跨钢箱梁斜拉桥施工关键技术
钢箱梁施工技术及控制要点

钢箱梁施工技术及控制要点1. 引言钢箱梁作为大跨度连续桥的一种重要结构形式,在桥梁工程中应用广泛。
这种桥梁具有刚度大、强度高、使用寿命长、施工周期短等诸多优点,因此备受工程师和设计师的青睐。
本文将介绍钢箱梁施工技术及控制要点,包括梁体制造、运输、吊装等方面的技术细节和注意事项。
2. 钢箱梁制造钢箱梁制造是钢箱梁施工的第一步。
在制造过程中,需要考虑到以下要点:2.1 材料的选择钢箱梁的材料一般采用高强度钢材,这种钢材的特点是强度高、耐腐蚀、成本适中。
在选择材料时,需要严格按照设计要求和强度要求进行选择。
2.2 成型工艺钢箱梁的制造成型工艺主要包括切割、焊接、钻孔、抛丸等工序。
在这些成型工艺中,需要用到先进的材料加工设备和技术。
同时,在制造过程中,需要严格按照设计图纸和施工规范进行操作,确保梁体的质量和准确度。
2.3 质检和验收钢箱梁的制造完成后,需要进行质检和验收。
这主要包括外观质量、强度性能、尺寸精度等方面的检测。
只有通过了这些检测,才能确保梁体的质量和使用寿命。
3. 钢箱梁的运输和起吊3.1 运输钢箱梁的运输一般采用大型物流专业公司进行,由于梁体较大,运输过程中需要注意以下问题:•运输车辆的选取和数量要合理,以确保梁体能够安全到达目的地;•梁体需要采取固定措施,避免在运输过程中发生位移和损坏;•运输线路需要提前规划和检查,避免在运输过程中出现交通拥堵、狭窄的道路和桥梁等情况。
3.2 吊装钢箱梁的吊装是钢箱梁施工的关键环节。
在吊装过程中,需要注意以下问题:•预先安排好吊点和吊具,确保吊点和吊具的强度和稳定性;•吊装人员需要经过专业培训和考核,掌握专业技巧和操作要点;•吊装过程需要有专业巡检人员和现场监控人员,随时掌握吊装过程中各项参数的变化。
4. 钢箱梁的防护措施由于钢箱梁在施工和使用过程中都容易受到环境的影响,因此需要采取一系列的防护措施。
这些措施主要包括:•防腐处理:钢箱梁施工完成后,需要对梁体进行防腐处理,以延长其使用寿命;•喷涂防水剂:在使用过程中,需要对钢箱梁进行喷涂防水剂,以防潮湿和腐蚀;•定期检查和维护:定期对钢箱梁进行检查和维护,及时发现并处理存在的问题。
苏通大桥主桥索塔及上部结构关键施工技术-钢箱梁斜拉桥

Ø 塔高; Ø 钢箱梁宽且重; Ø 斜拉索长且重; Ø 单悬臂施工长度大。
6、自然条件特点
Ø 水深、流急、江面宽阔; Ø 大风天气多; Ø 航运繁忙。
中交二航
这些特点要求必须采取 相应的关键施工技术
SUTONG BRIDGE-苏通大桥
中交二航
二、索塔施工及控制技术
SUTONG BRIDGE-苏通大桥
1、钢箱梁安装[3]
1.3 钢箱梁施工关键技术
中交二航
中跨合龙 施工期悬臂钢箱梁抗风及振动控制 索塔区塔梁临时连接 边跨合龙 临时存梁支架防船撞和临时墩水下防冲刷 大块梁段吊装及调位 钢箱梁制造和安装施工监控
SUTONG BRIDGE-苏通大桥
1.4 各类钢箱梁安装要点[1]
中交二航
1.4.1 辅助跨、边跨大块梁段安装
SUTONG BRIDGE-苏通大桥
中交二航
1、钢箱梁安装
SUTONG BRIDGE-苏通大桥
1、钢箱梁安装[1]
1.1 钢箱梁分类及相关参数
➢ 钢箱梁分为17种类型, 141个梁段;
➢ 标准节段16m、边跨 尾索区标准节段12m;
➢ 标准梁段最大起吊重 量约450t;钢箱梁全 宽41m。
梁高:4.0m
3.4施工期索塔和塔吊的抗风和振动控制[4] 中交二航
■ 索塔施工期间的减振措施
Ø 振动对索塔施工及塔吊操作性不存在较大影响。 Ø 振动频率低,采用主动质量阻尼器并不能有效抑振。
所以索塔及塔吊未采用减振措施
SUTONG BRIDGE-苏通大桥
中交二航
三、上部结构施工及控制技术
1、钢箱梁安装 2、斜拉索安装 3、控制与监测
中交二航
3.3 索塔几何线形监测和控制
大跨度钢箱梁斜拉桥中跨合龙关键技术

大跨度钢箱梁斜拉桥中跨合龙关键技术大跨度钢箱梁斜拉桥由于桥下通航能力强,上部结构架设周期短等特点,越来越多地运用于跨江大桥和跨海大桥的建设中。
据不完全统计,近10年来国内建成的主跨超过400 m 的钢箱梁斜拉桥就超过了15座,还有多座同类型桥梁正在建设中,如武汉青山长江大桥、临港长江大桥等。
国外大跨度钢箱梁斜拉桥中跨合龙通常采用顶推配切合龙,如法国的诺曼底大桥;国内的合龙方法通常有顶推配切合龙和温度配切合龙2 种方式[1-2],如苏通长江大桥采用顶推配切合龙,舟山金塘大桥采用温度配切合龙。
斜拉桥中跨合龙是整座桥梁施工过程中最为关键的环节之一,因此有必要对大桥合龙经验进行总结,了解合龙各流程的控制要点。
1 工程概况以福州琅岐闽江大桥、中朝鸭绿江界河大桥、万州长江三桥及港珠澳大桥青州航道桥4 座主跨超过400 m 的钢箱梁斜拉桥中跨合龙为背景,对大跨度斜拉桥中跨合龙过程中的关键技术进行研究。
表1 中4座大桥均为双塔双索面钢箱梁斜拉桥。
其中前2 座桥采用顶推配切合龙[3],后2 座桥采用温度配切合龙。
表1 4座大跨度钢箱梁斜拉桥基本概况桥名万州长江三桥港珠澳大桥青州航道桥中朝鸭绿江界河大桥福州琅岐闽江大桥合龙时间2018年11月2016年4月2013年11月2013年6月主跨跨径/m 730 458 636 6802 中跨合龙关键技术2.1 确定合龙方案顶推配切合龙的流程主要为:①调整合龙口姿态,在合龙口压重和临时锁定;②对合龙口宽度进行连续观测;③根据连续观测结果对合龙段进行配切;④解除顶推侧塔梁临时锚固,顶推主梁,使合龙口宽度满足施工要求;⑤起吊合龙段,适时吊入合龙口;⑥焊栓合龙段,实现合龙。
温度配切合龙的流程和顶推配切合龙基本一致,只是没有了步骤④。
根据2 种合龙方法的施工流程可以看出:温度配切法的优点在于没有释放塔梁临时锚固的风险,但受环境温度影响很大,如果合龙时实际温度高于预期合龙温度,合龙段可能无法吊入合龙口;实际温度低于预期合龙温度过多,则可能造成焊缝宽度过大而引起焊缝质量问题。
分析大跨超宽钢箱梁斜拉桥边跨施工关键技术

现代物业Modern Property Management– 221 –在钢梁箱的诸多施工工艺中,最常规就是在主塔两侧设置支架,起重船吊装塔区梁段上支架并结合滑移方法完成塔区梁段安装之后,在塔区梁段顶面拼装桥面吊机依次进行主跨、次边跨、边跨钢箱梁的安装,梁段全部由运梁驳船供梁,桥面吊机在桥面对称悬拼施工。
但是该工艺在次边跨、边跨处于浅滩区或陆地上时,就难以实施。
因此,在其施工过程中,必须要通过分析其关键技术来改善这一问题。
1 大跨超宽钢箱梁斜拉桥边跨施工关键技术简析1.1 正式施工前的准备工作。
大跨超宽钢箱梁斜拉桥边跨的施工准备工作主要分为淤泥的处理、基础施工以及安装支架三大部分。
首先,淤泥的处理主要是针对岸滩区而言的。
因为在施工过程中,尤其是在安装钢箱梁吊等构件时,需要用到起重机、起重船等工具,为了有效地减少起重机或起重船的作业压力,就必须要进行淤泥处理,以更好地保证起重机和起重船的吃水深度。
其次,在开展基础施工作业时,最为复杂也最为关键的施工作业是钻孔灌注桩的设置,多采用旋挖钻施工法,这个阶段的施工作业就是要为后期的施工做好基础。
最后,要做的准备工作就是安装支架。
安装支架所需要的工具为吊车,所需的材料主要有钢管桩立柱、各类管具、垫板等。
1.2 钢箱梁吊装。
对于大跨超宽钢箱梁斜拉桥边跨施工来说,最常用的钢箱梁体积较为庞大,重量可达406吨,在安装过程中,最大吊幅达52米,吊高达30米。
根据边跨钢箱梁安装时所呈现出来的这些特性,就必须要选用大型的起重船进行作业,从起梁开始,经过过渡墩的设置,直到最后完成落梁的施工任务都需要借助该起重船的力量。
1.3 钢箱梁的滑移设置。
钢箱梁在安装完成之后,还会需要一定的后续工作,例如滑移设置,这是从桥梁设置的存梁必须要具有足够的时间进行考虑的。
因此,在施工过程中,还需要通过滑移,将钢箱梁移至准确的位置,并进行固定。
选择合适的牵引系统。
在对钢箱梁进行滑移设置时,首先要预设好滑移轨道,从而使钢箱梁的滑移能够沿着正确的方向进行,待钢箱梁落梁之后,需要合适的牵引系统予以配合,常用的牵引系统主要有千斤顶牵引系统和卷扬机牵引系统两种,这两种牵引方式各有利弊,也有其鲜明的特点和优势。
大跨径公路斜拉桥钢箱梁施工技术解析

大跨径公路斜拉桥钢箱梁施工技术解析摘要:分析斜拉桥钢箱梁施工技术及必要性,研究了斜拉桥钢箱梁施工技术,包括钢混合结合施工技术、标准梁段施工技术、中跨合龙段施工技术,以期为大跨径公路斜拉桥钢箱梁施工提供借鉴。
关键词:大跨径公路斜拉桥;钢箱梁;施工技术0引言大跨径公路斜拉桥能有效跨越江河,满足人们的交通需求,且具备较强的欣赏性,在交通建设领域的应用日渐广泛。
大跨径公路斜拉桥钢箱梁施工存在诸多技术难点。
为有效保障大跨径公路斜拉桥施工质量和使用性能,有必要加强对斜拉桥钢箱梁施工技术的灵活应用。
1斜拉桥钢箱梁施工技术及必要性在斜拉桥工程工程施工中,钢箱梁施工占据着至关重要的地位。
钢箱梁施工技术对于斜拉桥工程整体施工质量具有直接影响。
斜拉桥钢箱梁施工存在诸多技术和施工难点,因此,施工人员有必要深入理解和熟练掌握钢箱梁施工技术,并基于大跨径公路斜拉桥工程实际情况,对斜拉桥钢箱梁施工技术进行灵活应用,才能确保斜拉桥钢箱梁施工取得良好的施工效果,并有效保障大跨径斜拉桥的施工质量和使用性能【1】。
2斜拉桥钢箱梁施工技术在大跨径斜拉桥中,钢混结合段占据着重要地位。
通常,可将钢混结合段分为两个梁段,可用N段和N"段表示。
其中,N段为钢箱梁,该段钢箱梁通常选用加劲U肋,其梁端具有多格室结构,其内部填充混凝土。
同时,借助剪力键、钢板二者与混凝土形成的相应摩擦力传递弯矩、轴力以及剪力。
钢隔室腹板通常选用PBL剪力键,从纵向上使混凝土箱梁结合预应力钢束。
调整N梁段使其符合指定位置,对N"梁段开展施工,同时一次性浇筑同边跨箱梁。
对N"梁段以及N梁段相应钢格室共同浇筑高性能混凝土。
在浇筑前,要用搅拌站对混凝土进行拌制,严格遵循相应的施工配合比,用电子秤进行钢纤维称重,将称量误差控制在1%以下。
搅拌结束后,用罐车将混凝土运输至施工现场索塔处,将混凝土泵送入模中,并借助软管实施分层布料,将分层厚度控制在20~30cm范围内。
大跨度超宽桥面无背索斜拉桥钢箱梁施工技术

大跨度超宽桥面无背索斜拉桥钢箱梁施工技术李晓倩张询王显鹤摘要本文结合亚洲第一宽双索面无背索斜拉桥———郑州贾鲁河大桥(跨度为30+120+40m,宽度为55m)施工实践经验,总结了超宽桥面无背索斜拉桥钢箱梁制造、安装施工技术,为公司乃至国内同类桥钢箱梁施工提供借鉴。
关键词超宽桥面斜拉桥钢箱梁施工技术1 引言无背索斜拉桥是近年来逐步发展的一种新桥型,其以良好的力学性能、优美的景观,为桥梁建设中最有竞争力的桥型之一。
世界上第一座大跨度无背索斜拉桥是西班牙的Alamillo桥,跨度200m,建成于1992年,此桥型新颖美观,在艺术上堪称杰作。
目前国内建成的无背索斜拉桥有长沙洪山大桥、长春轻轨伊通河斜拉桥、哈尔滨太阳岛斜拉桥、白鹭大桥等等。
无背索斜拉桥桥塔仅有单侧索,为确保主塔处于良好的受力状态,塔身一般都设计成倾斜的,塔身后倾的巨大重力需通过主梁来平衡。
郑州市贾鲁河大桥为双索面无背索斜拉桥,其中中跨跨中100m为钢箱梁,桥梁宽为55米,其超宽桥面堪为亚洲之最,本桥结构复杂,施工难度大,本文主要介绍主梁中钢箱梁施工技术,为今后超宽桥面无背索斜拉桥钢梁施工提供借鉴。
2 工程概况郑州贾鲁河大桥主桥为(30+120+40)m无背索斜拉桥,桥梁全宽55m,主塔为预应力混凝土斜塔,上塔柱高60m,向后倾斜30°,斜拉索水平倾角24°,全桥共计18根,纵向间距10m,主梁采用钢混纵向组合结构,纵向布置为30+120+40m,其中中跨跨中100m为钢梁,钢梁与混凝土梁结合处设钢混结合过渡GA段,与钢混段连接的节段为GB、GD段,其余节段均为标准段GC,共11个节段。
钢梁为主纵梁、小纵梁、中横梁、小横梁、正交异性钢桥面板及大悬挑组成的钢构架.钢梁断面图如图1所示.3 钢箱梁施工方案3.1 钢箱梁制作方案根据现场安装条件、设计图纸及相关规范要求,本工程钢箱梁纵、横向进行分段,在车间内进行板单元制作,在预拼装场地内进行预拼装,预拼装时将板单元组焊成运输块体,块体采用陆运至安装现场.图1 钢梁断面图3.1。
斜拉桥S形曲线钢箱梁施工工法

斜拉桥S形曲线钢箱梁施工工法斜拉桥S形曲线钢箱梁施工工法一、前言斜拉桥是一种具有较大跨度和美观性的桥梁形式,而S形曲线钢箱梁施工工法是斜拉桥施工中的一种重要工法。
该工法具有独特的特点和广泛的适应范围,为斜拉桥的建设提供了便利。
本文将对斜拉桥S形曲线钢箱梁施工工法进行全面的介绍和分析。
二、工法特点斜拉桥S形曲线钢箱梁施工工法具有以下几个特点:1. 构造简单:采用钢箱梁作为主要承载构件,结构简单,施工方便;2. 经济高效:施工周期短,工程成本相对较低,且具有较长的使用寿命;3. 美观性好:S形曲线设计使桥梁在视觉上更具吸引力,增加了城市景观的美感;4. 高度可控:通过施工工艺的控制,可以实现斜拉桥的高度定位和精确控制。
三、适应范围斜拉桥S形曲线钢箱梁施工工法适用于各类跨度较大的斜拉桥,尤其适合用于城市路桥、高速公路和景观桥等。
该工法可以满足桥梁的设计要求,并能够适应各种地理环境和施工条件。
四、工艺原理施工工法与实际工程之间的联系主要是通过工艺原理来实现的。
在斜拉桥S形曲线钢箱梁施工工法中,主要采取以下技术措施:1. 施工序列规划:根据桥梁的设计要求和施工条件,确定施工的先后顺序和施工过程中的关键节点;2. 合理的支撑系统:采用合理的支撑系统,使施工过程中的力学性能满足设计要求,并保证施工安全;3. 钢箱梁吊装和拼装:采用专用吊装设备对钢箱梁进行吊装和拼装,确保梁体的精确定位和连接质量;4. 预应力张拉:通过预应力张拉技术,使钢箱梁的受力状态得到优化,确保桥梁承载能力和稳定性。
五、施工工艺斜拉桥S形曲线钢箱梁施工工艺包括以下几个施工阶段:1. 基础施工:包括桥墩基础的打桩和浇筑工作,确保桥墩的稳固和承载能力。
2. 墩柱施工:根据设计要求搭设支架,进行桥墩的浇筑和加固。
3. 钢箱梁吊装:采用吊钢丝绳、吊索等专用设备进行钢箱梁的吊装,并保证吊装时的平衡和安全。
4. 钢箱梁拼装:将吊装好的钢箱梁进行拼装,通过螺栓等连接件进行固定和加固。
南京长江二桥628m跨钢箱梁斜拉桥的关键施工工艺(一)

南京长江二桥628m跨钢箱梁斜拉桥的关键施工工艺(一)南京长江二桥是一座跨越长江的斜拉桥,全长6840米,主跨628米,是世界上少数几座跨越长江的大型斜拉桥之一。
其中,628米的主跨是南京市市区内长江上第一座跨径超过600米的桥梁,也是全球少有的跨径超过600米、并且采用钢箱梁斜拉桥结构的桥梁。
在南京长江二桥建设期间,该桥的建设团队采用了一系列关键的工艺施工方案,保证了桥梁的高质量建设。
1. 钢箱梁制段施工工艺作为斜拉桥结构中的重要组成部分,南京长江二桥主跨采用的钢箱梁施工工艺非常关键。
在工程建设初期,团队采用了将吊装机械以及材料、区段装配、焊接设备集中在两侧桥台同时施工的方法,保证了整个施工期的进度与质量。
在该工艺的施工模式下,整个桥梁的各个构件可以分批次完成生产、运输、现场拼装和吊装,最终组装成主跨结构。
2. 钢箱梁吊装工艺钢箱梁的吊装作业是整个工程的一大难点。
在南京长江二桥的施工过程中,工作人员采用了吊装计算机辅助控制系统以及自动制模、自动调模、自动翻模等全套智能化技术。
这些先进技术可以准确地测量各个构件的位置,根据模拟算法,计算出整个工序中的每一个方案,并实时监测吊装过程中可能发生的问题,保证了吊装的安全性和准确度。
3. 斜拉索锚固工艺南京长江二桥斜拉索锚固处于高空和窄缝状态,加上斜拉索的高度和重量巨大,给斜拉索锚固工艺施工带来了极大的难度。
在施工过程中,工程建设团队采用了先制作再吊装的方法,先将斜拉索预制好的桩座吊放到构架上,然后调整斜拉索预应力,最后在现场进行锚固施工。
这种方式不仅保证了施工的安全性,还保证了斜拉索锚固的精度。
4. 桥墩环框制作工艺南京长江二桥的桥墩环框结构相对比较特殊,特别是在自锚式钢筋收敛桩的基础上,设置了变截面的拐角形车架,其施工难度极大。
为此,工程建设团队在施工过程中采取了利用旋转支座,对传统的桥墩模板进行改良,并使用特殊材料进行制作和安装的方法。
这种工艺可以迅速准确及时地实现环境的转换,降低施工难度,并给整个工程的高效进展保驾护航。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
跨钢箱梁斜拉桥施工关键技术探讨摘要:斜拉桥是一种常见桥梁类型,对施工技术要求也十分严格。
文章以斜拉索施工技术为研究主体,详细论述了牵引、挂设与张拉施工三个问题。
关键词:斜拉桥;跨钢箱梁;索塔;关键工艺
一.工程概况
某大桥单塔双索面钢箱梁斜拉桥,跨径组成为
383m+197m+63m+62m,主桥长 705m。
斜拉索采用热挤聚乙烯高强钢丝拉索,标准索距为16m,边跨辅助墩、过渡墩间索距 12m。
索塔高度226.14m,1#索施工高度 95.162m(距桥面),22# 索施工高度153.21m(距桥面),斜拉索施工区段高度 58.048m。
最大索长390.3474m,最大索重28.4t,最小索长 98.5818m,最小索重 4.36t。
斜拉索在梁上的布置如下图所示。
二、斜拉索放索
根据索重、索长及现场施工条件,放索根据不同的施工阶段采用不同的施工方案。
前期采用桥下放索方案,中后期桥面放索方案,具体如下。
1前期:1#~5#索因索长小于150m,索重小于7t,采用桥下放索方案。
用塔吊直接起吊,放索到桥面以上高度,横移斜拉索至施工区段,松钩使斜拉索下落至桥面适当长度后,用桥面卷扬机把斜
拉索拖至待装锚管附近,拖拉距离以满足挂索要求为宜。
放索时拆下螺母,装上环形螺丝,为挂索作准备。
2中期:6#~12#索因索长小于250m,索重大于7t,采取桥面放索方案。
6#索随a5钢箱梁提升上桥,在a5钢箱梁焊接过程中,利用索塔处桥面卷扬机放索到位并完成挂索前的准备工作。
重复以上施工过程。
3后期:13#~22#索采取桥面放索方案。
因索长大于250m,受卷扬机钢丝绳容量的限制,卷扬机必须前移至a6和a11节段箱梁处,a6和a11至索塔区段放索采用吊机带拖车牵引,30t吊机随a3段箱梁上桥。
三.斜拉索挂索
根据索重、索长,索的牵引力以及不同的施工区段分别采用不同的施工方法。
1、前期:1#~3#索施工区段,索长较短,索重较小,可在桥下放索时先卸掉螺母,装上环型牵引螺丝,螺母用塔吊吊上塔顶随工人用吊笼放置工作面。
根据索道管长度,在距张拉端适当地方装上吊索防护夹板。
为了安全可在防护夹板外侧再加装一套加劲夹板,利用塔吊起吊斜拉索至索道管口,塔内卷扬机钢丝绳从索管放下,与锚杯内环型螺丝相连,塔内导向利用工字钢组件施工。
由专人指挥,塔吊起吊和塔内牵引同步进行,直至锚杯伸出索道管,螺母能带上四丝为止。
塔吊提升过程中注意保持塔内牵引绳受力,以免索
体自由弯曲顶住索筒。
2、中期:4#~12#索施工区段,因索重为6t~16t,塔外卷扬机采用走2钢丝绳起吊,为了减少压索的牵引力,此时张拉端需装配钢绞线软牵引,软牵引装置根据牵引力的大小由5~19根1860mpa 的钢绞线、工具夹片、锚板、限位板、软牵引头、p锚组成,在桥面装配好适当的软牵引头,塔内卷扬机钢丝绳与软牵引相连,塔外卷扬机与防护夹板相连,专人指挥,同步提升。
软牵引头上的工具锚板进入撑脚
后插上环型钢板,卸下塔内牵引钢丝绳,装上软牵引张拉设备,软牵引张拉设备采用650t千斤顶和80型油泵。
3、后期:13#~22#索施工区段,由于索较重,塔较高,塔外卷扬机钢丝绳的容量有限,挂索方案如下:塔外卷扬机采用走4钢丝绳,挂索时卷扬机放出全部钢丝绳(滚筒上至少保留四圈钢丝绳),从索道管中放出塔内卷扬机的钢丝绳,在桥面上与软牵引装置捆绑牢固,先用塔吊同步提升到塔外卷扬机吊钩处,用另一台塔吊提升吊笼至塔外卷扬机吊钩处转换钢丝绳,塔吊松钩,塔外卷扬机和塔内卷扬机同步继续提升到索道管临时锚固。
四.斜拉索压索
1、前期:1#、2#索施工用塔吊直接起吊入锚,在锚板上设置施力架,用25t前卡式千斤顶或手拉葫芦牵引到位锚固,由于此处施工空间较小,可以采用先压梁端,后挂塔端的施工方案。
2、后期:3#~22#索施工,先用5t卷扬机牵引锚固端至索道管附近,安装压索钢丝绳,松掉牵引钢丝绳,用吊机起吊卸下螺母,在锚杯内安装环行螺丝,挂上手拉葫芦吊钩,手拉葫芦的后锚点挂在风嘴下钢板的加劲板上或施力架上,起吊锚杯入锚,收紧手拉葫芦,吊机调整索体角度,手拉葫芦收紧,重复以上过程,直至进入索道管,此时方可用压索卷扬机牵引导入,直至锚杯出索道管锚固。
五.斜拉索软牵引
1、前期:3#~15#索施工中为减少压索时的牵引力,塔上入锚需配置相应的软牵引装置,根据牵引力的大小软牵引装置采用1860mpa,长度6~12m、数量5~19根钢绞线配置相应的软牵引头、工具锚、p锚制作,考虑张拉锚杯牵引到位时索力较大,200t连续千斤顶不能满足施工需要,软牵引设备采用650t张拉千斤顶,配备80型张拉油泵的方法施工。
因索塔较高,为控制索塔水平位移,塔内软牵引必须双塔对称同步进行。
2、后期:16#~22#索施工中,为了克服软牵引中钢绞线受力不均匀的缺点,采取提高安全系数,增加安全储备的措施以确保施工安全。
此阶段采用分步牵引法施工,即刚性拉杆与锚杯相联,软牵引装置与刚性拉杆相联,在250t控制张拉力的前提下,先把刚性拉杆牵引出索道管一定长度,以能装牵引千斤顶为宜,卸下软牵引装置,改用硬牵引施工方法,直至斜拉索牵引到位,能戴上螺母为止。
六.斜拉索张拉实例
1、20#~22#索牵引或张拉计算的一些基本参数
20#~22#索在牵引或张拉带好锚固螺帽时计算力的大小时的一些参数见表1所示。
表1
2、梁端带好锚固帽时的牵引力计算
根据表1中的参数和挂索牵引力计算公式柔索长度公式分别算出j20~j22、z20~z22号索在塔端锚头进入索导管一定长度时梁端带好螺帽时的软牵引力(最大值)如表2所示。
注:拉索弹性模量e取1.98×105mpa。
3、计算结果分析
计算牵引力与实际施工牵引力不相符合的原因为:在计算时没有计入温度变化对索长的影响;锚头、螺帽及牵引设备、拉索保护结构的自重的影响;索在塔、梁锚垫板处实际上为非固定点;塔、梁两锚垫板上高差较大,两端的力有差值等。
从表2可以看出,用悬链线简化公式来计算牵引力更为精确些。
4 、j20~j22号索、z20~z22号索梁端风嘴内牵引、张拉施工方案图。
在进行梁端软牵引时经受力计算选择牵引设备及软牵引用钢绞线[1860mpa、φj15.24mm)的根数、长度(根数一般为12根左右,长度10~12m)]。
七、结束语
通过大桥斜拉索的牵引、挂设、张拉技术的施工实践,总结出一套大跨度的斜拉索的安装的方法,为同类桥梁施工提供了了良好的典范。
注:文章内所有公式及图表请用pdf形式查看。