基坑监控量测方案资料

合集下载

基坑工程监控方案

基坑工程监控方案

基坑工程监控方案一、监控量测内容结合本工程特点确定如下监测内容:根据明挖基坑工程的实际情况,现场监控量测项目有:基坑内外观察、桩体位移及变形、基坑周围地表沉降、地下水位监测、土体测向变形、临近重要建筑物沉降及倾斜、地下管线沉降及位移等。

围护结构施工前做好场地现状的仔细调查和记录、拍照等,设置变形观测点并测得初始数据。

二、监控量测注意事项1、在基坑围护结构施工前,要先对既有建筑物布设监控量测点,为施工中的监测、抢险及可能产生的纠纷提供必要的依据。

2、在基坑影响范围内的管线上方设置管线沉降测点时,测点沿管线走向布置。

3、各项监测工作的频率应根据施工进度确定。

结构变形过大或现场情况有变化时应加密量测,有事故征兆时则需连续监测。

4、各项目在基坑开挖前应测得初始值,且不小于3次。

5、钻孔测点遇既有管线及构筑物避开设置。

6、井体间明挖基坑施工过程中对地层和支护结构进行动态监测,为施工提供可靠的信,以达到科学指导施工,合理修改设计或及时采取施工技术措施的目的。

7、在支护结构施工及基坑开挖过程中,必须对邻近建筑物基础沉降、变形、倾斜、裂缝等进行全方位监测。

8、在支护结构施工及基坑开挖过程中,应对周围邻近道路的沉降进行监测,如发现有地面开裂、沉陷等异常情况,应立即停止施工,并采取相应措施同时通知有关人员进行研究处理。

9、在支护结构施工及基坑开挖过程中,应对周围管线进行监测,并满足各管线权属单位要求的允许值,如发现超过允许值,应立即停止施工,并通知有关单位,采用有效处理措施。

10、应加强监控量测工作的管理,确保信息反馈的准确及时。

11、基坑监测项目的监控报警值应根据检测对象的有关规范及支护结构设计要求确定。

12、对地下管线的监测点布置及监测控制值应严格按管线管理部门的要求执行。

13、基坑监测图如下,仅供参考,可根据具体需要进行调整布点间距及数量。

14、在进场施工前做好以下三个方面的准备工作:⑴.对周围原有的建筑进行仔细调查、检测和技术鉴定,并做好记录、拍照、录像等工作,为施工过程中监测抢险及可能产生的纠纷提供必要的依据。

基坑工程监测检测方案

基坑工程监测检测方案

基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。

在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。

本文将针对基坑工程的监测检测方案进行详细的介绍。

二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。

三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。

可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。

2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。

可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。

3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。

可以采用应变计、位移计等仪器进行实时监测。

4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。

可以通过长期监测和数据分析,掌握地下水位的变化规律。

5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。

可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。

四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。

这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。

2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。

可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。

3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。

可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。

基坑围护桩施工变形监测专项监控量测方案

基坑围护桩施工变形监测专项监控量测方案

新建铁路川藏线拉萨至林芝段站前工程LLZQ-8标铁路基坑围护桩施工变形监测专项监控量测方案四川交大工程检测咨询有限公司二O一六年四月新建铁路川藏线拉萨至林芝段站前工程LLZQ-8标铁路基坑围护桩施工变形监测专项监控量测方案编制:复核:审核:四川交大工程检测咨询有限公司二O一六年四月目录一、工程概况 (1)1.1 朗镇3号桥概况 (1)1.2朗镇2号桥概况 (5)1.3朗镇4号桥概况 (6)1.4朗镇1号桥概况 (8)二、编制依据 (8)三、监测目的 (8)四、监测项目 (9)五、监测项目实施 (10)5.1围护结构顶水平位移、竖向位移监测 (10)5.2围护桩倾斜 (12)5.3 钢支撑轴力 (16)5.4地表沉降监测 (18)六、总体测试安排 (19)七、监测技术成果 (21)7.1监测数据处理与分析 (21)7.2常规报告 (23)八、组织机构、人员及设备配置 (24)8.1组织机构 (24)8.2人员安排 (24)8.3仪器设备 (25)九、质量保证体系及措施 (25)9.1质量方针 (25)9.2 质量目标 (25)9.3质量管理体系 (26)9.4质量措施 (27)一、工程概况新建川藏铁路拉萨至林芝段(简称“拉林铁路”)位于西藏自治区东南部,线路从既有拉日铁路协荣站引出,向南穿过冈底斯山余脉进入雅鲁藏布江河谷,于贡嘎跨过雅鲁藏布江后向东经扎囊、乃东、桑日、加查、朗县、米林至林芝。

新建铁路川藏线拉萨至林芝段站前工程LLZQ-8标段起点位于山南地区加查县冷达乡,经陇南乡、仲达镇、沿S306省道前行,于林芝地区朗镇终止。

线路穿越雅鲁藏布峡谷地带,四跨雅鲁藏布江,起讫里程为D3K230+703~DK263+844.62,正线长度32.23km;其中隧道7座16.613km,占正线长度51.5%;桥梁11座9642.35延长米,占正线长度29.9%;路基12段4.719km, 占正线长度14.6%;涵洞337.5横延米/21座,其中盖板涵98.4横延米/3座,框架涵239.1横延米/18座;车站2座(热当车站、冲康车站)。

基坑工程监控量测说明

基坑工程监控量测说明

基坑工程监控量测说明1、基坑工程施工监测的目的(1)监测基坑稳定和变形情况,验证围护结构、支护结构的设计效果,保证基坑稳定、支护结构稳定、地表建筑物和地下管线的的安全;(2)提供判断基坑、结构和周边环境基本稳定的依据;(3)通过监控量测,了解施工方法和施工手段的科学性和合理性,以便及时调整施工方法,保证施工安全;(4)通过量测数据的分析处理,掌握基坑和围岩稳定性的变化规律,修改或确认设计及施工参数。

并为今后类似工程的建设提供经验。

2、施工监测的主要任务(1)通过对地表变形、围护结构变形,掌握围岩与支护的动态信息并及时反馈,指导施工作业和确保施工安全。

(2)经量测数据的分析处理与必要的计算和判断后,进行预测和反馈,以保证施工安全和地层及支护的稳定。

(3)对量测结果进行分析,可应用到其它类似工程中,作为指导施工的依据。

3、测点的布设原则(1)按照监测方案,在现场布设测点,原则上以监测方案中的设计位置布置。

实际根据现场情况可在靠近设计测点位置设置测点,但以能达到监测目的为原则。

(2)监测测点的类型、数量结合工程特点、设计要求、施工特点等因素综合考虑,但要必须以能保证安全施工为原则。

(3)为验证设计数据而布设的测点布置在设计最不利位置和断面,为指导施工而设的测点布置在相同工况下的最先施工部位,其目的是为了及时反馈信息,以修改设计和指导施工。

(4)地表及建筑物变形测点的位置既要考虑反映对象的变形特征,又要便于采用仪器进行观测,还要有利于测点的保护。

(5)深埋的测点不能影响和防碍结构的正常受力,不能削弱结构的变形、刚度和密度。

(6)各类监测测点的布置在时间和空间上有机结合,力求同一监测部位能同时反映不同的物理变化量,以便找出其内在的联系和变化规律。

(7)测点的埋设应提前一定时间,并及早进行初始状态的量测。

4、监测项目表-1 太白南路站监测项目数量统计表5、监测方法5.1地表沉降监测(1)测点埋设如图-1,在平行于车站主体围护结构的方向,并分别距围护结构边缘5米、10米、15米、20米处,沿线路方向每20米设一个断面,用Φ108的钻机将地面硬化层钻透,随即打入作为监测点的钢筋,使钢筋与土体结为整体,可随土体的变化而变。

基坑围护桩施工变形监测专项监控量测方案

基坑围护桩施工变形监测专项监控量测方案

基坑围护桩施工变形监测专项监控量测方案一、背景介绍基坑围护桩是基础建设中常用的一种施工方式,通过在基坑边缘打入桩体来支撑土壤,以防止边坡坍塌和基坑变形。

然而,基坑围护桩在施工过程中可能会出现变形现象,因此,对基坑围护桩的变形进行监测是非常重要的。

本文将介绍一种基坑围护桩施工变形监测专项监控量测方案。

二、监测设备的选择1.变形测量仪:用于测量基坑围护桩的变形情况,可以通过测量点位与参考点的相对位移来计算变形量。

2.倾斜仪:用于测量基坑围护桩的倾斜角度,可以通过倾斜角度来判断桩体的稳定性。

3.压力传感器:用于测量基坑围护桩的负荷压力,可以了解桩体所承受的力的大小。

4.GPS定位仪:用于确定监测点的位置,以便进行数据分析和处理。

三、监测点的设置为了全面了解基坑围护桩的变形情况,需要设置一系列的监测点。

监测点的设置应根据基坑围护桩的实际情况和施工要求进行确定,一般应包括以下几个方面的监测点:1.桩顶监测点:用于测量基坑围护桩的竖向位移和沉降情况。

2.桩身监测点:用于测量基坑围护桩的水平位移和倾斜情况。

3.周边土体监测点:用于测量基坑围护桩周边土体的位移和变形情况。

4.基坑内土体监测点:用于测量基坑内土体的位移和变形情况。

四、监测频次和周期基坑围护桩施工变形监测应根据实际需要和施工进度来确定监测频次和周期。

一般情况下,可以将监测频次设置为每周一次,监测周期设置为施工周期的两倍。

这样可以及时了解基坑围护桩的变形情况,以便及时采取相应的措施来保证施工的顺利进行。

五、数据处理和分析监测数据的处理和分析是基坑围护桩施工变形监测的重要环节。

监测数据的处理和分析应包括以下几个方面的内容:1.数据处理:对采集到的监测数据进行整理和清洗,排除异常值和错误数据。

2.数据分析:对处理后的监测数据进行统计和分析,得出基坑围护桩的变形特征和趋势。

3.结果评估:根据分析结果对基坑围护桩的变形情况进行评估,判断是否需要采取进一步的措施。

基坑监测监控方案

基坑监测监控方案

基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。

通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。

一.监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。

基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。

2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。

混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。

此后可每周观测一次至回填土完工。

3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。

4、当有危险事故征兆时,应连续监测。

二、监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。

2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。

4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于15mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。

基坑监测方案

基坑监测方案

基坑监测方案一、工程概述本工程位于具体地点,基坑占地面积约为面积数值平方米,开挖深度为深度数值米。

周边环境较为复杂,临近周边建筑物或道路等。

为确保基坑施工过程中的安全稳定,保障周边环境不受影响,特制定本基坑监测方案。

二、监测目的1、及时掌握基坑围护结构和周边环境的变形情况,为施工提供及时、可靠的信息,以便调整施工参数,优化施工方案。

2、预测基坑及周边环境的变形趋势,提前采取防范措施,避免事故的发生。

3、对基坑施工过程进行监控,验证设计方案和施工工艺的合理性,为后续类似工程提供经验参考。

三、监测内容1、围护结构水平位移监测在围护结构顶部设置水平位移监测点,采用全站仪或经纬仪进行观测,监测点间距一般为间距数值米。

2、围护结构竖向位移监测在围护结构顶部设置竖向位移监测点,与水平位移监测点共用,采用水准仪进行观测。

3、深层水平位移监测在围护结构内埋设测斜管,深度达到基坑底部以下深度数值米,采用测斜仪定期测量围护结构的深层水平位移。

4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化情况。

5、地下水位监测在基坑周边设置地下水位观测井,采用水位计测量地下水位的变化。

6、周边建筑物沉降和倾斜监测在周边建筑物的角点和重要部位设置沉降和倾斜监测点,采用水准仪和全站仪进行观测。

7、周边道路和管线沉降监测在周边道路和管线上设置沉降监测点,采用水准仪进行观测。

四、监测点布置1、水平位移和竖向位移监测点沿基坑周边每隔间距数值米布置一个监测点,在阳角、阴角等变形较大的部位适当加密。

2、深层水平位移监测点在基坑的长边和短边中部各布置一个测斜管,在地质条件较差或变形较大的部位增设测斜管。

3、支撑轴力监测点选择受力较大的支撑构件进行监测,每个监测断面布置数量个轴力计。

4、地下水位监测点在基坑周边每隔间距数值米布置一个地下水位观测井。

5、周边建筑物沉降和倾斜监测点在建筑物的四角、长边中点和每隔间距数值米的位置设置沉降监测点,在建筑物的两个对角方向设置倾斜监测点。

施工单位基坑监测方案

施工单位基坑监测方案
施工单位基坑监测方案
第1篇
施工单位基坑监测方案
一、工程概况
本项目位于XXX地区,为高层建筑,设地下室,基坑开挖深度约XX米。根据地质勘察报告,场地土层分布主要为:①杂填土,②粉质粘土,③砂质粘土,④碎石土。地下水类型为孔隙潜水,水位受季节性变化影响。
二、监测目的
为确保基坑施工安全,预防事故发生,及时掌握基坑变形及周围环境变化情况,对基坑施工过程进行监测,为施工提供科学依据。
-遇预警情况,及时启动应急预案,采取相应措施。
九、质量保证措施
1.确保监测设备的高质量和高精度,定期进行校准和检验。
2.强化监测人员的专业技能培训,提升监测水平。
3.建立完善的数据管理体系,确保数据的真实、准确、连续和完整。
十、结语
本基坑监测方案旨在为施工提供科学、严谨的指导,确保工程安全。施工过程中应持续关注监测数据,及时调整施工策略。各方应密切协作,共同保障基坑施工的顺利进行。
2.对监测设备进行定期检查、校验,保证设备性能稳定。
3.加强监测人员培训,提高监测水平。
4.建立监测数据档案,确保数据完整、连续。
九、结语
本方案旨在为基坑施工提供科学、严谨的监测依据,确保施工安全。在施工过程中,应密切关注监测数据,及时调整施工措施,确保工程顺利进行。同时,各方应密切配合,共同为基坑施工安全保驾护航。
4.基坑围护结构顶部水平位移监测
5.基坑围护结构顶部垂直位移监测
6.基坑围护结构深层水平位移监测
7.基坑支撑轴力监测
8.基坑地下水位监测
五、监测方法及频率
1.监测方法
(1)地表沉降监测:采用电子水准仪、铟钢尺进行监测。
(2)建筑物沉降监测:采用电子水准仪、铟钢尺进行监测。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

亳州市谯城区8#还原小区监控量测施工方案一、编制依据1、中铁城市规划设计研究院有限公司设计的《亳州市谯城区8#还原小区施工图纸》2、《亳亳州市谯城区8#还原小区施工组织设计》3、土建工程施工涉及的有效国家建筑工程施工质量验收规范和规程:4、《工程测量规范》(GB50026-2007)5、《建筑施工测量手册》6、《建筑基坑支护技术规程》(JGJ120-99)7、《建筑地基基础设计规范》(GB50007-2002)8、《建筑变形测量规程》 (JGJ8-2007)9、《国家一、二等水准测量规范》 (GB12897-2006)10、本基坑设计文件、图纸、本工程总平面图二、工程概况亳州市谯城区8#还原小区工程,位于汤王北路以东,涡河路以南,花戏楼路以西,三圣庙路以北,包括4幢24层住宅,4幢28层住宅,9幢33层住宅,5幢沿街商铺,人防工程及地下车库。

主楼为剪力墙结构,商业房为框架结构,人防车库为框架-剪力墙结构。

施工区域东西长度410~510m、南北长度300m,总占地面积140834m2,约211亩,总建筑面积约为46.89万m2,其中住宅面积34.78万m2。

厂区内经当地规划部门交与我方四个控制点后为满足施工要求经过加密,平面高程控制点分别有KZ2(3752393.330,499680.142,38.511)、KZ10(3752130.963,499621.497,37.834)、KZ11(3752133.942,499714.240,38.164)、KZ14(3752359.988,499770.363),KZ15(3752281.985,499787.5050)。

三、水文地质情况(1)地形地貌亳州市谯城区8#还原小区工程,位于汤王北路以东,涡河路以南,花戏楼路以西,三圣庙路以北,场区周围多为住宅及旱地,地势平坦,高程在37.88~38.2m之间,场区处于淮河冲积平原,属涡河一级阶地,场地土主要为河流冲积层。

(2)水文地质条件钻探揭示深度内,地下水主要为承压水,局部存在上层滞水。

上层滞水赋存于①-1层种植土及①-2层杂填土中,主要接受大气降雨及生产、生活渗漏水补给,排泄以蒸发为主,无统一水面,水量有限。

承压水主要赋存于③层细砂中,主要接受场区外深切河流的侧向补给,水量相对较丰富。

勘察期间地下水位埋深在3.40~4.00m之间;地下水位年变幅约1.5m。

(3)地质条件根据地层岩性及物理力学指标,可将钻探深度范围内的地层划分为4个工程地质层。

①-1层:种植土,灰褐色,松散状,稍湿,含植物根茎,成份以粉质黏土为主,结构疏松,土质不均匀。

该层在本场地中大部分地段有分布,层厚约0.50m。

①-2层:杂填土,杂色,主要呈稍密状,稍湿,主要由粉质黏土组成,含混凝土块、碎石、建筑垃圾,结构疏密不均,土质不均匀。

该层在本场地中部分地段有分布,厚度为1.00~1.80m。

②层:粉质黏土,黄褐色,棕黄色,可塑为主,局部呈硬塑、软塑,含铁锰质结核,含姜石,表层含较多粉土,无摇振反应,干强度中等,韧性中等,土质均匀性较差。

该层在本场地中均有分布,厚度为5.50~7.60m,层顶面埋深约0.50~1.80m(黄海高程36.30~38.31m)。

③层:细砂,灰黄色,灰色,中密~密实状,主要成份为长石、石英砂,局部夹薄层粉土。

该层在本场地中均有分布,厚度为16.20~18.60m,层顶面埋深6.20~8.10m(黄海高程29.80~32.07m)。

④层:粉质黏土,灰褐色,灰黄色,可塑为主,局部硬塑、软塑,含铁锰质结核及高岭土团块,局部夹薄层粉土、粉细砂,干强度中等,韧性中等,土质均匀性较差。

本次勘探未揭穿,最大揭示厚度为37.8m,层顶面埋深24.00~25.80m(黄海高程12.35~14.83m)。

(4)水文气象条件全市气候处在暖温带南缘,属于暖温带半温润气候区,有明显的过渡性特征,主要表现为季风明显,气候温和,光照充足,雨量适中,无霜期长,四季分明,春温多变,夏雨集中,秋高气爽,冬长且干。

因气候的过渡性,造成冷暖气团交锋频繁,天气多变,年际降水变化大,全市历年平均气温14.7℃,平均日照2320h,平均无霜期216d,平均年降水量822mm。

市区范围内河流属淮河水系。

主要干流河道有涡河等。

涡河自谯城区安溜镇入境,东南流经涡阳县至蒙城县移村集出境入怀远县,境内长173km,流域面积4039 km2。

(5)自然灾害及其他条件降水多集中在7、8月,有时降水时间短、降水量大,短时期间极易水灾;旱灾仅次于水灾的自然灾害。

多数年份局部地区有不同程度的旱涝情发生。

有的先旱后涝。

有的是涝灾刚过,旱情接踵而来。

施工现场做好场地、施工组织排水,以防短期降雨量大,淹没施工现场。

四、工程监测目的1、保证施工安全。

大开挖会不同程度地对周边环境产生一定的影响,通过及时、准确的现场监测结果判断施工和周边环境的安全,并及时反馈施工,调整设计、施工参数,减小结构及周边环境的变形,保证工程安全。

2、预测施工引起的地表变形位移。

根据地表变形的发展趋势决定是否采取保护措施,并为确定经济、合理的保护措施提供依据。

3、控制各项监测指标。

根据已有的经验及规范要求,检查施工中的各项监控指标是否超过允许范围,并及时分析上报,以便做出施工调整的依据。

4、验证支护结构设计,指导施工。

结构设计中采用的设计原理与现场实测的结构受力、变形情况往往有一定的差异,施工中及时的监测信息反馈对于设计方案的完善和修正有很大的帮助。

5、监测塔吊的垂直度及稳定性来保证施工顺利进行,预防不安全事故发生。

塔吊垂直度检测是在塔吊安装完毕后使用前进行第一次垂直度检测,每周一进行一次塔吊垂直度的检测,并在每次伸塔后加测一次垂直度。

塔吊的垂直度直接影响到安全及塔吊载重量的问题。

6、监测脚手架的垂直度及稳定性是保证工程质量的前提,检查脚手架在搭设及使用过程中的偏差是否超出允许偏差范围,如超出范围应及时进行加固,以防不安全隐患发生。

7、总结工程经验,提高设计、施工技术水平。

深基坑工程施工中结构及周边环境的受力、变形资料对于设计、施工总结经验有很大帮助。

五、监测项目量测项目见下表六、基准点及监测点的布置及防护1、基准点布置本工程拟布设三个基准点,用于监控工作点的沉降及位移变形,五个基准点分别为KZ2(3752393.330,499680.142,38.511)、KZ10(3752130.963,499621.497,37.834)、K Z11(3752133.942,499714.240,38.164)、KZ14(3752359.988,499770.363),KZ15(3752281.985,499787.5050)。

2、监测点布设(1)基坑边坡沉降及位移点布设在大开挖基坑周围设置,地表沉降及水平位移监测在基坑地表布设监测网点及观测基准点。

根据现场情况,沉降监测点主要布设于基坑边外侧1m处,按线路走向左右对称布置,每隔20米设一监测点,布设时间应在工程施工前完成。

并且在最容易失稳的土层的分界面处布设监测点,来及时掌握边坡的稳定性;位移监测辅助点设置在沉降点向外4m处,与沉降点相同设置,位移监测时测量前后两点的距离(标准间距为4m)。

监测点采用混凝土保护,并用红油漆做好标记(注:当现场监控量测施工时如监测辅助点破坏应使用2″精度的全站仪进行量测)。

(2)地面建筑物下沉及倾斜监测在基坑外30m范围内的原有建筑物四个角点部位布设测点,在新建建筑物根据设计图纸,在图纸制定位置埋设沉降观测点,并用红色油漆做好编号,便于查找。

(3)地下水位监测在基坑一侧监测主断面上各布置一个管井,距围护结构约1.5m。

采用水位观测管等进行观测。

(4)施工升降机监测在施工升降机基础四周布设4个监测点,在施工升降机安装完成后布设进行基础沉降观测,并且定期检查连墙件及测设施工升降机垂直度。

(5)塔吊监测在塔吊基础底座布设4个测点,在塔吊安装完成后进行基础沉降观测。

定期对塔身垂直度进行监测,在塔身加高时必须进行塔身垂直度监测。

七、监测频率及报警指标1、监测频率(1)根据设计、基坑类别及本地区工程经验,本基坑及建筑物工程现场仪器监测的频率见表。

现场仪器监测的监测频率(2)施工升降机及塔吊监测频率2、监测预警值(1)基坑及建筑物监测预警值本工程监测报警值(2)塔吊及脚手架监测预警值塔吊附着以下的塔身垂直度必须控制在2‰以内,附着以上塔身的垂直度控制在4‰以内。

四肢支座水平误差不得超过1.5mm,机脚螺丝应严格按说明书要求的平面尺寸设置,允许偏差不得大于5mm。

施工升降机监测预警值八、监测资料整理与成果分析1、在取得监测数据后,要及时进行整理,绘制位移或应力的时态变化曲线图。

如下图所示:2、在取得足够的数据后,还应根据散点图的数据分布状况,选择合适的函数,对监测结果进行回归分析,以预测该测点可能出现的最大位移值或应力值,测结构和建筑物的安全状况,并绘制出位移时态曲线图。

如下图所示:3、观测数据当天填入规定的记录表格,并提供即时报告给业主、监理单位。

基坑挖土施工开始后,每一周提供基坑开挖一周监测阶段总结报告,具体内容包括一周时间内所有监测项目的发展情况,内力或变形最大值以及最大值位置。

监测过程中如测量值大于控制值时,应及时通知建设、监理、单位以便采取应急补救措施。

4、基坑监测结束后提交监测报告,其内容包括工程概况、工程地质条件、遵循的标准文件及技术要求、测试目的与内容、测试仪器及测试方法、资料整理及成果分析、结论及建议等。

九、监测质量保证措施为保证量测数据的真实可靠及连续性,特制定以下各项措施:(1)监测组与业主、监理、施工班组各方密切配合,及时向各方反映情况和问题,并提供有关切实可靠的数据记录。

(2)根据监测到的数据不断完善监测实施方案和相应的测点埋设保护措施,并将其纳入工程的施工进度控制计划中。

(3)设专人进行量测,采用相同的观测路线和观测方法,以保证数据资料的连续性。

(4)量测仪器采用专人使用、专人保养、定期送检。

(5)量测设备在使用前已经检校合格。

(6)各监测项目在监测过程中严格遵守相应的实施细则。

(7)量测数据的存储、计算、管理均采用计算机系统进行。

(8)各量测项目从设备的管理、使用及资料的整理均设专人负责。

(9)建立监测复核制度,确保监控数据的真实可靠性。

相关文档
最新文档