子集全集补集
高一数学必修1-子集、全集、补集-课件

高一数学集合子集、全集、补集要点一子集、真子集[重点]在上一节中,我们用约定的字母标记了一些特殊的集合,在这些特殊的集合中,我们会发现这样一个现象:正整数集中的所有元素都在自然数集中;自然数集中的所有元素都在整数集中;整数集中的所有元素都在有理数集中;有利数集中的所有元素都在实数集中.其实,上述各集合之间是一种集合见得包含关系;可以用子集的概念来表示这种关系.1.子集(1)定义:如果集合A的任意一个元素都是集合B的元素(若a∈A则a∈B),那么集合A成为集合B的子集,记作A B或B A,读作“集合A包含于集合B”或“集合B包含于集合A” .(2)举例:例如,{4,5} Z,{4,5} Q,Z Q,Q R.A B可以用图1-2-1来表示.(3)理解子集的定义要注意以下四点:①“A是B的子集”的含义是集合A中的任何一个元素都是集合B中的元素,既由x∈A,能推出x ∈B,例如{-1,1} {-1,0,1,2}.②任何一个集合是它本身的子集,即对于任何一个集合A,它的任何一个元素都是属于集合A本身,记作A A.③我们规定,空集是任何集合的子集,即对于任何一个集合A,有 A.④在子集的定义中,不能理解为子集A是B中的“部分元素”所组成的集合.因为若A= ,则A中不含任何元素;若A=B,则A中含有B中的所有元素,但此时都说集合A是集合B的子集.以上②③点告诉我们,在邱某一个集合时,不要漏掉空集和它的本身两种特殊情况.(4)例题:例1设集合A={1,3,a },B={1,a 2-a +1},且A B,求a的值.解:∵A B,∴a 2-a +1=3或a 2-a +1=a,由a 2-a +1=3,得a =2或a =-1;由a 2-a +1=a,得a =1.经检验,当a =1时,集合A、B中元素有重复,与集合元素的互异性矛盾,所以符合题意的a的值为-1,2.2.真子集(1)定义:如果A B ,并且A≠B,那么集合A 称为集合B 的真子集,记作A B 或B A ,读作 “A 真包含于B ”或“B 真包含A ”.(2)举例:{1,2} {1,2,3}.(3)理解子集的定义要注意以下四点: ①空集是任何非空集合的真子集.②对于集合A 、B 、C ,如果A B ,B C ,那么A C.③若A B ,则⎩⎪⎨⎪⎧A=B A B 且B A A ≠B A B .④元素与集合的关系是属于于不属于的关系,分别用符号“∈”和“ ”表示;集合 与集合之间的关系是包含于、不包含于、真包含于、相等的关系,分别用符号“ ”“ ” “ ”和“=”.(4)例题:例2 写出集合{a ,b ,c }的所有子集,并指出其中哪些是真子集,哪些是非空真子集. 解:{a ,b ,c }的所有子集是: ,{a },{b },{c },{a ,b },{a ,c },{b ,c },{a ,b ,c }. 其中除了{a ,b ,c }外,其余7个集合都是它的真子集.除了 ,{a ,b ,c }外,其余6个都是它的非空真子集.练习:1.判断下列命题的正误:(1){2,4,6} {2,3,4,5,6}; (2){菱形} {矩形}; (3){x |x 2+1=0} {0}; (4){(0,1)} {0,1}.解题提示: 根据子集的定义,判断所给的两集合中前一个集合的任何一个元素是否都是后一个集合的元素.解:根据子集的定义,(1)显然正确;(2)中只有正方形才既是菱形,也是矩形,其他 的菱形不是矩形;(3)中集合{ x | x 2+1= 0 }是 ,而 是任何集合的子集;(4)中{(0,1)} 是点集,而{0,1}是数集,元素不同,因此正确的是(1)(3),错误的是(2)(4). 判断两集合之间的子集关系时,主要是看其中一个集合的元素是不是都在另一个集合中. 2.写出集合A ={p ,q ,r ,s }的所有子集.解题提示: 根据集合A 的子集中所含有元素的个数进行分类,分别写出,不要漏掉. 解:集合A 的子集分为5类,即评 点(1) ;(2)含有一个元素的子集:{p },{q },{r },{s };(3)含有两个元素的子集:{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s }; (4)含有三个元素的子集有:{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s }; (5)含有四个元素的子集有:{p ,q ,r ,s }.综上所述:集合A 的子集有 ,{p },{q },{r },{s },{p ,q },{q ,r },{r ,s },{s ,p },{p ,r },{q ,s },{p ,q ,r },{p ,q ,s },{q ,r ,s },{p ,r ,s },{p ,q ,r ,s },共16个.给定一个含有具体元素的集合,写其子集时,应根据子集所含元素的个数进行分类.以下结论可以帮助检验所写子集数的正确性:若一个集合含有m 个元素,则其子集有2m个,真子集有(2m-1)个,非空真子集有(2m-2)个.3.给出下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若 A ,则A≠ .其中正确的序号有____④______.解题提示: 从子集、真子集的概念以及空集的特点入手,逐一进行判断.解析:①错误,空集是任何集合的子集, ;②错误,如空集的子集只有1个;③错误, 不是 的真子集;④正确,∵ 是任何非空集合的真子集.求解与子集、真子集概念有关的题目时,应记住以下结论:(1)空集是任何集合的子 集,即对于任意一个集合A ,有 A.(2)任何一个集合是它本身的子集,即对任何一个集合A ,有A A.4.满足集合{1,2,3} M {1,2,3,4,5}的集合M 的个数是 __2____ .解题提示: 根据所给关系式,利用{1,2,3}是M 的真子集,且M 真包含于{1,2,3,4,5}的关系判断集合M 中的元素个数.解析:依题意,集合M 中除含有1,2,3外至少含有4,5中的一个元素,又M {1,2,3,4,5},∴M={1,2,3,4}或{1,2,3,5}.(1)解答此题应首先根据子集与真子集的概念判断出集合M 中含有元素的可能情况,然后根据集合M 中含有元素的多少进行分类讨论,防止遗漏.(2)若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n } ,则A 的个数为2n -m.若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-1. 若{ a 1,a 2,…,a m } A {a 1,a 2,…,a m ,a m+1,…,a n },则A 的个数为2n -m-2.要点二 补集、全集[重点]评点 评点 评点1.补集设A S ,由S 中不属于A 的所有 元素组成的集合称为S 的子集A 的补集, 记作 S A(读作“A 在S 中的补集”),即S A={ x | x ∈S ,且x A}.C S A 可用图1-2-2中的阴影部分来表示.2.全集. (1)定义:如果集合S 包含我们所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U. (2)举例:例如,在实数范围内讨论集合时,R 便可看做一个全集U ,在自然数范围内讨论集合时,N 便可看做一个全集U.3.理解补集、全集要注意以下两点:(1)对全集概念的理解:全集是相对于所研究的问题而言的一个相对概念,它含有与所研究的问题有关的各个集合的全部元素,因此,全集因研究问题而异.例如在研究数集时,常常把实数集R 看做全集;在立体几何中,三维空间是全集,这是平面是全集的一个子集;而在平面几何中,整个平面可以看做一个全集.(2)求子集A 在全集U 中的补集的方法:从全集U 中去掉所有属于A 的元素,剩下的元素组成的集合即为A 在U 中的补集.如已知U= a ,b ,c ,d ,e ,f ,A= b ,f ,求C U A.该题中显然A U ,从U 中除去子集A 的元素b 、f ,乘下的a 、c 、d 、e 组成的集合即为 U A= a ,c ,d ,e .另外,原题若是无限集,在实数范围内求补集,我们则可以充分利用数轴的直观性来求解.如已知U=R ,A= x x > 3 ,求 U A.用数轴表示如图1-2-3,可知 U A= x x > 3 .4.例题例2 不等式组⎩⎨⎧2x -1>0,3x -6≤0的解集为A ,U=R .试求A 及C U A ,并把它们分别表示在数轴上.解:A= x 2 x -1 > 0且3 x –6 ≤ 0 =122<xx ⎧⎫≤⎨⎬⎩⎭,在数轴上表示如图1-2-4(1). C U A=1,22x x x ⎧⎫≤>⎨⎬⎩⎭或,在数轴上表示如图1-2-4(2).练习5.已知全集U=R ,集合A={ x |1< x ≤6},求C U A.解题提示: 在数轴上标出集合A ,结合补集的定义求解.解:根据补集的定义,在实数集R 中,由所有不属于A 的实数组成的集合,就是C U A ,如图1-2-5,122122结合数轴可知,C U A={ x |1< x ≤6}.涉足与数集有关的补集,求解时一般要利用数轴只管求解,求解时要注意端点值的取舍. 6.已知全集U={不大于5的自然数},A={0,1},B={x |x ∈A ,且x <1},C={x |x -1 A ,且x ∈U}. (1)判断A 、B 的关系; (2)求C U B 、C U C ,并判断其关系.解题提示: 根据题意,先写出全集U ,按所给集合B 、C 的含义,写出B 、C ,并求其补集后求解第(2)题.解:由题意知U={0,1,2,3,4,5},B={0},又集合C 中的元素必须满足以下两 个条件:x ∈U ,x -1 A.若x =0,此时0-1=-1 A ,∴0是C 中的元素; 若x =1,此时1-1=0∈A ,∴1不是C 中的元素; 若x =2,此时2-1=1∈A ,∴2不是C 中的元素;同理可知3,4,5是集合C 中的元素,∴C={0,3,4,5}. (1)∵A={0,1},B={0},∴B A ;(2)C U B={1,2,3,4,5},C U C={1,2},∴C U C C U B.若给定具体的数的集合,判断其两个子集的补集之间的关系时,应先求集合的补集. 7.设全集U={1,2,x 2-2},A={1,x },求C U A.解题提示: 要求C U A ,必须先确定集合A ,实际上就是确定x 的值,从而需要分类讨论. 解:由条件知A U ,∴x ∈U={1,2,x 2-2},又x ≠1,∴x =2或x = x 2-2. 若x =2,则x 2-2=2,此时U={1,2,2},这是与互异性矛盾,舍去. 由x =x 2-2得x 2-x -2=0,解得x =-1或x =2(舍去). 此时U={-1,1,2},A={1,-1},∴C U A={2}.求解此题首先确定参数x 的值,然后确定出U 和A 的具体结果.在求解集合问题时必须密切关注集合元素的特征,并且特别注意互异性,以免产生增根.8.已知A={x |x <5},B={x |x <a },分别求满足下列条件的a 的取值范围:(1)B A ;(2)A B. 解题提示: 紧扣子集、全集、补集的定义,利用数轴,数形结合求出a 范围. 解:(1)因为B A ,B 是A 的子集,如图1-2-6(1),故a ≤5.评点 评点 A Ba5x(2)ABa5x(1)(2)因为A B ,B 是A 的子集,如图1-2-6(2),故a ≥5.9.已知M={x |x = a 2+1,a ∈N *},P={ y | y =b 2- 6b +10,b ∈N},判断集合M 与P 之间的关系. 解法一:集合P 中,y =b 2-6b +10=(b -3)2+1当b =4,5,6,…时,与集合M 中a =1,2,3,…时的值相同,而当b =3时,y =1∈P ,1 M ,∴M P. 解法二:对任意的x 0∈M ,有x 0=a 2 0+1=(a 0+3)2-6(a 0+3)+10∈P(∵a 0∈N *,∴a 0+3∈ N),∴M P ,又b =3时,y =1,∴1∈P.而1<1+ a 2 0+1=(a 0∈N *),∴1 M ,从而M P.10.已知全集U ,集合A={1,3,5,7,9},C U A={2,4,6,8},C U B={1,4,6,8,9},求集合 B.解题提示: 求集合B ,需根据题意先求全集U ,由于集合A 及C U A 已知,因此可用Venn 图来表示所给集合,将A 及C U A 填入即可得U解:借助Veen 图,如图1-2-7.由题意知U={1,2,3,4,5,6,7,8,9}. ∵C U B={1,4,6,8,9} ∴B={2,3,5,7}.求本题中的全集,用Veen 较直观,本题的求解实际上应用了补集的性质C U (C U B)=B.例7 已知A={ x | x <-1或x > 5 },B={ x ∈R | a < x <a + 4 },若A B ,求实数a 的取值范围.解题提示: 注意到B≠ ,将A 在数轴上保释出来,再将B 在数轴上表示出来,使得A B ,即可得a 的取值范围.解:如图-2-6,∵A B ,∴a + 4 ≤-1或a ≥5,∴a ≤-5或a ≥5.本题利用数轴处理一些实数集之间的关系,以形助数直观、形象,体现了数形结合的思想,这在以后的学习中会经常用到,但一定要检验端点值是否能取到,此题的易错点是各端点的取值情况,例8 设{}{}2A=8150B=10,x x x x ax -+=-=,若B A ,求实数a 的值.解题提示: 集合B 是方程ax -1=0的解集,该方程不一定是一次方程,当a =0时,B= ,此时符方法一 数形结合思想 A 1-4a +aBA4a +aB5AA51-评点 方法二 分类讨论思想U A1 3,,5 7 9,,2468评点。
子集,全集和补集

第二课 子集 全集 补集一.概念(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A , 当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A 真包含于B 或B 真包含A(4)子集与真子集符号的方向不同与同义;与B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集ΦA 若A ≠Φ,则Φ A 任何一个集合是它本身的子集A A ⊆ (6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合(7) 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A的补集(或余集),记作A C S ,即C S A=},|{A x S x x ∉∈且(8)、性质:C S (C S A )=A ,C S S=φ,C S φ=S(9)、全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示二、讲解范例:例1(1) 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示 (2) 判断下列写法是否正确 ①Φ⊆A ②Φ A ③A A ⊆ ④A A例2 (1)填空:N___Z, N___Q, R___Z, R___Q , Φ___{0}(2)若A={x∈R|x2-3x-4=0},B={x∈Z||x|<10},则A⊆B正确吗?⊆A,为什么?(3)是否对任意一个集合A,都有A(4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A,高一年级同学组成的集合B,则A、B的关系为. 例3 解不等式x+3<2,并把结果用集合表示出来.例4(1)若S={1,2,3,4,5,6},A={1,3,5},求C S A(2)若A={0},求证:C N A=N*(3)求证:C R Q是无理数集A例5已知全集U=R,集合A={x|1≤2x+1<9},求CU例6 已知S={x|-1≤x+2<8},A={x|-2<1-x≤1},B={x|5<2x-1<11},讨论A与CB的关系S三、练习:1.写出集合{1,2,3}的所有子集1、已知全集U={x|-1<x<9},A={x|1<x<a},若A≠φ,则a的取值范围是()(A)a<9(B)a≤9(C)a≥9(D)1<a≤92、已知全集U,A是U的子集,φ是空集,B=C U A,求C U B,C Uφ,C U U3、设U={梯形},A={等腰梯形},求C U A.4、已知U=R,A={x|x2+3x+2<0}, 求C U A.5、集合U={(x ,y )|x ∈{1,2},y ∈{1,2}} , A={(x ,y )|x ∈N*,y ∈N*,x+y=3},求C U A .6、设全集U (U ≠Φ),已知集合M ,N ,P ,且M=C U N ,N=C U P ,则M 与P 的关系是( )(A)M=C U P , (B )M=P , (C )M ⊇P , (D )M ⊆P .7、设全集U={2,3,322-+a a },A={b,2},A C U ={2b},求实数a 和b 的值.8、⑴写出集合{}1,2的所有子集:⑵写出集合{},,a b c 的所有真子集. (3)猜想若集合A 的元素有n 个,则A 的子集个数为多少?9、给出下面四个关系:①{}10,1,2∈;②{}{}10,1,2∈;③{}{}0,1,20,1,2⊆; ④{}0,1,2⊂∅≠;⑤{}{}2,0,10,1,2=,其中错误关系的序号是 。
子集、全集、补集·典型例题

子集、全集、补集·典型例题子集、全集和补集是集合论中的重要概念,描述了集合之间的包含关系。
在这篇文档中,我们将介绍子集、全集和补集的定义及其相关的典型例题。
子集的定义在集合论中,如果一个集合A中的每个元素都是另一个集合B中的元素,那么集合A就被称为集合B的子集。
记作A ⊆ B。
换句话说,A是B的子集,意味着A中的元素都属于B。
例如,考虑两个集合A = {1, 2, 3} 和 B = {1, 2, 3, 4}。
由于A中的每个元素都属于B,因此可以说A是B的子集。
反之,B不是A的子集,因为B中包含A没有的元素4。
全集的定义全集是指包含了所有可能元素的集合。
在特定的上下文中,全集的确定可能会受到限制。
全集通常用字母U表示。
例如,在一个考虑自然数的集合论问题中,全集可能是所有自然数的集合N = {1, 2, 3, …}。
在实数集上的问题中,全集可能是所有实数的集合R。
补集的定义给定一个集合A,相对于某个全集U,与A中所有元素不同的元素构成的集合被称为A相对于U的补集,记作A’ 或 Ac。
补集中包含了全集U中不属于A的所有元素。
例如,考虑一个全集U = {1, 2, 3, 4, 5} 和一个集合A = {1, 2, 3}。
此时,A相对于U的补集,记作A’ 或 Ac,包含了U中不属于A的元素4和5。
典型例题例题1:已知全集U = {1, 2, 3, 4, 5, 6},集合A = {1, 2, 3},集合B = {3, 4, 5}。
判断以下命题的真假:1.A ⊆ B2.B ⊆ U3.A’ = {4, 5, 6}解答:1.命题1的判断:因为A中的每个元素都属于B,所以A ⊆ B为真。
2.命题2的判断:B中的每个元素都属于U,所以B ⊆ U为真。
3.命题3的判断:A’中包含了全集U中A没有的元素4、5和6,所以A’ = {4, 5, 6}为真。
因此,命题1、2和3都为真。
例题2:已知全集U = {a, b, c, d, e, f},集合A = {a, b, c},集合B = {c, d, e}。
子集、全集、补集

2005.9.4
看下面的例子:
S
A
A={班上所有参加铜管乐队的同学}
B={班上所有参加铜管乐队的同学}
S={全班同学}
那么S、A、B三集合的关系如何?
一、补集的定义
1、补集:一般地,设S是一个集合,A是S 的一个子集(即 A S )。由S中所有 不属于 A的元素组成的集合,叫做S中子 集A的补集(或余集),记作 C S A ,即 C S A = {x | x S , 且x A}
vfg21wiv
大胆了吧?这么一搞要是给别人看到不就要被说三道四了吗?有可能我会被当成色狼被抓去坐牢的。幸好这时没什么人,不然 我刚进来傅家就要被赶出去了。想罢,我坐起来小心翼翼的说道,“姑娘,天这么黑,你是看不见我的模样的。其实,我也没 帅到那种程度了。”“那也是。”她应和道。“还有,你靠着我的脸这么近,不怕被人说闲话吗?”吃亏的可是你啊,我心想。 “你在担心这个啊,我没想过啊。只是听完你讲的话,就好想看你长什么样子,于是就凑前去看了。”她打趣说道,“只可惜 太暗,没看清。”哎,原来她是个想啥就做啥的女孩,不能怪她,谁叫我吹牛皮都吹上天去了,只是她让我的小心脏紧张了好 久,让我的年少情怀被激活了这么一下。想罢,我觉得不能继续和她聊下去了,也不知道会让她又产生什么好奇心然后做出什 么大胆的事情来,虽然我是不介意,但毕竟这是古代,被人发现受罚的肯定是我。于是,我便说道,“好像时间不早了,我要 回去睡觉了。”说罢,我起身转头就走去。那女的听到我这么说了,又对我说了一句,“你住在这屋里吗?我觉得你这人好好 玩,我以后来找你玩吧!”我一听,有点哭笑不得。这女的应该也是个丫鬟,貌似不能随便进入家丁之地吧。但是不知怎地, 心里还是觉得想和她聊聊天的,可能是刚才被那么刺激了一下,想多了解一下她吧。于是,我转身对她说道,“这个,我是这 里的家丁,白天没时间和你玩。只是晚上睡不着会出来院子看看月亮。”哎,我说的好隐晦,不知道她听懂没有。不管了,先 进屋睡觉去吧,“姑娘,时间不早了,你再不去睡觉,明天起不来干活就要挨骂了。”她听后,知道我真的是要进屋睡觉了, 于是也站起来往别处走去。此时月光正照着她的背影,秀长的头发显得格外亮丽。那就是今晚陪我一起无聊扯谈的人吗?不知 怎地,此时的我觉得她的背影,很美。“妹子,别跑,等等哥!”我追着妹子的背影跑着,这背影是多么的美啊,尤其是那秀 发。但是妹子越跑越快,我已经跟不上了。突然,妹子停住了脚步,站在原地。我喜出望外,知道妹子终于懂得哥的心意了。 于是我慢步走前去,右手轻轻搭着妹子的左肩,慢慢地把妹子转向我来“莲,别睡了,是时候起床干活了。”三木一边说着一 边把我弄醒了。我带着浓厚的困意,勉强醒了过来。这时,我看到大伙都在忙着收拾自己的东西,这里还是我们的甲屋一房, 身边的还是一群刚认识的兄弟。原来,我做了一场追逐妹子的梦,那妹子就是昨晚和我一起扯谈的妹子。哎,可能昨晚刺激太 强烈,连做梦都梦到那妹子,只是我真希望能看到妹子长啥样再醒过来啊,心中又是一阵无奈。这时荣哥和华弟走前来,齐声 对我说道,“莲,你赶紧洗漱穿衣吧,傅三大爷
1.2 子集、全集、补集

2.全集与补集 全集与补集
设S是一个集合, A是S的一个子集(即A ⊆ S ), 由S中所有不属于A的元素组成的集合, 叫做 S中子集A的补集(或余集), 记作Cs A, 即
CS A = {x x ∈ S , 且x ∉ A}.
用图形表示为: 用图形表示为 S CSA A
例如,如果 例如 如果S={1,2,3,4,5,6}, A={1,3,5}, 那么 如果 CSA= {2,4,6}
规定:空集是任何集合的子集 规定 空集是任何集合的子集. 空集是任何集合的子集 即对于任何一个集合A 有 即对于任何一个集合 ,有 对于两个集合A与 如果集合 如果集合A的任何一个元 对于两个集合 与B,如果集合 的任何一个元 素都是集合B的元素 同时集合B的任何一个 的元素,同时集合 素都是集合 的元素 同时集合 的任何一个 的元素,就说集合 等于集合 元素都是集合 A的元素 就说集合 等于集合 的元素 就说集合A等于 B,记作 = B. 记作A 记作 (1)对于任何一个集合 , A⊆ A 对于任何一个集合A 对于任何一个集合 . 任何一个集合是它本身的子集. 即任何一个集合是它本身的子集 (2)对于集合A, B, 如果A ⊆ B,同时B ⊆ A,
如果集合S含有我们所要研究的各个集合的 如果集合 含有我们所要研究的各个集合的 全部元素,这个集合就可以看作一个全集,全集 这个集合就可以看作一个全集 全部元素 这个集合就可以看作一个全集 全集 通常用U表示 表示. 通常用 表示 例如,在实数范围内讨论问题时 可以把实数集 例如 在实数范围内讨论问题时,可以把实数集 在实数范围内讨论问题时 R看作全集 那么 有理数集 的补集 UQ是 看作全集U,那么 有理数集Q的补集 看作全集 那么,有理数集 的补集C 是 全体无理数的集合. 全体无理数的集合
子集全集补集的概念

子集全集补集的概念子集,全集,补集,这几个概念听起来就像是数学王国里的几个小怪兽。
咱先来说说子集。
想象你有一盒子的玩具,这一盒子玩具就是一个集合,咱们就叫它大集合A吧。
然后你从这个大盒子里挑出一部分玩具放到另外一个小盒子里,这个小盒子里的玩具就可以看成是大集合A的子集。
比如说,大盒子里有小汽车、小娃娃、积木,你把小汽车和积木放到小盒子里,那这个小盒子里的东西就是大盒子这个集合的子集啦。
子集就像是从一个大家庭里分出来的小家庭,小家庭里的成员肯定都是原来大家庭里的成员,一个不多一个不少。
那全集呢?全集就像是这个玩具世界里最大的那个盒子,所有能想到的玩具都在这个大盒子里。
就好比你把你所有的玩具,不管是在房间各个角落的,还是藏在柜子里的,都一股脑儿地放到一个超级大的盒子里,这个超级大盒子就是全集。
在一个特定的讨论范围里,全集就是包含了所有元素的那个集合。
就像我们说学校里所有的学生,那这个所有学生就构成了一个全集,你找不到一个学校里的学生不在这个集合里。
补集可就更有趣了。
还是说那个大盒子的玩具,你把其中一部分玩具挑出来当成子集了,那剩下在大盒子里但不在这个子集里的玩具就是这个子集的补集。
比如说大盒子里有10个玩具,你挑出3个放在子集里,那剩下的7个就是这个子集的补集。
补集就像是一个影子,有子集这个实体在前面,补集就是背后的那个部分。
我给你讲个故事吧。
有个大果园,园子里有各种各样的水果,这就是全集。
果农把苹果都摘出来放在一个小篮子里,这个小篮子里的苹果就是果园这个全集的一个子集。
那果园里除了苹果之外的其他水果,像香蕉、梨子、橘子之类的,这些水果就构成了这个苹果子集的补集。
再比如说,一个班级里所有的同学是全集。
喜欢数学的同学组成一个子集,那这个班级里不喜欢数学的同学就是这个喜欢数学同学子集的补集。
这就像把同学们分成了两拨,一拨是喜欢数学的,另一拨就是不喜欢数学的,这两拨加起来就是全班同学这个全集。
子集、全集和补集的概念其实在生活里到处都有影子。
子集、全集、补集
好的,以下是子集、全集、补集知识点的教案:子集知识点子集的定义子集的符号表示空集和全集子集的性质例题和解答给出两个集合=1,2,3和=1,2,3,4,判断是否是的子集解答:由于中的所有元素都属于,因此是的子集给出两个集合=,,和=,,判断是否是的子集解答:由于中的所有元素都属于,因此是的子集给出两个集合=1,2,3和=4,5,6,判断是否是的子集解答:由于中的元素都不属于,因此不是的子集全集和空集知识点全集的定义空集的定义全集和空集的符号表示全集和空集的性质例题和解答给出一个集合=1,2,3,求的全集解答:在这个问题中,全集是指包含所有元素的集合。
因此,的全集可以是所有正整数的集合,即$U={1,2,3,4,5,...}$给出一个集合=,,,求的空集解答:在这个问题中,空集是指不包含任何元素的集合。
因此,的空集为${}$给出一个集合=1,2,3,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。
因此,的补集为$C'={x|x\notin C}$因为是由1,2,3组成的集合,所以的补集为$C'={x|x\notin{1,2,3}}={x|x\in\mathbb{Z},x\leq0\text{或}x\geq4}$补集知识点补集的定义补集的符号表示补集的性质例题和解答给出一个集合=1,2,3,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。
因此,的补集为$A'={x|x\notin A}$因为是由1,2,3组成的集合,所以的补集为$A'={x|x\in\mathbb{Z},x\leq0\text{或}x\geq4}$给出一个集合=,,,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。
因此,的补集为$B'={x|x\notin B}$因为是由,,组成的集合,所以的补集为$B'={x|x\notin{a,b,c}}$给出一个集合=1,2,3,求的补集的补集解答:在这个问题中,补集的补集是指原集合。
子集全集补集典型例题
子集全集补集典型例题子集、全集、补集是集合论中的重要概念,理解和掌握它们对于解决集合相关的问题至关重要。
下面通过一些典型例题来深入探讨这些概念。
例 1:已知集合 A ={1, 2, 3, 4, 5},集合 B ={1, 2, 3},判断集合 B 是否为集合 A 的子集。
解:因为集合 B 中的所有元素 1、2、3 都在集合 A 中,所以集合 B 是集合 A 的子集。
这里要明确子集的定义,如果集合 B 的所有元素都是集合 A 的元素,那么集合 B 就是集合 A 的子集。
例 2:设全集 U ={1, 2, 3, 4, 5, 6, 7, 8, 9},集合 A ={1, 2, 3, 4},求集合 A 的补集。
解:全集 U 中不属于集合 A 的元素为 5、6、7、8、9,所以集合 A 的补集为{5, 6, 7, 8, 9}。
补集的概念就是在给定的全集中,除去某个集合中的元素,剩下的元素所组成的集合。
例 3:集合 M ={x | x < 5},集合 N ={x | x > 2},全集 U= R,求集合 M 的补集和集合 N 的补集。
解:集合 M 的补集是{x |x ≥ 5},集合 N 的补集是{x |x ≤ 2}。
对于这种用不等式表示集合的情况,要注意理解实数轴上的范围来确定补集。
例 4:已知集合 A ={x |-2 < x < 3},集合 B ={x | 1 < x < 5},全集 U = R,求(∁UA)∩(∁UB)。
解:∁UA ={x |x ≤ -2 或x ≥ 3},∁UB ={x |x ≤ 1 或x ≥ 5}所以(∁UA)∩(∁UB)={x |x ≤ -2 或x ≥ 5}这道题需要先分别求出两个集合的补集,然后再求交集。
例 5:集合 P ={(x, y)| x + y = 2},集合 Q ={(x, y)|x y = 4},全集 U 为平面直角坐标系中所有点组成的集合,求∁UP 和∁UQ。
解:对于集合 P,解方程组{x + y = 2}可得 y = 2 x,所以集合 P 表示直线 y = 2 x 上的点。
必修1,1.12子集 全集,补集
1.1.2子集、全集、补集[自学目标]1.了解集合之间包含关系的意义.2.理解子集、真子集的概念.3.了解全集的意义,理解补集的概念. [知识要点]1.子集的概念:如果集合A 中的任意一个元素都是集合B 中的元素(若,则B ∈),那么称集合A 为集合B 的子集(subset ),记作B A ⊆或A B ⊇B A⊆还可以用Venn 图表示. 我们规定:A ∅⊆.即空集是任何集合的子集.根据子集的定义,容易得到:⑴任何一个集合是它本身的子集,即A A ⊆.⑵子集具有传递性,即若B A ⊆且B C ⊆,则A C ⊆.2.真子集:如果B A ⊆且A B ≠,这时集合A 称为集合B 的真子集(proper subset ). 记作:A B⑴规定:空集是任何非空集合的真子集. ⑵如果A B, B C ,那么A C3.两个集合相等:如果B A ⊆与B A ⊆同时成立,那么,A B 中的元素是一样的,即A B =. 4.全集:如果集合S 包含有我们所要研究的各个集合,这时S 可以看作一个全集(Universal set ),全集通常记作U. 5.补集:设A S ⊆,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集 (complementary set ), 记作:S A ð(读作A 在S 中的补集),即{,}.S A x x S x A =∈∉且ð补集的Venn 图表示:[预习自测]例1.判断以下关系是否正确: ⑴{}{}a a ⊆;⑵{}{}1,2,33,2,1=;⑶{}0∅⊆; ⑷{}00∈;⑸{}0∅∈;⑹{}0∅=;例2.设{}13,A x x x Z =-<<∈,写出A 的所有子集.例 3.已知集合{},,2M a a d a d =++,{}2,,N a aq aq =,其中0a ≠且M N =,求q 和d的值(用a 表示).例4.设全集{}22,3,23U a a =+-,{}21,2A a =-,{}5U C A =,求实数a 的值.例5.已知{}3A x x =<,{}B x x a =<. ⑴若B A ⊆,求a 的取值范围; ⑵若A B ⊆,求a 的取值范围;⑶若R C A R C B ,求a 的取值范围.[课内练习]1. 下列关系中正确的个数为( )①0∈{0},②Φ{0},③{0,1}⊆{(0,1)},④{(a ,b )}={(b ,a )}A )1 (B )2 (C )3 (D )42.集合{}8,6,4,2的真子集的个数是( )(A )16 (B)15 (C)14 (D) 133.集合{}正方形=A ,{}矩形=B ,{}平行四边形=C ,{}梯形=D ,则下面包含关系中不正确的是( )(A )B A ⊆ (B) C B ⊆ (C) D C ⊆ (D) C A ⊆4.若集合 ,则_____=b .5.已知M={x| -2≤x ≤5}, N={x| a+1≤x ≤2a -1}. (Ⅰ)若M ⊆N ,求实数a 的取值范围; (Ⅱ)若M ⊇N ,求实数a 的取值范围.[归纳反思]1. 这节课我们学习了集合之间包含关系及补集的概念,重点理解子集、真子集,补集的概念,注意空集与全集的相关知识,学会数轴表示数集.2. 深刻理解用集合语言叙述的数学命题,并能准确地把它翻译成相关的代数语言或几何语言,抓住集合语言向文字语言或图形语言转化是打开解题大门的钥匙,解决集合问题时要注意充分运用数轴和韦恩图,发挥数形结合的思想方法的巨大威力。
1.2.2子集、全集、补集————全集、补集
1.2.2 子集、全集、补集——全集、补集教学目标教学知识点1、 了解全集的意义.2、 理解补集的概念.教学重点补集的概念.教学难点补集的有关运算.教学方法通过引入实例,对实例的分析,发现寻找其一般结果,归纳基普遍规律. 教学过程一、 复习回顾1、 集合的子集、真子集如何寻求?其个数分别是多少?2、 两个集合相等应满足的条件是什么?3、 关于空集:二、 新课讲授事物都是相对的,集合中的部分元素与集合之间关系就是部分与整体的关系. 回答下列问题例:A={班上所有参加足球队同学}B={班上没有参加足球队同学} S={全班同学}那么S 、A 、B 三集合关系如何? 集合B 就是集合S 中除去集合A 之后余 下来的集合.即图中阴影部分.1、 补集一般地,设S 是一个集合,A 是S 的一个子集(即A ⊆S ),由S 中所有不属于A 元素组成的集合,叫做S 中集合A 的补集(或余集).记作C S A ,即C S A={x | }2、 全集如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,记作U.注意:(1)φU C = ;(2)φU C = ;(3)U C U = ;(4)=)(A C C U U ;解决某些数学问题时,就要以把实数集看作是全集U ,那么有理数集Q 的补集C U Q 就是全体无理数的集合.举例如下,请同学们思考其结果.(1)若S={2,3,4},A={4,3},则C S A=_________.(2)若S={三角形},A={锐角三角形},则C S A=_________.(3)若S={1,2,4,8},A=φ,则C S A=_________.(4)若U={1,3,a 2+2 a +1},A={1,3},则C u A={0},则a =_______.(5)已知全集为实数R ,M={x|x+3>0},则M C R 为( )A. {x|x>-3}B. {x|x ≥-3}C. {x|x<-3}D. {x|x ≤-3}(6)A={x| 0.5<x ≤2},则C u A=_________.三、 课堂练习:课本P 9,4; P 10,3,4四、合作探究:1、设U = {x|x ≤10且x ∈N}, A = {x|x ∈U,x 为质数},B = {x|x ∈U,x 为奇数},求C U A , C U B2、设S 为全集,集合M S 集合N M,则下列关系正确的是( )A 、C S M ⊇ C S NB 、M ⊆C S NC 、C S M ⊆ C S ND 、M ⊇ C S N3、设全集U=R ,A={x| x>3 },B={x | 2x+a<0 },B C R A,求实数a 的取值范围.五、教学后记:。