最短,则小船船头应垂直河岸渡河,渡河的最短时间ss dt2030602(2)渡河航程最短有两种情况:①船速v 2大于水流速度v 1时,即v 2>v 1时,合速度v 与河岸垂直时,最短航程就是河宽;②船速v 2小于水流速度v l 时,即v 2<v 1时,合速度v 不可能与河岸垂直,只有当合速度v方向越接近垂直河岸方向,航程越短。

小船渡河、斜牵引运动和关联速度问题 解析版

小船渡河、斜牵引运动和关联速度问题 解析版

小船渡河、斜牵引运动和关联速度问题【考点归纳】考点一:过河最短问题考点二:船速大于水速时的最短位移问题考点三:船速小于水速时的最短位移问题考点四:小船渡河的迁移问题考点五:“关联”速度问题考点六:斜牵引运动【技巧归纳】一:“关联”速度问题的处理在实际生活中,常见到物体斜拉绳(或杆)或绳(或杆)斜拉物体的问题.规律:由于绳(或杆)不可伸长,所以绳(或杆)两端所连物体的速度沿着绳(或杆)方向的分速度大小相同.例如,小车通过跨过滑轮的绳牵引小船B ,某一时刻绳与水平方向的夹角为θ,如图所示.小船速度v B 有两个效果(两个分运动):一是沿绳方向的平动,二是垂直绳方向的转动.将v B 沿着这两个方向分解,v 1=v B cos θ=v A ,v 2=v B sin θ.二:小船渡河问题渡河时间最短和航程最短两类问题:1.关于最短时间,可根据运动等时性原理由船对静水的分运动时间来求解,由于河宽一定,当船对静水速度v 1垂直河岸时,如图所示,垂直河岸方向的分速度最大,所以必有t min =dv 1.2.关于最短航程,一般考察水流速度v 2小于船对静水速度v 1的情况较多,此种情况船的最短航程就等于河宽d ,此时船头指向应与上游河岸成θ角,如图所示,且cos θ=v 2v 1;若v 2>v 1,则最短航程s =v2v 1d ,此时船头指向应与上游河岸成θ′角,且cos θ′=v1v 2.技巧规律总结:1.船的实际运动是水流的运动和船相对静水的运动的合运动。

2.三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度)。

3.三种情景(1)过河时间最短:船头正对河岸时,渡河时间最短,t短=dv1(d为河宽)。

(2)过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d。

船头指向上游与河岸夹角为α,cosα=v2 v1。

(3)过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、那么在什么情况下渡河时间最短?在什么情况 下渡河的位移最小。
A、当船头与河岸始终垂直时,渡河时上游,航行的
路径与河岸垂直时位移最小。(等于河宽)
当船速小于水流速度:船头朝向与实际航向垂直时,
位移最小,(最小位移大于河宽)
A
3
设船在静水中的航行速度为V船、 V船 V
V船 V合
2、船头斜向上游,航向与 河岸垂直,渡河位移最小。
300m
v v v V水
合=
2 船
-
2 水
=
2
2 m /s
t2
=
S
v合
=
300 22
S
水流方向
t2 = 107S
答以最短时间渡河渡河时间是100s航向与A河岸的夹角是arctan3.以最小位移渡河…9
课本25页:1、2。
A
10
一小船在宽为200米的河中间在下游173米处有落 差很大的瀑布,若水流速度为4米/秒,要使船安全 渡河,船速至少要多大?船头与河岸的夹角多大?
v v v 合
2
2
船水
渡河时间 t =S/V 船头与河岸上游的夹角
水流方向
v水
a
v船
v合
a
v水
Cosa=V水 /V船
a= arccosV水 /V船
A
5
v v v 船直速于小河合 于岸速 水驶度 流向V正速=对度时岸22,,都无12要论....被船sin水头a冲向向那v下个.游方...,向v但,渡船2河都sin的不a位能移垂
水流速度为V水、合速度为V、河
S
宽为S。 当船头垂直于河岸时
V水
渡河时间t=S/ V船 沿河岸的位移是S1=V水t=V水S/V船
实际位移[合位移]S合=Vt=VS/V船= tana=S/S1
S S 2 2 1
合位移与河岸的夹角
a=arctanS/S1
a
A
4
小船渡河位移最短问题:
船速大于水速时,船头斜向上游,船可以垂直于河岸驶向 正对岸。设船速V船,水流速度V水,实际速度[合速度]V。
V船
S=300m a
V合 V水
解:1、船头与河岸垂 直,航向与河岸夹角为 a渡河时间最短。
V=S/t t1=S/V船
t1=300/3 s=100s
tana=V船/V水=3 a=arctan3
A
8
河宽300m,水流速度1m/s,船在静水中的航行 速度3m/s按下列要求渡河, 1、以最短时间渡 河;船的航向应与河岸成多大角度?渡河时间 是多少?2、以最小位移渡河;情况又怎样?
a=arccosV1/V2
A
6
练习:河宽为d水流速度为V2,船在静水的航速为 V1,要使小船渡河时路程最小,则最小路程是多少?
V1大于V2 (V船大于V水) V1 小于V2 (V船小于V水)
S= S= d
V2d/V1
实际位移S=Vt=d/cosa=dV2/V1
A
7
河宽300m,水流速度1m/s,船在静水中的航行 速度3m/s按下列要求渡河,船的航向应与河岸 成多大角度?渡河时间是多少?1、以最短时间 渡河;2、以最小位移渡河;
分析:船沿水漂下173米时刚好靠岸船速最小,这 时沿垂直河岸方向上的位移是100米。
解:设实际航速与河岸夹角为a,
则:tana=100m/173m 船/V水
V船=V水sin300=2m/s
a =300 cos[900-300]=V
A
11
A
12
①实际路径上发生的运动--合运动; ②想象参与的运动--分运动; ③作图示时、合运动在中央,分运动在两边。
A
1
A a
V
a
B
v 画出B物体的合运动和分运动, V2
当A匀速下落时B做什么运动? B左移时,a增大,cosa减小,
cos a
1
V
V1不变,则V增大,B向左作 加速运动。
A
V v1
cos a2
1、小船渡河时,在垂直于河岸的方向上和水流的 方向上都可能发生位移,即可同时参与两个方向的 运动。
2、通常有时间最短和位移最小。的问题。
A
B
C
D
A
13
V1
θ
V2
θ
θ
V
V1
A
14
V1
V2
θ
θ
θ
V
例:上图中汽车匀速行驶时,物 V1 体作什么运动?
Cosθ=V1/ V V1=V cosθ
汽车匀速运动时,θ减小,cosθ增大,V1增大,物体 加速上升.
产生向上的加速度,合力向上,绳对物体的拉力
大于它的重力.
A
15
v 也有一个最小值。
2
v 当船头ta斜na向上v游.,...v并与行1t驶an的a路径垂直时位移最小。 v1
Sina=V3/V1 垂直于河岸的速度V3=V1 sina 渡河的时间是:t=d/V3=d/V1 sina
V3
a
a
cosa=d/s=V1/V2 s=d/cosa
最小位移S=Vt=d/cosa=dV2/V1 船头与河岸的夹角:cosa=V1/V2
相关文档
最新文档