高中物理人造卫星变轨问题专题

合集下载

高中物理人造卫星变轨问题专题

高中物理人造卫星变轨问题专题

人造卫星变轨问题专题(一) 人造卫星基本原理绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供..轨道半径r 确定后;与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GMa =也都是唯一确定的..如果卫星的质量是确定的;那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的..一旦卫星发生了变轨;即轨道半径r 发生变化;上述所有物理量都将随之变化E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒;其增减由该过程的能量转换情况决定..同理;只要上述七个物理量之一发生变化;另外六个也必将随之变化..(二) 常涉及的人造卫星的两种变轨问题1. 渐变由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化逐渐增大或逐渐减小;由于半径变化缓慢;卫星每一周的运动仍可以看做是匀速圆周运动..解决此类问题;首先要判断这种变轨是离心还是向心;即轨道半径r 是增大还是减小;然后再判断卫星的其他相关物理量如何变化..1) 人造卫星绕地球做匀速圆周运动;无论轨道多高;都会受到稀薄大气的阻力作用..如果不及时进行轨道维持即通过启动星上小型发动机;将化学能转化为机械能;保持卫星应具有的状态;卫星就会自动变轨;偏离原来的圆周轨道;从而引起各个物理量的变化..这种变轨的起因是阻力..阻力对卫星做负功;使卫星速度减小;卫星所需要的向心力r mv 2减小了;而万有引力2r GMm的大小没有变;因此卫星将做向心运动;即轨道半径r 将减小..由基本原理中的结论可知:卫星线速度v 将增大;周期T 将减小;向心加速度a 将增大;动能E k 将增大;势能E p 将减小;有部分机械能转化为内能摩擦生热;卫星机械能E 机将减小..为什么卫星克服阻力做功;动能反而增加了呢 这是因为一旦轨道半径减小;在卫星克服阻力做功的同时;万有引力即重力将对卫星做正功..而且万有引力做的正功远大于克服空气阻力做的功;外力对卫星做的总功是正的;因此卫星动能增加..根据E机=E k+E p;该过程重力势能的减少总是大于动能的增加..2)有一种宇宙学的理论认为在漫长的宇宙演化过程中;引力常量G是逐渐减小的..如果这个结论正确;那么环绕星球将发生离心现象;即环绕星球到中心星球间的距离r将逐渐增大;环绕星球的线速度v将减小;周期T将增大;向心加速度a将减小;动能E k将减小;势能E p将增大..2.突变短时间启动飞行器上的发动机;使飞行器轨道发生突变;使其进入预定的轨道..1)发射同步卫星时;可以先将卫星发送到近地轨道Ⅰ;使其绕地球做匀速圆周运动;速率为v1;变轨时在P点点火加速;短时间内将速率由v1增加到v2;使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q时的速率为v3;此时进行第二次点火加速;在短时间内将速率由v3增加到v4;使卫星进入同步轨道Ⅲ;绕地球做匀速圆周运动..例题1. 某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用;人造卫星到地心的距离从r 1慢慢变到r 2;用E Kl .E K2分别表示卫星在这两个轨道上的动能;则A.r 1<r 2;E K1<E K2B.r 1>r 2;E K1<E K2C.r 1<r 2;E K1>E K2D.r 1>r 2;E K1>E K22. 1飞船在椭圆轨道1上运行;Q 为近地点;P 为远地点;当飞船运动到P 点时点火;使飞船沿圆轨道2运行;A .飞船在QB .飞船在PC .飞船在轨道1上P的速度小于在轨道2上P 的速度D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度 2假设由于飞船的特殊需要;美国的一艘原来在圆轨道运行的飞船前往与之对接;则飞船一定是A .从较低轨道上加速B .从较高轨道上加速C .从同一轨道上加速D .从任意轨道上加速3. 航天飞机在完成对哈勃太间望远镜的维修任务后;在A 点短时A间开动小型发动机进行变轨;从圆形轨道Ⅰ进入椭圆道Ⅱ;B 为轨道Ⅱ上的一点;如图所示..下列说法中正确的有A.在轨道Ⅱ上经过A的机械能大于经过B的机械能B.在A点短时间开动发动机后航天飞机的动能增大了C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度4.我国成功实施了“神舟”七号的载入航天飞行;并实现了航天员首次出舱..飞船先沿椭圆轨道飞行;后在远地点343千米处点火加速;把飞船运行轨道由椭圆轨道变成离地面高度为343千米的圆轨道;在此圆轨道上飞船运行周期约为90分钟..下列正确的是A.飞船变轨前后的机械能相等B.飞船在圆轨道上时航天员出舱前后都处于超重状态C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度1.B2.BC A3.C4.C。

高中物理卫星变轨问题

高中物理卫星变轨问题

作业:
C 卫星在轨道1上经过Q点时的加速度
大于它在轨道2上经过Q点时的加速度 D 卫星在轨道2上经过P点时的加速度 等于它在轨道3上经过P点时的加速度
p
1 23 Q
❖ 卫星变轨
练习如图所示;a b c是在地球大气层外圆形轨道上运行的3颗
人造卫星;下列说法正确的是:
A b c的线速度大小相等;且大于a的线速度 B b c的向心加速度大小相等;且大于a的向心加速度 C c加速可追上同一轨道上的b;b减速可等到同一轨道上的c D a卫星由于某种原因;轨道半径缓慢减小;其线速度将变小
卫星在圆轨 道运行速度
V1
R
1
2
V2
mv12 r
G
Mm r2
F引
θ>900
v 减小
卫星变轨原理
r
v3
F引
椭圆mv32 r
GMr2m
使



v4


v3






运 动
使卫星 v4, 加m 使 速 r42v到 GM r2 m
卫 星 的 回 收
❖ 卫星变轨
卫星如何变轨 以发射同步卫星为例;先进入一
专题 万有引力定律的应用
1 卫星比较问题 2 卫星变轨 问题
两颗人造地球卫星;都在圆形轨道上运行;它 们的质量相等;轨道半径不同;比较它们的向心加 速度an 线速度v 角速度ω 周期T
地球
计算中心天体的质量M 密度ρ
1某星体m围绕中心天体M做圆 周运动的周期为T;圆周运动
的轨道半径为r
M
4 2r3
练习发射地球同步卫星时;先将卫星发射至近地圆轨道1;然后

2025高考物理 卫星变轨、对接、追及相遇问题

2025高考物理 卫星变轨、对接、追及相遇问题

2025高考物理 卫星变轨、对接、追及相遇问题一、单选题1.如图是一次卫星发射过程。

先将卫星发射进入绕地球的较低圆形轨道Ⅰ,然后在a 点使卫星进入椭圆形的转移轨道Ⅰ,再在椭圆轨道的远地点b 使卫星进入同步轨道Ⅰ,则下列说法正确的是( )A .卫星在轨道Ⅰ的速率小于卫星在轨道Ⅰ的速率B .卫星在轨道Ⅰ的周期大于卫星在轨道Ⅰ的周期C .卫星运动到轨道Ⅰ的b 点时的加速度与轨道Ⅰ的b 点加速度相等D .卫星运动到轨道Ⅰ的a 点时,需减速才可进入轨道Ⅰ二、多选题2.在空间运行的某人造地球卫星由于空气阻力的作用运行轨道将发生变化,则卫星运行轨道发生变化后,下列说法正确的是( )A .卫星的线速度将减小B .卫星的角速度将变大C .卫星的向心加速度将变大D .卫星的运行周期将要变大三、单选题3.物体在万有引力场中具有的势能叫做引力势能。

取两物体相距无穷远时的引力势能为零,一个质量为m 0的质点距离质量为M 0的引力源中心为r 0时。

其引力势能00p 0M m E G r =-(式中G 为引力常数)。

现有一颗质量为m 的人造地球卫星以圆形轨道环绕地球飞行,由于受高空稀薄空气的阻力作用,卫星的圆轨道半径从r 1缓慢减小到r 2.已知地球的半径为R,地球表面的重力加速度为g ,此过程中卫星克服空气阻力做功为( )A .12112mgR r r ⎛⎫- ⎪⎝⎭B .21112mgR r r ⎛⎫- ⎪⎝⎭C .221112mgR r r ⎛⎫- ⎪⎝⎭D .212112mgR r r ⎛⎫- ⎪⎝⎭四、多选题4.嫦娥工程分为三期,简称“绕、落、回”三步走。

嫦娥探测器在历经主动减速、快速调整、悬停避障、缓速下降等阶段后,着陆器、上升器组合体最后稳稳地落于月面。

如图所示为我国嫦娥工程第二阶段的登月探测器“嫦娥三号”卫星的飞行轨道示意图。

则A .登月探测器在环月轨道2(椭圆轨道)上绕行时P 点处速度最大B .登月探测器在环月轨道1(圆轨道)的速度比月球上的第一宇宙速度小C .登月探测器在接近月面过程喷火以减速,该过程机械能增加D .登月探测器在环月轨道1上P 点的速度大于在环月轨道2上P 点的速度五、单选题5.2022年5月,我国成功完成了天舟四号货运飞船与空间站的对接,形成的组合体在地球引力作用下绕地球做圆周运动,周期约90分钟。

宇宙航行专题:人造卫星、变轨、对接问题

宇宙航行专题:人造卫星、变轨、对接问题

卫星变轨原理
卫星在圆轨 道运行速度 V1
R
1
F引
θ>900
3.072 km s
≈3.0km/s
确定值
地球同步卫星特点
1、定周期: T = 24 h
2、定轨道:地球同步卫星在通过赤道的平面 上运行, 3、定高度:离开地面的高度h为定值,约为地 球轨道半径的6倍。 h = 36000千米 4、定速率:所有同步卫星环绕 地球的速度(V) 都相同。 V = 3千米/秒
提示: 典型的三个圆运动:随地圆周运动、近地圆周运动、同步圆 周运动,应从运动和力两个角度区别和联系三个圆周运动
马鞍山中加双语学校 高一物理组
三、极地轨道和倾斜轨道卫星
极地卫星
倾斜轨道卫星
北极
北极
南极
南极
四、卫星变轨问题
卫星变轨问题
卫星变轨原理
V
m
A
F引
F引<F向
F引>F向
M
在A点万有引力相同
马鞍山中加双语学校 高一物理组
下午9时18分28秒
引导探究一
运 行 半径r 运 行 周期T
线速度 的计算
地球赤道上的物体,近地卫星,同步卫星
近地卫星 同步卫星
地球赤道上的 物体
R地
R地 85分钟(1.4h)
GM v r近
v
6.6R地
24h v=ωR地
=GMm/R地2-mg
24h
GM r同 r同
向心力 2R ma=mω 的计算
ma= GMm/r近2
ma=mω2r =GMm/r同2
向心加 速度之 比
a同/a物 a同/a近=r近 2/r同2 =r同/ R =1/(6.6)2 =6.6/1 马鞍山中加双语学校 高一物理组

高一物理必修二第六章 专题强化4 卫星变轨问题和双星问题---学生版

高一物理必修二第六章 专题强化4   卫星变轨问题和双星问题---学生版

专题强化4 卫星变轨问题和双星问题--学生版[学习目标] 1.会分析卫星的变轨问题,知道卫星变轨的原因和变轨前后卫星速度的变化.2.掌握双星运动的特点,会分析求解双星运动的周期和角速度.一、人造卫星的变轨问题1.变轨问题概述(1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mm r 2=m v 2r. (2)变轨运行卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.②当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁.2.实例分析(1)飞船对接问题飞船与在轨空间站对接先使飞船位于较低轨道上,然后让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道飞船完成对接(如图1甲所示).注意:若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙.图1(2)同步卫星的发射、变轨问题如图2所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMm r 2=m v 2r,进入同步圆轨道3做圆周运动.图2例1 (2019·通许县实验中学期末)如图3所示为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( )图3A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度针对训练 (多选)(2019·定远育才实验学校期末)航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图4所示.关于航天飞机的运动,下列说法中正确的有( )图4A.在轨道Ⅱ上经过A 的速度小于经过B 点的速度B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度二、双星或多星问题1.双星模型(1)如图5所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕其连线上的某一固定点做周期相同的匀速圆周运动,通常,我们把这样的两个星球称为“双星”.图5(2)双星问题的特点①两星围绕它们之间连线上的某一点做匀速圆周运动,两星的运行周期、角速度相同. ②两星的向心力大小相等,由它们间的万有引力提供.③两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .(3)双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1,G m 1m 2L2=m 2ω2r 2. 2.多星系统在宇宙中存在类似于“双星”的系统,如“三星”、“四星”等多星系统,在多星系统中:(1)各个星体做圆周运动的周期、角速度相同.(2)某一星体做圆周运动的向心力是由其他星体对它引力的合力提供的.例2 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图6所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,引力常量为G ,求双星的运行轨道半径r 1和r 2及运行周期T .图6例3 宇宙间存在一些离其他恒星较远的三星系统,如图7所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为L ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O做匀速圆周运动,引力常量为G,下列说法正确的是()图7A.每颗星做圆周运动的角速度为Gm L3B.每颗星做圆周运动的加速度与三星的质量无关C.若距离L和每颗星的质量m都变为原来的2倍,则周期变为原来的2倍D.若距离L和每颗星的质量m都变为原来的2倍,则线速度变为原来的4倍1.(卫星变轨问题)(2019·启东中学高一下学期期中)2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热播,影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一系列变轨操作,其逃离过程如图8所示,地球在椭圆轨道Ⅰ上运行到远日点B变轨,进入圆形轨道Ⅱ.在圆形轨道Ⅱ上运行到B点时再次加速变轨,从而最终摆脱太阳束缚.对于该过程,下列说法正确的是()图8A.沿轨道Ⅰ运动至B点时,需向前喷气减速才能进入轨道ⅡB.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期C.沿轨道Ⅰ运行时,在A点的加速度小于在B点的加速度D.在轨道Ⅰ上由A点运行到B点的过程,速度逐渐增大2.(卫星、飞船的对接问题)如图9所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )图9A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室轨道半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室轨道半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接3.(双星问题)冥王星与其附近的另一星体卡戎可视为双星系统,冥王星与星体卡戎的质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( )A.轨道半径约为卡戎的17B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍4.(双星问题)(多选)宇宙中两颗相距很近的恒星常常组成一个双星系统.它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知某双星系统的运转周期为T ,两星到共同圆心的距离分别为R 1和R 2,引力常量为G ,那么下列说法正确的是( )A.这两颗恒星的质量必定相等B.这两颗恒星的质量之和为4π2(R 1+R 2)3GT 2C.这两颗恒星的质量之比m 1∶m 2=R 2∶R 1D.其中必有一颗恒星的质量为4π2R 1(R 1+R 2)2GT 2一、选择题1.(2019·江苏卷)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图1所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G.则()图1A.v1>v2,v1=GM rB.v1>v2,v1>GM rC.v1<v2,v1=GM rD.v1<v2,v1>GM r2.(2019·北京市石景山区一模)两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是()A.质量大的天体线速度较大B.质量小的天体角速度较大C.两个天体的向心力大小一定相等D.两个天体的向心加速度大小一定相等3.(2019·定州中学期末)如图2所示,“嫦娥三号”探测器经轨道Ⅰ到达P点后经过调整速度进入圆轨道Ⅱ,再经过调整速度变轨进入椭圆轨道Ⅲ,最后降落到月球表面上.下列说法正确的是()图2A.“嫦娥三号”在地球上的发射速度大于11.2 km/sB.“嫦娥三号”由轨道Ⅰ经过P 点进入轨道Ⅱ时要加速C.“嫦娥三号”在轨道Ⅲ上经过P 点的速度大于在轨道Ⅱ上经过P 点的速度D.“嫦娥三号”稳定运行时,在轨道Ⅱ上经过P 点的加速度与在轨道Ⅲ上经过P 点的加速度相等4.(多选)如图3所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )图3A.b 、c 的线速度大小相等,且大于a 的线速度B.a 加速可能会追上bC.c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD.a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大5.(2019·杨村一中期末)如图4所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕其连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )图4A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25L D.m 2做圆周运动的半径为25L6.(2019·榆树一中期末)如图5所示,我国发射“神舟十号”飞船时,先将飞船发送到一个椭圆轨道上,其近地点M 距地面200 km ,远地点N 距地面340 km.进入该轨道正常运行时,通过M 、N 点时的速率分别是v 1和v 2,加速度大小分别为a 1和a 2.当某次飞船通过N 点时,地面指挥部发出指令,点燃飞船上的发动机,使飞船在短时间内加速后进入离地面340 km 的圆形轨道,开始绕地球做匀速圆周运动,这时飞船的速率为v 3,加速度大小为a 3,比较飞船在M 、N 、P 三点正常运行时(不包括点火加速阶段)的速率和加速度大小,下列结论正确的是( )图5A.v 1>v 3>v 2,a 1>a 3>a 2B.v 1>v 2>v 3,a 1>a 2=a 3C.v 1>v 2=v 3,a 1>a 2>a 3D.v 1>v 3>v 2,a 1>a 2=a 37.我国未来将建立月球基地,并在绕月轨道上建造空间站.如图6所示,关闭发动机的航天飞机仅在月球引力作用下沿椭圆轨道向月球靠近,并将在椭圆的近月点B 处与空间站对接.已知空间站C 绕月轨道半径为r ,周期为T ,引力常量为G ,月球的半径为R .那么以下选项正确的是( )图6A.月球的质量为4π2r 3GT 2 B.航天飞机到达B 处由椭圆轨道进入空间站圆轨道时必须加速C.航天飞机从A 处到B 处做减速运动D.月球表面的重力加速度为4π2R T 28.(2019·武邑中学调研)某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2之间的距离为r ,已知引力常量为G ,由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT 2B.4π2r 13GT 2C.4π2r 3GT2 D.4π2r 2r 1GT 29.(多选)如图7所示,在嫦娥探月工程中,设月球半径为R ,月球表面的重力加速度为g 0.飞船在半径为4R 的圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的近月点B 时,再次点火进入近月轨道Ⅲ绕月球做圆周运动,忽略月球的自转,则( )图7A.飞船在轨道Ⅲ上的运行速率大于g 0RB.飞船在轨道Ⅰ上的运行速率小于在轨道Ⅱ上B 处的运行速率C.飞船在轨道Ⅰ上的向心加速度小于在轨道Ⅱ上B 处的向心加速度D.飞船在轨道Ⅰ、轨道Ⅲ上运行的周期之比T Ⅰ∶T Ⅲ=4∶110.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做匀速圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时匀速圆周运动的周期为( )A.n 3k 2T B.n 3k T C.n 2k T D.n kT11.(多选)(2019·雅安中学高一下学期期中)国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动,如图8所示,此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的,被吸食星体的质量远大于吸食星体的质量.假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )图8A.它们做圆周运动的万有引力保持不变B.它们做圆周运动的角速度不断变大C.体积较大星体圆周运动轨迹半径变大D.体积较大星体圆周运动的线速度变大12.(2019·扬州中学模拟)进行科学研究有时需要大胆的想象,假设宇宙中存在一些离其他恒星较远的、由质量相等的四颗星组成的四星系统(忽略其他星体对它们的引力作用),这四颗星恰好位于正方形的四个顶点上,并沿外接于正方形的圆形轨道运行,若此正方形边长变为原来的一半,要使此系统依然稳定存在,星体的角速度应变为原来的( )A.1倍B.2倍C.12倍 D.22倍二、非选择题13.中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图9所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,忽略地球的自转,求:图9(1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速?(2)飞船经过椭圆轨道近地点A 时的加速度大小.(3)椭圆轨道远地点B 距地面的高度h 2.14.(2019·厦门一中模拟)如图10所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间距离为L.已知星球A、B的中心和O三.点始终共线,星球A和B分别在O的两侧.引力常量为G(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2.已知地球和月球的质量分别为5.98×1024kg 和7.35×1022 kg.求T2与T1两者平方之比.(计算结果保留四位有效数字)11。

专题六:卫星变轨问题问题的理解及相关问题的解决思路

专题六:卫星变轨问题问题的理解及相关问题的解决思路

P地球 Q 轨道1 轨道2 专题六:卫星变轨问题问题的理解及相关问题的解决思路1.假如一个作匀速圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作匀速圆周运动,则:A.根据公式,可知卫星运动的线速度将增大到原来的2倍。

B.根据公式,可知卫星所需的向心力将减小到原来的。

C.根据公式,可知地球提供的向心力将减小到原来的。

D.根据上述(B)和(C)中给出的公式,可知卫星运动的线速度将减小到原来的。

2. 发射地球同步卫星时,先将卫星发射至近地圆形轨道1,然后经点火使其沿椭圆轨道2运行,最后再次点火将卫星送入同步轨道3。

轨道1、2相切于P 点如图所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是( )A.卫星在轨道3上的运行速率大于轨道1上的速率B.卫星在轨道3上的角速度小于在轨道3上的角速度C.卫星在轨道1上经过Q 点时的加速度大于它在轨道2上经过Q 点时的加速度D.卫星在椭圆轨道2上经过P 点时的加速度等于它在轨道3上经过P 点时的加速度3.某人造地球卫星因受高空稀薄气体的阻力作用,绕地球运转的轨道会慢慢改变.某次测量中卫星的轨道半径为1r ,后来变为2r 且1r >2r 。

以1K E 、2K E 分别表示卫星在这两个轨道的动能.1T 、2T 分别表示卫星在这两个轨道绕地球运动的周期,则有 ( )A. 1K E <2K E 2T <1TB. 1K E <2K E 2T >1TC. 1K E >2K E 2T <1T D .1K E >2K E 2T >1T4.某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫星到地心的距离从r 1慢慢变到r 2,用E Kl .E K2分别表示卫星在这两个轨道上的动能,则(A)r 1<r 2,E K1<E K2 (B)r 1>r 2,E K1<E K2 (C)r 1<r 2,E K1>E K2 (D)r 1>r 2,E K1>E K25.人造飞船首先进入的是距地面高度近地点为200km ,远地点为340km 的的椭圆轨道,在飞行第五圈的时候,飞船从椭圆轨道运行到以远地点为半径的圆行轨道上,如图所示,试处理下面几个问题(地球的半径R=6370km ,g=9.8m/s 2):(1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动到P 点时点火,使飞船沿圆轨道2运行,以下说法正确的是A .飞船在Q 点的万有引力大于该点所需的向心力B .飞船在P 点的万有引力大于该点所需的向心力C .飞船在轨道1上P 的速度小于在轨道2上P 的速度D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度(2)假设由于飞船的特殊需要,美国的一艘原来在圆轨道运行的飞船前往与之对接,则飞船一定是A .从较低轨道上加速B .从较高轨道上加速C .从同一轨道上加速D .从任意轨道上加速6.发射地球同步卫星时,先将卫星发射到近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送人同步圆轨道3。

人教版(2019)必修第二册第七章万有引力与航天 专题 变轨与双星

人教版(2019)必修第二册第七章万有引力与航天 专题 变轨与双星

专题 卫星变轨问题和双星问题班级 姓名 学号一、人造卫星的变轨问题 1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r.(2)变轨运行卫星变轨时,先是线速度v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变迁.②当卫星加速时,卫星所需的向心力F 向=m v 2r增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变迁. 2.实例分析同步卫星的发射、变轨问题如图所示,发射地球同步卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入同步圆轨道3做圆周运动.例1如图为卫星发射过程的示意图,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再一次点火,将卫星送入同步圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点,则当卫星分别在1、2、3轨道上正常运行时,以下说法中正确的是( ) A.卫星在轨道3上的速率大于在轨道1上的速率 B.卫星在轨道3上的周期大于在轨道2上的周期C.卫星在轨道1上经过Q 点时的速率大于它在轨道2上经过Q 点时的速率D.卫星在轨道2上经过P 点时的加速度小于它在轨道3上经过P 点时的加速度针对训练1航天飞机在完成对哈勃空间望远镜的维修任务后,在A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,B 为轨道Ⅱ上的一点,如图4所示.关于航天飞机的运动,下列说法中正确的有( ) A.在轨道Ⅱ上经过A 的速度小于经过B 点的速度 B.在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度 C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D.在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度二、双星问题1.双星模型(1)如图所示,宇宙中有相距较近、质量相差不大的两个星球,它们离其他星球都较远,其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕其连线上的某一固定点做周期相同的匀速圆周运动,通常,我们把这样的两个星球称为“双星”. (2)双星问题的特点①两星围绕它们之间连线上的某一点做匀速圆周运动,两星的运行周期、角速度相同. ②两星的向心力大小相等,由它们间的万有引力提供. ③两星的轨道半径之和等于两星之间的距离,即r 1+r 2=L .(3)双星问题的处理方法:双星间的万有引力提供了它们做圆周运动的向心力,即Gm 1m 2L 2=m 1ω2r 1,G m 1m 2L2=m 2ω2r 2.例2 两个质量不同的天体构成双星系统,它们以二者连线上的某一点为圆心做匀速圆周运动,下列说法正确的是( ) A.质量大的天体线速度较大 B.质量小的天体角速度较大 C.两个天体的向心力大小一定相等 D.两个天体的向心加速度大小一定相等针对训练2 两个靠得很近的天体,离其他天体非常遥远,它们以其连线上某一点O 为圆心各自做匀速圆周运动,两者的距离保持不变,科学家把这样的两个天体称为“双星”,如图所示.已知双星的质量分别为m 1和m 2,它们之间的距离为L ,引力常量为G ,求双星的运行轨道半径r 1和r 2及运行周期T .巩固训练1.2019年春节期间,中国科幻电影里程碑的作品《流浪地球》热播,影片中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一系列变轨操作,其逃离过程如图所示,地球在椭圆轨道 Ⅰ 上运行到远日点B 变轨,进入圆形轨道 Ⅱ.在圆形轨道 Ⅱ 上运行到B 点时再次加速变轨,从而最终摆脱太阳束缚.对于该过程,下列说法正确的是( ) A.沿轨道 Ⅰ 运动至B 点时,需向前喷气减速才能进入轨道 Ⅱ B.沿轨道Ⅰ运行的周期小于沿轨道Ⅱ运行的周期C.沿轨道 Ⅰ 运行时,在A 点的加速度小于在B 点的加速度D.在轨道 Ⅰ 上由A 点运行到B 点的过程,速度逐渐增大2.如图所示,我国发射的“神舟十一号”飞船和“天宫二号”空间实验室于2016年10月19日自动交会对接成功.假设对接前“天宫二号”与“神舟十一号”都围绕地球做匀速圆周运动,为了实现飞船与空间实验室的对接,下列措施可行的是( )A.使飞船与空间实验室在同一轨道上运行,然后飞船加速追上空间实验室实现对接B.使飞船与空间实验室在同一轨道上运行,然后空间实验室减速等待飞船实现对接C.飞船先在比空间实验室轨道半径小的轨道上加速,加速后飞船逐渐靠近空间实验室,两者速度接近时实现对接D.飞船先在比空间实验室轨道半径小的轨道上减速,减速后飞船逐渐靠近空间实验室,两者速度接近时实现对接3.冥王星与其附近的另一星体卡戎可视为双星系统,冥王星与星体卡戎的质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动,由此可知,冥王星绕O 点运动的( ) A.轨道半径约为卡戎的17 B.角速度大小约为卡戎的17C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍4.1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图1所示,设卫星在近地点、远地点的速度分别为v 1、v 2,近地点到地心的距离为r ,地球质量为M ,引力常量为G .则( ) A.v 1>v 2,v 1=GM r B.v 1>v 2,v 1>GMr C.v 1<v 2,v 1=GMr D.v 1<v 2,v 1>GMr5.如图,“嫦娥三号”探测器经轨道 Ⅰ 到达P 点后经过调整速度进入圆轨道 Ⅱ,再经过调整速度变轨进入椭圆轨道 Ⅲ,最后降落到月球表面上.下列说法正确的是( ) A.“嫦娥三号”在地球上的发射速度大于11.2 km/s B.“嫦娥三号”由轨道Ⅰ经过P 点进入轨道Ⅱ时要加速C.“嫦娥三号”在轨道Ⅲ上经过P 点的速度大于在轨道Ⅱ上经过P 点的速度D.“嫦娥三号”稳定运行时,在轨道Ⅱ上经过P 点的加速度与在轨道Ⅲ上经过P 点的加速度相等6.(多选)如图所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A.b 、c 的线速度大小相等,且大于a 的线速度B.a 加速可能会追上bC.c 加速可追上同一轨道上的b ,b 减速可等到同一轨道上的cD.a 卫星由于某种原因,轨道半径缓慢减小,仍做匀速圆周运动,则其线速度将变大 7.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕其连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2,下列说法中正确的是( )A.m 1、m 2做圆周运动的线速度之比为3∶2B.m 1、m 2做圆周运动的角速度之比为3∶2C.m 1做圆周运动的半径为25LD.m 2做圆周运动的半径为25L8.中国自行研制、具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A 、远地点为B 的椭圆轨道上,A 点距地面的高度为h 1,飞船飞行5圈后进行变轨,进入预定圆轨道,如图9所示.设飞船在预定圆轨道上飞行n 圈所用时间为t ,若已知地球表面重力加速度为g ,地球半径为R ,忽略地球的自转,求: (1)飞船在B 点经椭圆轨道进入预定圆轨道时是加速还是减速? (2)飞船经过椭圆轨道近地点A 时的加速度大小. (3)椭圆轨道远地点B 距地面的高度h 2. 参考答案例1 答案 B解析 卫星在圆轨道上做匀速圆周运动时有: G Mmr 2=m v 2r,v =GMr因为r 1<r 3,所以v 1>v 3,A 项错误, 由开普勒第三定律知T 3>T 2,B 项正确;在Q 点从轨道1到轨道2需要做离心运动,故需要加速. 所以在Q 点v 2Q >v 1Q ,C 项错误.在同一点P ,由GMmr 2=ma n 知,卫星在轨道2上经过P 点的加速度等于它在轨道3上经过P点的加速度,D 项错误. 针对训练1答案 ABC解析 在轨道Ⅱ上由A 点运动到B 点,由开普勒第二定律可得经过A 的速度小于经过B 的速度,A 正确;从轨道Ⅰ的A 点进入轨道Ⅱ需减速,使万有引力大于所需要的向心力,做近心运动,所以在轨道Ⅱ上经过A 的速度小于在轨道Ⅰ上经过A 的速度,B 正确;根据开普勒第三定律R 3T 2=k ,椭圆轨道的半长轴小于圆轨道的半径,所以在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,C 正确;在轨道Ⅱ上和在轨道Ⅰ上通过A 点时所受的万有引力相等,根据牛顿第二定律,加速度相等,D 错误. 例2 答案 C解析 双星系统的结构是稳定的,故它们的角速度相等,故B 项错误;两个星球间的万有引力提供向心力,根据牛顿第三定律可知,两个天体的向心力大小相等,而天体质量不一定相等,故两个天体的向心加速度大小不一定相等,故C 项正确,D 错误;根据牛顿第二定律,有:G m 1m 2L 2=m 1ω2r 1=m 2ω2r 2,其中:r 1+r 2=L 故r 1=m 2m 1+m 2L ,r 2=m 1m 1+m 2L ,故v 1v 2=r 1r 2=m 2m 1故质量大的天体线速度较小,故A 错误. 针对训练2答案 Lm 2m 1+m 2 Lm 1m 1+m 24π2L 3G (m 1+m 2)解析 双星间的万有引力提供了各自做圆周运动的向心力,对m 1:Gm 1m 2L 2=m 1r 1ω2, 对m 2:Gm 1m 2L2=m 2r 2ω2,且r 1+r 2=L ,解得r 1=Lm 2m 1+m 2,r 2=Lm 1m 1+m 2.由G m 1m 2L 2=m 1r 14π2T 2及r 1=Lm 2m 1+m 2得周期T =4π2L 3G (m 1+m 2).巩固训练 1.答案 B 2.答案 C解析 飞船在同一轨道上加速追赶空间实验室时,速度增大,所需向心力大于万有引力,飞船将做离心运动,不能实现与空间实验室的对接,选项A 错误;同时,空间实验室在同一轨道上减速等待飞船时,速度减小,所需向心力小于万有引力,空间实验室将做近心运动,也不能实现对接,选项B 错误;当飞船在比空间实验室半径小的轨道上加速时,飞船将做离心运动,逐渐靠近空间实验室,可实现对接,选项C 正确;当飞船在比空间实验室半径小的轨道上减速时,飞船将做近心运动,远离空间实验室,不能实现对接,选项D 错误. 3.答案 A解析 双星系统内的两颗星运动的角速度相等,B 错误.双星的向心力为二者间的万有引力,所以向心力大小相等,D 错误.根据m 1ω2r 1=m 2ω2r 2,得r 1r 2=m 2m 1=17,A 正确.根据v =ωr ,得v 1v 2=r 1r 2=17,C 错误. 4.答案 B解析 根据开普勒第二定律知,v 1>v 2,在近地点画出近地圆轨道,因为过近地点做匀速圆周运动的速度为v =GMr,由于“东方红一号”在椭圆轨道上运动,所以v 1>GMr,故B 正确.5.答案 D6.答案 BD解析 因为b 、c 在同一轨道上运行,故其线速度、加速度大小均相等.又由b 、c 轨道半径大于a 轨道半径,由v =GMr可知,v b =v c <v a ,故选项A 错;当a 加速后,会做离心运动,轨道会变成椭圆,若椭圆与b 所在轨道相切(或相交),且a 、b 同时来到切(或交)点时,a 就追上了b ,故选项B 正确;当c 加速时,c 受的万有引力F <m v c 2r c,故它将偏离原轨道,做离心运动,当b 减速时,b 受的万有引力F >m v b 2r b ,它将偏离原轨道,做近心运动,所以无论如何c 也追不上b ,b 也等不到c ,故选项C 错;对a 卫星,当它的轨道半径缓慢减小时,由v =GMr可知,r 减小时,v 逐渐增大,故选项D 正确. 7.答案 C解析 设双星m 1、m 2距转动中心O 的距离分别为r 1、r 2,双星绕O 点转动的角速度均为ω,据万有引力定律和牛顿第二定律得G m 1m 2L 2=m 1r 1ω2=m 2r 2ω2,又r 1+r 2=L ,m 1∶m 2=3∶2,所以可解得r 1=25L ,r 2=35Lm 1、m 2运动的线速度分别为v 1=r 1ω,v 2=r 2ω, 故v 1∶v 2=r 1∶r 2=2∶3.综上所述,选项C 正确. 8.答案 (1)加速 (2)gR 2(R +h 1)2 (3)3gR 2t 24n 2π2-R 解析 (2)在地球表面有mg =GMmR 2① 根据牛顿第二定律有:G Mm(R +h 1)2=ma A ②由①②式联立解得,飞船经过椭圆轨道近地点A 时的加速度大小为a A =gR 2(R +h 1)2.(3)由万有引力提供向心力,有G Mm (R +h 2)2=m 4π2T 2(R +h 2)③由题意可知,飞船在预定圆轨道上运行的周期为T =tn ④由①③④式联立解得h 2=3gR 2t 24n 2π2-R .。

专题强化训练二 卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题

专题强化训练二 卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题

专题强化训练二:卫星(近地、同步、极地)的宇宙航行运动规律与变轨问题技巧归纳:人造卫星的变轨问题1.变轨问题概述 (1)稳定运行卫星绕天体稳定运行时,万有引力提供了卫星做圆周运动的向心力,即G Mmr 2=m v 2r .(2)变轨运行卫星变轨时,先是线速度大小v 发生变化导致需要的向心力发生变化,进而使轨道半径r 发生变化.①当卫星减速时,卫星所需的向心力F 向=m v 2r 减小,万有引力大于所需的向心力,卫星将做近心运动,向低轨道变轨.②当卫星加速时,卫星所需的向心力F 向=m v 2r 增大,万有引力不足以提供卫星所需的向心力,卫星将做离心运动,向高轨道变轨. 2.实例分析 (1)飞船对接问题①低轨道飞船与高轨道空间站对接时,让飞船合理地加速,使飞船沿椭圆轨道做离心运动,追上高轨道空间站完成对接(如图甲所示).②若飞船和空间站在同一轨道上,飞船加速时无法追上空间站,因为飞船加速时,将做离心运动,从而离开这个轨道.通常先使后面的飞船减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度,如图乙所示.(2)卫星的发射、变轨问题如图发射卫星时,先将卫星发射至近地圆轨道1,在Q 点点火加速做离心运动进入椭圆轨道2,在P 点点火加速,使其满足GMmr 2=m v 2r,进入圆轨道3做圆周运动.一、单选题1.(2022·江苏省江都中学高三开学考试)据报道,一颗来自太阳系外的彗星擦火星而过。

如图所示,设火星绕太阳在圆轨道上运动,运动半径为r ,周期为T 。

该彗星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A 点“擦肩而过”。

已知万有引力常量G ,则( )A.可计算出火星的质量B.可计算出彗星经过A点时受到的引力C.可确定太阳分别对彗星和火星的引力在A点产生的加速度相等D.可确定彗星在A点的速度大小为2r vTπ=2.(2022·云南·昆明一中模拟预测)随着“嫦娥奔月”梦想的实现,我国不断刷新深空探测的“中国高度”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人造卫星变轨问题专题
(一) 人造卫星基本原理
绕地球做匀速圆周运动的人造卫星所需向心力由万有引力提供。

轨道半径r 确定后,与之对应的卫星线速度r GM v =、周期GM r T 32π=、向心加速度2r GM a =也都是唯一确定的。

如果卫星的质量是确定的,那么与轨道半径r 对应的卫星的动能E k 、重力势能E p 和总机械能E 机也是唯一确定的。

一旦卫星发生了变轨,即轨道半径r 发生变化,上述所有物理量都将随之变化(E k 由线速度变化决定、E p 由卫星高度变化决定、E 机不守恒,其增减由该过程的能量转换情况决定)。

同理,只要上述七个物理量之一发生变化,另外六个也必将随之变化。

(二) 常涉及的人造卫星的两种变轨问题
1. 渐变
由于某个因素的影响使原来做匀速圆周运动的卫星的轨道半径发生缓慢的变化(逐渐增大或逐渐减小),由于半径变化缓慢,卫星每一周的运动仍可以看做是匀速圆周运动。

解决此类问题,首先要判断这种变轨是离心还是向心,即轨道半径r 是增大还是减小,然后再判断卫星的其他相关物理量如何变化。

1) 人造卫星绕地球做匀速圆周运动,无论轨道多高,都会受到稀薄大气的阻力作用。

如果不及时进行轨道维持(即通过启动星上小型发动机,将化学能转化为机械能,保持卫星应具有的状态),卫星就会自动变轨,偏离原来的圆周轨道,从而引起各个物理量的变化。

这种变轨的起因是阻力。

阻力对卫星做负功,使卫星速度减小,卫星所需要的向心力r mv 2减小了,而万有引力2r GMm
的大小没有变,因此卫星将
做向心运动,即轨道半径r 将减小。

由基本原理中的结论可知:卫星线速度v 将增大,周期T 将减小,向心加速度a 将增大,动能E k 将增大,势能E p 将减小,有部分机械能转化为内能(摩擦生热),卫星机械能E 机将减小。

为什么卫星克服阻力做功,动能反而增加了呢?这是因为一旦轨道半径减小,
在卫星克服阻力做功的同时,万有引力(即重力)将对卫星做正功。

而且万有引力做的正功远大于克服空气阻力做的功,外力对卫星做的总功是正的,因此卫星动能增加。

根据
E 机=E k +E p ,该过程重力势能的减少总是大于动能的增加。

2) 有一种宇宙学的理论认为在漫长的宇宙演化过程中,引力常量G 是逐渐减小的。

如果这个结论正确,那么环绕星球将发生离心现象,即环绕星球到中心星球间的距离r 将逐渐增大,环绕星球的线速度v 将减小,周期T 将增大,向心加速度a 将减小,动能E k 将减小,势能E p 将增大。

2. 突变 由于技术上的需要,有时要在适当的位置短时间启动飞行器上的发动机,使飞行器轨道发生突变,使其进入预定的轨道。

1) 发射同步卫星时,可以先将卫星发送到近地轨道Ⅰ,使其绕地球做匀速圆周运动,速率为v 1;变轨时在P 点点火加
速,短时间内将速率由v 1增加到v 2,使卫星进入椭圆形的转移轨道Ⅱ;卫星运行到远地点Q 时的速率为v 3;此时进
行第二次点火加速,在短时间内将速率由v 3增加到v 4,使
卫星进入同步轨道Ⅲ,绕地球做匀速圆周运动。

例题
1. 某人造卫星运动的轨道可近似看作是以地心为中心的圆.由于阻力作用,人造卫
星到地心的距离从r 1慢慢变到r 2,用E Kl .E K2分别表示卫星在这两个轨道上的动能,则
A.r 1<r 2,E K1<E K2
B.r 1>r 2,E K1<E K2
C.r 1<r 2,E K1>E K2
D.r 1>r 2,E K1>E K2
2. (1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动到P 点时
点火,使飞船沿圆轨道2运行,以下说法正确的是( )
A .飞船在Q 点的万有引力大于该点所需的向心力
B .飞船在P 点的万有引力大于该点所需的向心力
C .飞船在轨道1上P 的速度小于在轨道2上P 的速度
D .飞船在轨道1上P 的加速度大于在轨道2上P 的加速度
(2)假设由于飞船的特殊需要,美国的一艘原来在圆轨道运行的飞船前往与之对接,则飞船一定是
A .从较低轨道上加速
B .从较高轨道上加速
C.从同一轨道上加速D.从任意轨道上加速
3.航天飞机在完成对哈勃太间望远镜的维修任务后,在A点短时间开动小型发动机
进行变轨,从圆形轨道Ⅰ进入椭圆道Ⅱ,B为轨道Ⅱ上的一点,如图所示。

下列说法中正确的有Array A.在轨道Ⅱ上经过A的机械能大于经过B的机械能
B.在A点短时间开动发动机后航天飞机的动能增大了
A
C.在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D.在轨道Ⅱ上经过A的加速度小于在轨道Ⅰ上经过A的加速度
4.我国成功实施了“神舟”七号的载入航天飞行,并实现了航天员首次出舱。

飞船
先沿椭圆轨道飞行,后在远地点343千米处点火加速,把飞船运行轨道由椭圆轨道变成离地面高度为343千米的圆轨道,在此圆轨道上飞船运行周期约为90分钟。

下列正确的是( )
A.飞船变轨前后的机械能相等
B.飞船在圆轨道上时航天员出舱前后都处于超重状态
C.飞船在此圆轨道上运动的角速度大于同步卫星运动的角速度
D.飞船变轨前通过椭圆轨道远地点时的加速度大于变轨后沿圆轨道运动的加速度
1. B
2.BC A
3. C
4. C
5.
6.
7.
8.
9.
(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)
10.
11.。

相关文档
最新文档