子集、全集、补集
子集,全集和补集

第二课 子集 全集 补集一.概念(1)子集:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A 记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A , 当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B(3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A 真包含于B 或B 真包含A(4)子集与真子集符号的方向不同与同义;与B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A 空集是任何非空集合的真子集ΦA 若A ≠Φ,则Φ A 任何一个集合是它本身的子集A A ⊆ (6)易混符号①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0的集合,Φ是不含任何元素的集合(7) 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A 的元素组成的集合,叫做S 中子集A的补集(或余集),记作A C S ,即C S A=},|{A x S x x ∉∈且(8)、性质:C S (C S A )=A ,C S S=φ,C S φ=S(9)、全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示二、讲解范例:例1(1) 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示 (2) 判断下列写法是否正确 ①Φ⊆A ②Φ A ③A A ⊆ ④A A例2 (1)填空:N___Z, N___Q, R___Z, R___Q , Φ___{0}(2)若A={x∈R|x2-3x-4=0},B={x∈Z||x|<10},则A⊆B正确吗?⊆A,为什么?(3)是否对任意一个集合A,都有A(4)集合{a,b}的子集有那些?(5)高一(1)班同学组成的集合A,高一年级同学组成的集合B,则A、B的关系为. 例3 解不等式x+3<2,并把结果用集合表示出来.例4(1)若S={1,2,3,4,5,6},A={1,3,5},求C S A(2)若A={0},求证:C N A=N*(3)求证:C R Q是无理数集A例5已知全集U=R,集合A={x|1≤2x+1<9},求CU例6 已知S={x|-1≤x+2<8},A={x|-2<1-x≤1},B={x|5<2x-1<11},讨论A与CB的关系S三、练习:1.写出集合{1,2,3}的所有子集1、已知全集U={x|-1<x<9},A={x|1<x<a},若A≠φ,则a的取值范围是()(A)a<9(B)a≤9(C)a≥9(D)1<a≤92、已知全集U,A是U的子集,φ是空集,B=C U A,求C U B,C Uφ,C U U3、设U={梯形},A={等腰梯形},求C U A.4、已知U=R,A={x|x2+3x+2<0}, 求C U A.5、集合U={(x ,y )|x ∈{1,2},y ∈{1,2}} , A={(x ,y )|x ∈N*,y ∈N*,x+y=3},求C U A .6、设全集U (U ≠Φ),已知集合M ,N ,P ,且M=C U N ,N=C U P ,则M 与P 的关系是( )(A)M=C U P , (B )M=P , (C )M ⊇P , (D )M ⊆P .7、设全集U={2,3,322-+a a },A={b,2},A C U ={2b},求实数a 和b 的值.8、⑴写出集合{}1,2的所有子集:⑵写出集合{},,a b c 的所有真子集. (3)猜想若集合A 的元素有n 个,则A 的子集个数为多少?9、给出下面四个关系:①{}10,1,2∈;②{}{}10,1,2∈;③{}{}0,1,20,1,2⊆; ④{}0,1,2⊂∅≠;⑤{}{}2,0,10,1,2=,其中错误关系的序号是 。
子集、全集、补集·典型例题

子集、全集、补集·典型例题子集、全集和补集是集合论中的重要概念,描述了集合之间的包含关系。
在这篇文档中,我们将介绍子集、全集和补集的定义及其相关的典型例题。
子集的定义在集合论中,如果一个集合A中的每个元素都是另一个集合B中的元素,那么集合A就被称为集合B的子集。
记作A ⊆ B。
换句话说,A是B的子集,意味着A中的元素都属于B。
例如,考虑两个集合A = {1, 2, 3} 和 B = {1, 2, 3, 4}。
由于A中的每个元素都属于B,因此可以说A是B的子集。
反之,B不是A的子集,因为B中包含A没有的元素4。
全集的定义全集是指包含了所有可能元素的集合。
在特定的上下文中,全集的确定可能会受到限制。
全集通常用字母U表示。
例如,在一个考虑自然数的集合论问题中,全集可能是所有自然数的集合N = {1, 2, 3, …}。
在实数集上的问题中,全集可能是所有实数的集合R。
补集的定义给定一个集合A,相对于某个全集U,与A中所有元素不同的元素构成的集合被称为A相对于U的补集,记作A’ 或 Ac。
补集中包含了全集U中不属于A的所有元素。
例如,考虑一个全集U = {1, 2, 3, 4, 5} 和一个集合A = {1, 2, 3}。
此时,A相对于U的补集,记作A’ 或 Ac,包含了U中不属于A的元素4和5。
典型例题例题1:已知全集U = {1, 2, 3, 4, 5, 6},集合A = {1, 2, 3},集合B = {3, 4, 5}。
判断以下命题的真假:1.A ⊆ B2.B ⊆ U3.A’ = {4, 5, 6}解答:1.命题1的判断:因为A中的每个元素都属于B,所以A ⊆ B为真。
2.命题2的判断:B中的每个元素都属于U,所以B ⊆ U为真。
3.命题3的判断:A’中包含了全集U中A没有的元素4、5和6,所以A’ = {4, 5, 6}为真。
因此,命题1、2和3都为真。
例题2:已知全集U = {a, b, c, d, e, f},集合A = {a, b, c},集合B = {c, d, e}。
子集、全集、补集

2005.9.4
看下面的例子:
S
A
A={班上所有参加铜管乐队的同学}
B={班上所有参加铜管乐队的同学}
S={全班同学}
那么S、A、B三集合的关系如何?
一、补集的定义
1、补集:一般地,设S是一个集合,A是S 的一个子集(即 A S )。由S中所有 不属于 A的元素组成的集合,叫做S中子 集A的补集(或余集),记作 C S A ,即 C S A = {x | x S , 且x A}
vfg21wiv
大胆了吧?这么一搞要是给别人看到不就要被说三道四了吗?有可能我会被当成色狼被抓去坐牢的。幸好这时没什么人,不然 我刚进来傅家就要被赶出去了。想罢,我坐起来小心翼翼的说道,“姑娘,天这么黑,你是看不见我的模样的。其实,我也没 帅到那种程度了。”“那也是。”她应和道。“还有,你靠着我的脸这么近,不怕被人说闲话吗?”吃亏的可是你啊,我心想。 “你在担心这个啊,我没想过啊。只是听完你讲的话,就好想看你长什么样子,于是就凑前去看了。”她打趣说道,“只可惜 太暗,没看清。”哎,原来她是个想啥就做啥的女孩,不能怪她,谁叫我吹牛皮都吹上天去了,只是她让我的小心脏紧张了好 久,让我的年少情怀被激活了这么一下。想罢,我觉得不能继续和她聊下去了,也不知道会让她又产生什么好奇心然后做出什 么大胆的事情来,虽然我是不介意,但毕竟这是古代,被人发现受罚的肯定是我。于是,我便说道,“好像时间不早了,我要 回去睡觉了。”说罢,我起身转头就走去。那女的听到我这么说了,又对我说了一句,“你住在这屋里吗?我觉得你这人好好 玩,我以后来找你玩吧!”我一听,有点哭笑不得。这女的应该也是个丫鬟,貌似不能随便进入家丁之地吧。但是不知怎地, 心里还是觉得想和她聊聊天的,可能是刚才被那么刺激了一下,想多了解一下她吧。于是,我转身对她说道,“这个,我是这 里的家丁,白天没时间和你玩。只是晚上睡不着会出来院子看看月亮。”哎,我说的好隐晦,不知道她听懂没有。不管了,先 进屋睡觉去吧,“姑娘,时间不早了,你再不去睡觉,明天起不来干活就要挨骂了。”她听后,知道我真的是要进屋睡觉了, 于是也站起来往别处走去。此时月光正照着她的背影,秀长的头发显得格外亮丽。那就是今晚陪我一起无聊扯谈的人吗?不知 怎地,此时的我觉得她的背影,很美。“妹子,别跑,等等哥!”我追着妹子的背影跑着,这背影是多么的美啊,尤其是那秀 发。但是妹子越跑越快,我已经跟不上了。突然,妹子停住了脚步,站在原地。我喜出望外,知道妹子终于懂得哥的心意了。 于是我慢步走前去,右手轻轻搭着妹子的左肩,慢慢地把妹子转向我来“莲,别睡了,是时候起床干活了。”三木一边说着一 边把我弄醒了。我带着浓厚的困意,勉强醒了过来。这时,我看到大伙都在忙着收拾自己的东西,这里还是我们的甲屋一房, 身边的还是一群刚认识的兄弟。原来,我做了一场追逐妹子的梦,那妹子就是昨晚和我一起扯谈的妹子。哎,可能昨晚刺激太 强烈,连做梦都梦到那妹子,只是我真希望能看到妹子长啥样再醒过来啊,心中又是一阵无奈。这时荣哥和华弟走前来,齐声 对我说道,“莲,你赶紧洗漱穿衣吧,傅三大爷
1.2 子集、全集、补集

2.全集与补集 全集与补集
设S是一个集合, A是S的一个子集(即A ⊆ S ), 由S中所有不属于A的元素组成的集合, 叫做 S中子集A的补集(或余集), 记作Cs A, 即
CS A = {x x ∈ S , 且x ∉ A}.
用图形表示为: 用图形表示为 S CSA A
例如,如果 例如 如果S={1,2,3,4,5,6}, A={1,3,5}, 那么 如果 CSA= {2,4,6}
规定:空集是任何集合的子集 规定 空集是任何集合的子集. 空集是任何集合的子集 即对于任何一个集合A 有 即对于任何一个集合 ,有 对于两个集合A与 如果集合 如果集合A的任何一个元 对于两个集合 与B,如果集合 的任何一个元 素都是集合B的元素 同时集合B的任何一个 的元素,同时集合 素都是集合 的元素 同时集合 的任何一个 的元素,就说集合 等于集合 元素都是集合 A的元素 就说集合 等于集合 的元素 就说集合A等于 B,记作 = B. 记作A 记作 (1)对于任何一个集合 , A⊆ A 对于任何一个集合A 对于任何一个集合 . 任何一个集合是它本身的子集. 即任何一个集合是它本身的子集 (2)对于集合A, B, 如果A ⊆ B,同时B ⊆ A,
如果集合S含有我们所要研究的各个集合的 如果集合 含有我们所要研究的各个集合的 全部元素,这个集合就可以看作一个全集,全集 这个集合就可以看作一个全集 全部元素 这个集合就可以看作一个全集 全集 通常用U表示 表示. 通常用 表示 例如,在实数范围内讨论问题时 可以把实数集 例如 在实数范围内讨论问题时,可以把实数集 在实数范围内讨论问题时 R看作全集 那么 有理数集 的补集 UQ是 看作全集U,那么 有理数集Q的补集 看作全集 那么,有理数集 的补集C 是 全体无理数的集合. 全体无理数的集合
子集全集补集的概念

子集全集补集的概念子集,全集,补集,这几个概念听起来就像是数学王国里的几个小怪兽。
咱先来说说子集。
想象你有一盒子的玩具,这一盒子玩具就是一个集合,咱们就叫它大集合A吧。
然后你从这个大盒子里挑出一部分玩具放到另外一个小盒子里,这个小盒子里的玩具就可以看成是大集合A的子集。
比如说,大盒子里有小汽车、小娃娃、积木,你把小汽车和积木放到小盒子里,那这个小盒子里的东西就是大盒子这个集合的子集啦。
子集就像是从一个大家庭里分出来的小家庭,小家庭里的成员肯定都是原来大家庭里的成员,一个不多一个不少。
那全集呢?全集就像是这个玩具世界里最大的那个盒子,所有能想到的玩具都在这个大盒子里。
就好比你把你所有的玩具,不管是在房间各个角落的,还是藏在柜子里的,都一股脑儿地放到一个超级大的盒子里,这个超级大盒子就是全集。
在一个特定的讨论范围里,全集就是包含了所有元素的那个集合。
就像我们说学校里所有的学生,那这个所有学生就构成了一个全集,你找不到一个学校里的学生不在这个集合里。
补集可就更有趣了。
还是说那个大盒子的玩具,你把其中一部分玩具挑出来当成子集了,那剩下在大盒子里但不在这个子集里的玩具就是这个子集的补集。
比如说大盒子里有10个玩具,你挑出3个放在子集里,那剩下的7个就是这个子集的补集。
补集就像是一个影子,有子集这个实体在前面,补集就是背后的那个部分。
我给你讲个故事吧。
有个大果园,园子里有各种各样的水果,这就是全集。
果农把苹果都摘出来放在一个小篮子里,这个小篮子里的苹果就是果园这个全集的一个子集。
那果园里除了苹果之外的其他水果,像香蕉、梨子、橘子之类的,这些水果就构成了这个苹果子集的补集。
再比如说,一个班级里所有的同学是全集。
喜欢数学的同学组成一个子集,那这个班级里不喜欢数学的同学就是这个喜欢数学同学子集的补集。
这就像把同学们分成了两拨,一拨是喜欢数学的,另一拨就是不喜欢数学的,这两拨加起来就是全班同学这个全集。
子集、全集和补集的概念其实在生活里到处都有影子。
子集、全集、补集(教案)

子集、全集、补集[知识要点]1.子集的概念:如果集合A中的任意一个元素都是集合B),那么称集合A为集合B的子集(subset),记作或,.还可以用Venn图表示.我们规定:.即空集是任何集合的子集.根据子集的定义,容易得到:⑴任何一个集合是它本身的子集,即.⑵子集具有传递性,即若且,则.2.真子集:如果且,这时集合A称为集合B的真子集(proper subset).记作:A B⑵定:空集是任何非空集合的真子集.⑵如果A B, B,那么3.两个集合相等:如果与同时成立,那么中的元素是一样的,即.4.全集:如果集合S包含有我们所要研究的各个集合,这时S可以看作一个全集(Universal set),全集通常记作U.5.补集:设,由S中不属于A的所有元素组成的集合称为S的子集A的补集(complementary set), 记作:(读作A在S中的补集),即补集的Venn图表示:[简单练习]1.判断以下关系是否正确:⑴;⑵;⑶;⑷;⑸;⑹;2.下列关系中正确的个数为()①0∈{0},②Φ{0},③{0,1}{(0,1)},④{(a,b)}={(b,a)}A)1 (B)2 (C)3 (D)43.集合的真子集的个数是()(A)16 (B)15 (C)14 (D) 13a B∈BA⊆AB⊇BA⊆A∅⊆A A⊆BA⊆B C⊆A C⊆BA⊆A B≠C A CBA⊆B A⊆,A B A B=A S⊆Að{,}.SA x x S x A=∈∉且ð{}{}a a⊆{}{}1,2,33,2,1={}0∅⊆{}00∈{}0∅∈{}0∅=⊆{}8,6,4,24.集合,,,,则下面包含关系中不正确的是( )(A ) (B) (C) (D)5.已知M={x| -2≤x ≤5}, N={x| a+1≤x ≤2a -1}. (Ⅰ)若M N ,求实数a 的取值范围; (Ⅱ)若M N ,求实数a 的取值范围.6.设,写出的所有子集.[巩固提高]1.四个关系式:①;②0;③;④.其中表述正确的是( ) A .①,②B .①,③C . ①,④D . ②,④2.若U={x ∣x 是三角形},P={ x ∣x 是直角三角形},则( )A .{x ∣x 是直角三角形}B .{x ∣x 是锐角三角形}C .{x ∣x 是钝角三角形}D .{x ∣x 是锐角三角形或钝角三角形}3.下列四个命题:①;②空集没有子集;③任何一个集合必有两个子集;④空集是任何一个集合的子集.其中正确的有( )A.0个 B.1个 C.2个 D.3个4.满足关系 的集合A的个数是( ) A.5 B.6 C.7 D.8{}正方形=A {}矩形=B {}平行四边形=C {}梯形=D B A ⊆C B ⊆D C ⊆C A ⊆⊆⊇{}13,A x x x Z =-<<∈A ∅}0{⊂}0{∈}0{∈∅}0{=∅=P CU{}0∅={}1,2A ⊆{}1,2,3,4,55.设A=,B={x ∣1< x <6,x ,则 .6.U={x ∣,则U 的所有子集是 .7.已知集合,≥,且满足,求实数的取值范围.8.设全集,,,求实数的值.9.已知,. (1)若,求的取值范围; (2),求的取值范围;(3) ,求的取值范围.10.已知M={x ∣x },N={x ∣x } (1)若M ,求得取值范围; (2)若M ,求得取值范围; (3)若,求得取值范围.{}5,x x x N ≤∈}N ∈=B CA},01582R x x x ∈=+-}5|{<<=x a x A x x B |{=}2B A ⊆a {}22,3,23U a a =+-{}21,2A a =-{}5U C A =a {}3A x x =<{}B x x a =<B A ⊆a A B ⊆a RC A R C B a ,0>R x ∈,a >R x ∈N ⊆a N ⊇a M CRN CRa。
子集、全集、补集

好的,以下是子集、全集、补集知识点的教案:子集知识点子集的定义子集的符号表示空集和全集子集的性质例题和解答给出两个集合=1,2,3和=1,2,3,4,判断是否是的子集解答:由于中的所有元素都属于,因此是的子集给出两个集合=,,和=,,判断是否是的子集解答:由于中的所有元素都属于,因此是的子集给出两个集合=1,2,3和=4,5,6,判断是否是的子集解答:由于中的元素都不属于,因此不是的子集全集和空集知识点全集的定义空集的定义全集和空集的符号表示全集和空集的性质例题和解答给出一个集合=1,2,3,求的全集解答:在这个问题中,全集是指包含所有元素的集合。
因此,的全集可以是所有正整数的集合,即$U={1,2,3,4,5,...}$给出一个集合=,,,求的空集解答:在这个问题中,空集是指不包含任何元素的集合。
因此,的空集为${}$给出一个集合=1,2,3,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。
因此,的补集为$C'={x|x\notin C}$因为是由1,2,3组成的集合,所以的补集为$C'={x|x\notin{1,2,3}}={x|x\in\mathbb{Z},x\leq0\text{或}x\geq4}$补集知识点补集的定义补集的符号表示补集的性质例题和解答给出一个集合=1,2,3,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。
因此,的补集为$A'={x|x\notin A}$因为是由1,2,3组成的集合,所以的补集为$A'={x|x\in\mathbb{Z},x\leq0\text{或}x\geq4}$给出一个集合=,,,求的补集解答:在这个问题中,补集是指不属于原集合的元素的集合。
因此,的补集为$B'={x|x\notin B}$因为是由,,组成的集合,所以的补集为$B'={x|x\notin{a,b,c}}$给出一个集合=1,2,3,求的补集的补集解答:在这个问题中,补集的补集是指原集合。
第2讲 子集、全集、补集

BAU第2讲 子集、全集、补集知识归纳和梳理:子集的定义:如果集合A 中的元素都是集合B 的元素,则称A 是B 的子集,记作B A ⊆,读作A 包含于B;或者记作A B ⊇,读作B 包含A. 子集的性质:(1)A ⊆∅, A A ⊆(2)若一个集合中含有n 个元素,则它的子集个数有n2个真子集的定义:如果A 是B 的子集,并且集合B 中至少有一个元素不属于集合A,则称A 是B 的真子集,记作A ⊂≠B,读作A 真包含于B. 真子集的性质: (1)∅⊂≠A (其中A 是任意的非空集), (2)若一个集合中含有n 个元素,则它的真子集个数有12-n 个子集、真子集(B A ⊆, A ⊂≠B )关系用韦恩图表示为:全集的定义:在研究集合间的关系时,如果有一个集合包含了我们研究范围内所有集合的全部元素,此时可以把它看成全集,全集一般用字母U 表示。
补集的定义:由全集U 中的元素,去掉它的一个子集A 中的元素,剩下的元素构成的集合叫做全集U 中子集A 的补集,记作A C U .补集性质:(1)U C U =φ (2) φ=U C U (3) A A C C U U =)( (4)B A ⊆,则B C A C U U ⊇【经典例题】例1. (1){}a A ,3,1=,{}1,12+-=a a B ,B A ⊇,求a 。
(2)已知{}01|=+=ax x A ,{}056|2=--=x x x B ,B A ⊆,求a 。
(3)已知{}04|2=+=x x x A ,{}01)1(2|22=-+++=a x a x x B ,若A B ⊆,求a 。
经典练习:已知{}52|≤≤-=x x A ,{}121|-≤≤+=m x m x B ,若A B ⊆,求m 的范围例2.设全集{}32,3,22-+=a a U ,{}2,12-=a A 。
(1) 若{}5=A C U ,求实数a 的值(2) 若A B ⊆,集合{}3=B C A ,求集合B 与集合U 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(6)A={x|x为方程x2-x&集合A、B之间有什么联系?能否用图形来刻画其关系?
3。意义建构
1.如何运用数学语言准确表达这种联系?
2.如何刻画与解决事例(6)?
(2)S=R,A={x|x≤0,xR},B={x|x0}
(3)S={x|x为地球人},A={x|x为中国人},B={x|x为外国人}
(2)练习P9第1、3题。
5学生活动
(1)回到上述的例2,每组的三个集合中还有那些关系?
(2)对于(1)若A={1},那么S中除去元素1得到的集合是什么?
(3)对于(1)若S={-3,-2,-1,0,1,2},A={-1,1},那么S中除去A元素得到的集合是什么?
(4)对于(3)若A={x|x是黄种人},那么S中除去黄种人得到的集合是什么?
6..数学理论
(1)设AS,有S中不属于A的所有元素组成的集合称为S的子集A的补集。记CUA
(2)CUA={x|xS,且xA}
(3)Venn图
CUA
思考CU(CUA)=?
A
(5)如果集合S包含我们所要研究的各个集合,这时S可以看成一个全集,通常记做U
第二课时子集、全集、补集
教学目标
1.使学生理解集合之间包含与相等的含义;
2.理解子集与真子集的概念与意义,知道空集是任何集合的子集;
3.了解全集的含义,理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
4.学会利用Venn图解决问题。
教学重点
子集、全集、补集概念的简单运用
教学难点
全集概念的理解
7.数学运用
(1)例题
例题1已知U={x|x是实数},Q={x|x是有理数},求CUQ
例题2已知U={x|x是三角形},A={x|x是直角三角形},求CUA
若U={x|x是三角形},A={x|x是等边三角形},求CUA
不等式组 的解集为A,U=R,试求A及CUA,并把它们分别表示在数轴上。
若改变U={x|x<5},试求A及CUA.
(2)练习
P9.4,P10.2
8.回顾反思
(1)子集,真子集,补集等概念.
(2)定义的文字语言、符号语言、图形语言表示。
(3)思考题:P8
9.课外作业
P10。1、3、4、5
教学过程
1.问题情境
我们知道两个数a、b之间有大、小、相等三种关系,那么两个集合A、B之间有什么关系呢?
2.学生活动
让我们先从具体事例研究开始。
(1)A={-1,1}B={-1,0,1,2};
(2)A=N,B=R;
(3)A={x|x为江苏人},B={x|x为中国人}
(4)A={x|x是两条边相等的三角形},B={x|是等腰三角形}
(4)如果AB且A≠B,这时集合A称为集合B的真子集。
(5)空集是任何非空集合的真子集。
5数学运用
(1)例题1
写出集合{a,b}的所有子集.
解:集合{a,b}的所有子集是,{a},{b},{a,b}
其中真子集是,{a},{b}
例题2
下列各组的三个集合中,哪两个集合之间具有包含关系?
(1)S={-2,-1,1,2},A={-1,1},B={-2,2};
3.在实数中有“若a≧b,且b≧a”,那么在集合中AB与BA能否同时成立?
4.在集合A,B中(1)、(2)、(3)、(5)与(4)有什么不同?
4.数学理论
(1)如果集合A的任意一个元素都是集合B的元素(若aA,则aB),则称集合A是集合B的子集。记AB或BA。
(2)规定空集是任何集合的子集。
(3)若AB且AB,则有A=B.