自动控制原理习题及其解答-第三章
自动控制原理第三章课后习题答案

3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
自动控制原理课后习题答案,第三章(西科技大学)

c(t ) 1
1
e
n t
1
2
sin(d t )(t 0)
1.6,
1 2
1.25,n 1.2 1.6 1.25 2, 0.6
n
d
1 2
s% e
1 2
tp 1.96s d
10 K 斜坡输入时: K v lim sG ( s ) s 0 10 1 ess 1 Kv 0.25 得:10 1 2.5K 稳态误差:
与二阶系统的典型形式对比,有
10 1 2n 10K
得:K=1.6,= 0.3,n=4
闭环传递函数为
(2)
则辅助方程的解为
s1.2 1
s3.4 5 j
劳斯表第一列出现了负数,系统不稳定。第一列元素符号变 化一次,可知系统存在一个s右半平面的特征根。系统有一 共轭纯虚根±5 j。
K (0.5s 1) 3-11 已知单位反馈系统的开环传函为G ( s) 2 s(s 1)(0.5s s 1) 试确定系统稳定时的K值范围。
系统稳定的 K 范围为 0 < K < 1.708。
100 3-15 已知单位反馈系统的开环传递函数 G பைடு நூலகம் s ) s ( s 10) 试求:
(1) 位置误差系数Kp,速度误差系数Kv和加速度误差系数Ka; (2) 当参考输入 r(t) = 1+ t + at2 时,系统的稳态误差。
解:(1)
-50
48
0 0 0 8 96 8 48 2 96 8 ( 50 ) 2 0 2 24 50 s 8 8 0 s1 24 96 8 ( 50 ) 112 .7 24 0 s -50
《自动控制原理》习题及解答03

t1
T[ln(
T
T
)
ln
0.9]
则
tr
t2
t1
T
ln
0.9 0.1
2.2T
3) 求 ts
h(ts )
0.95
1
T T
e ts
/T
ts
T[ln
T T
ln 0.05]
T[ln
T T
ln 20]
T[3
ln
T T
]
3-3 一阶系统结构图如题 3-3 图所示。要求系统闭环增益 K 2 ,调节时间 ts 0.4 (s),试确定参数 K1, K 2 的值。
3-15 虚根。
h() lim s (s) 1 2.5
s0
s
已知系统的特征方程,试判别系统的稳定性,并确定在右半 s 平面根的个数及纯
4 1 )(s
1)
T1
T2
T1
T2
1 0.25
C(s) (s)R(s)
4
= C0 C1 C2
s(s 1)(s 4) s s 1 s 4
C0
lim s (s) R(s)
s0
lim
4
s0 (s 1)(s
4)
1
C1
lim (s
s1
1) (s)
R(s)
lim
s0
4 s(s
4)
4 3
考虑初始条件,对微分方程进行拉氏变换
s 2C(s) s c(0) c(0) 5 s C(s) c(0) 62.5C(s) 0 整理得 s 2 5s 62.5 C(s) s 5c(0) c(0)
对单位反馈系统有 e(t) r(t) c(t) , 所以
自动控制原理第3章 习题及解析

自动控制原理(上)习 题3-1 设系统的结构如图3-51所示,试分析参数b 对单位阶跃响应过渡过程的影响。
考察一阶系统未知参数对系统动态响应的影响。
解 由系统的方框图可得系统闭环响应传递函数为/(1)()()111K Ts Ks Kbs T Kb s Ts +Φ==++++ 根据输入信号写出输出函数表达式:111()()()()()11/()K Y s s R s K s T Kb s s s T bK =Φ⋅=⋅=-++++对上式进行拉式反变换有1()(1)t T bKy t K e-+=-当0b >时,系统响应速度变慢;当/0T K b -<<时,系统响应速度变快。
3-2 设用11Ts +描述温度计特性。
现用温度计测量盛在容器内的水温,发现1min 可指示96%的实际水温值。
如果容器水温以0.1/min C ︒的速度呈线性变化,试计算温度计的稳态指示误差。
考察一阶系统的稳态性能分析(I 型系统的,斜坡响应稳态误差)解 由开环传递函数推导出闭环传递函数,进一步得到时间响应函数为:()1t T r y t T e -⎛⎫=- ⎪⎝⎭其中r T 为假设的实际水温,由题意得到:600.961Te-=-推出18.64T =,此时求输入为()0.1r t t =⋅时的稳态误差。
由一阶系统时间响应分析可知,单位斜坡响应的稳态误差为T ,所以稳态指示误差为:lim ()0.1 1.864t e t T →∞==3-3 已知一阶系统的传递函数()10/(0.21)G s s =+今欲采用图3-52所示负反馈的办法将过渡过程时间s t 减小为原来的1/10,并保证总的放大倍数不变,试选择H K 和0K 的值。
解 一阶系统的调节时间s t 与时间常数成正比,则根据要求可知总的传递函数为10()(0.2/101)s s Φ=+由图可知系统的闭环传递函数为000(10()()1()0.211010110()0.21110H HHHK G s K Y s R s K G s s K K K s s K ==++++==Φ++)比较系数有101011011010HHK K K ⎧=⎪+⎨⎪+=⎩ 解得00.9,10H K K ==3-4 已知二阶系统的单位阶跃响应为1.5()1012sin(1.6+53.1t y t e t -=-)试求系统的超调量%σ,峰值时间p t ,上升时间r t 和调节时间s t 。
自动控制原理第三章习题参考答案

Y (s) 1 1 600 ( s) 12 ( ) 2 R( s ) s 10 s 60 s 70 s 600
n 600 24.5
70 70 1.43 2 n 2 24 .5
3-7 简化的飞行控制系统结构图如下,试选择参数K1和Kt, 使系统的ωn=6,ξ=1
S2+5=0
S3 16/3 S2 5
S1 10 S0 25
s1, 2 5 j
有1对纯虚根,系统临界稳定。
3-13单位反馈系统的开环传递函数为:
K (0.5s 1) G( s) 2 s( s 1)(0.5s s 1)
确定使系统稳定的K值范围。 解:闭环传递函数为:
K (0.5s 1) ( s) 0.5s 4 1.5s 3 2 s 2 (1 0.5 K ) s K K ( s 2) 4 s 3s 3 4 s 2 ( 2 K ) s 2 K
K 速度误差系数: P lim sG ( s ) 10
s 0
速度误差:
1 e ss 0.1 Kp
3-11 已知系统的特征方程为:
3s 4 10 s 3 5s 2 s 2 0
用劳斯判据确定系统的稳定性 解:列劳斯列表 S4 3 5 2
S3 10
S2 4.7 S1 -3.26
1
2
S0 2 第1列符号变化两次, 说明有两个正根,系统不稳定。
3-12 已知Βιβλιοθήκη 统的特征方程如下,试求系统在S右半平面的根 数及虚根值。
(1) s 3s 12 s 24 s 32 s 48 0
5 4 3 2
S5 1 S4 3 S3 4 S2 12
自动控制原理第3章习题解答

−
−
ω n (ξ − ξ 2 − 1)
1 10
2
T2 = 1 60
1
ω n (ξ + ξ 2 − 1)
显然: T1 =
T2 =
ξ2 T1 ξ + ξ − 1 = =6= T2 ξ − ξ 2 − 1 1 1− 1− 2 ξ
由 T1 =
1+ 1−
1
解方程得 ξ =
7 2 6
1
ω n (ξ − ξ − 1)
试求系统在单位阶跃输入下的动态性能。 解:闭环传递函数
0.4 s + 1 G( s) 0.4 s + 1 s ( s + 0.6) GB ( s) = = = 2 s + s +1 1 + G ( s ) 1 + 0.4 s + 1 s( s + 0.6) C ( s ) = GB ( s ) R( s ) = 1 0.4 s + 1 0.4 1 = 2 + 2 2 s s + s + 1 s + s + 1 s( s + s + 1) s +1 s + 0.6 0.4 1 1 = 2 + − 2 = − 2 s + s +1 s s + s +1 s s + s +1
3.5 = 7s 0.5
3-6 已知控制系统的单位阶跃响应为
h(t ) = 1 + 0.2e −60t − 1.2e −10t
试确定系统的阻尼比ζ和自然频率ωn。 解: 求拉氏变换得
H (s) =
1 0.2 1.2 ( s + 60)( s + 10) 0.2s ( s + 10) 1.2s ( s + 60) + − = + − s s + 60 s + 10 s ( s + 60)( s + 10) s ( s + 60)( s + 10) s ( s + 60)( s + 10)
自动控制原理习题及其解答第三章

第三章例3-1 系统的结构图如图3-1所示。
已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。
试确定参数K h 和K 0的数值。
解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间t s 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。
例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。
例3-3 设控制系统如图3-2所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
自动控制原理参考答案-第3章

×100% = 35%
⇒ ξ = 0.32 ,又 t p =
π
ωn 1 − ξ 2 2 ⇒ K = ωn = 1.96 ; a = 2ξωn = 0.896
= 2.36 ⇒ ωn = 1.4 ;
题 3-5:某速度给定控制系统的动态结构图如题 3-5 图所示。在给定输入量为
r(t) = 10v 直流电压时要求期望的转速输出量为 c(t) = 1000r / min 。试问:稳态反馈
π ωn 1 − ξ
3
2
=
2 3 π = 0.73 ; 15
(∆ = 0.05) 或 ts = 4
ξωn
= 1.2
ξωn
= 1.6
(∆ = 0.02)
题 3-3: 题 3-3 图所示为一位置随动控制系统的动态结构图,输出量为电动机拖
动对象的旋转角度。将速度量反馈回输入端比较环节后构成负反馈内环,速度反 馈系数为τ。试计算:
胡尔维茨行列式 D = 0 5 0 1
10 0 6
0 − 10 10
0 0 0
D2 = 30 D3 = −300 D4 = −1800
0 0 5 0 − 10 D5 = 18000 胡尔维茨行列式非正定,系统不稳定. 题 3-7:已知三个控制系统的特征方程式如下,试应用劳斯稳定判据判定系统 的稳定性;对不稳定的系统要求指出不稳定的极点数;对存在不稳定虚根的要求
4 37
12 K − 40 100 K 70 K − 100
164 K − 1080 100 K 劳斯表: 37 11480 K 2 − 228900 K + 108000 1 s 164 K − 1080 0 s 100 K 若系统稳定则: 164 K − 1080 ⎧ >0 ⎪ 37 ⎪ 2 ⎪11480 K − 228900 K + 108000 >0 ⎨ 164 K − 1080 ⎪ 100 K > 0 ⎪ ⎪ ⎩ ⇒ k > 19.46 题 3-10:已知单位负反馈控制系统的开环传递函数为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
得到
和
解毕。
例3-19单位反馈控制系统的开环传递函数为
试求:(1)位置误差系数,速度误差系数和加速度误差系数;
(2)当参考输入为 , 和 时系统的稳态误差。
解根据误差系数公式,有
位置误差系数为
速度误差系数为
加速度误差系数为
对应于不同的参考输入信号,系统的稳态误差有所不同。
劳斯行列式为
由劳斯行列表可见,第三行第一列系数为零,可用一个很小的正数ε来代替;第四行第一列系数为(2ε+2/ε,当ε趋于零时为正数;第五行第一列系数为(-4ε-4-5ε2)/(2ε+2),当ε趋于零时为 。由于第一列变号两次,故有两个根在右半s平面,所以系统是不稳定的。
解毕。
例3-18已知系统特征方程为
(t≥0)
试求系统的阻尼比ξ、自然振荡频率ωn和稳态误差ess。
解闭环特征方程为
由已知误差响应表达式,易知,输入必为单位阶跃函1(t),且系统为过阻尼二阶系统。故
即,系统时间常数为
令
得
代入求出的时间常数,得
,
稳态误差为
实际上, 型系统在单位阶跃函数作用下,其稳态误差必为零。解毕。
证明:通过适当地调节Ki的值,该系统对斜坡输入的响应的稳态误差能达到零。
解系统的闭环传递函数为
即
因此
当输入信号为r(t)=at时,系统的稳态误差为
要使系统对斜坡输入的响应的稳态误差为零,即ess=0,必须满足
所以
解毕。
例3-22设单位负反馈系统开环传递函数为 。如果要求系统的位置稳态误差ess=0,单位阶跃响应的超调量Mp%=4.3%,试问Kp、Kg、T,各参数之间应保持什么关系?
因此,b的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。解毕。
例3-12设二阶控制系统的单位阶跃响应曲线如图3-34所示。试确定系统的传递函数。
解首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。系统模型为
然后由响应的 、 及相应公式,即可换算出 、 。
(s)
解开环传递函数
显然
解得:
由于要求
故应有ξ≥0.707。于是,各参数之间应有如下关系
本例为 型系统,位置稳态误差ess=0的要求自然满足。解毕。
例3-23设复合控制系统如图3-38所示。其中
, ,
试求 时,系统的稳态误差。
解闭环传递函数
等效单位反馈开环传递函数
表明系统为 型系统,且
当 时,稳态误差为
解毕。
参考输入为 ,即阶跃函数输入时系统的稳态误差为
参考输入为 ,即斜坡函数输入时系统的稳态误差为
参考输入为 ,即抛物线函数输入时系统的稳态误差为
解毕。
例3-20单位反馈控制系统的开环传递函数为
输入信号为r(t)=A+ωt,A为常量,ω=0.5弧度/秒。试求系统的稳态误差。
解实际系统的输入信号,往往是阶跃函数、斜坡函数和抛物线函数等典型信号的组合。此时,输入信号的一般形式可表示为
试求:(1)在 右半平面的根的个数;(2)虚根。
解如果劳斯行列表中某一行所有系数都等于零,则表明在根平面内存在对原点对称的实根,共轭虚根或(和)共轭复数根。此时,可利用上一行的系数构成辅助多项式,并对辅助多项式求导,将导数的系数构成新行,以代替全部为零的一行,继续计算劳斯行列表。对原点对称的根可由辅助方程(令辅助多项式等于零)求得。
可见,开环增益的减小将导致扰动作用下系统稳态输出的增大,且稳态误差的绝对值也增大。
若1/s加在扰动作用点之前,则
, ,
不难算得
,
若1/s加在扰动作用点之后,则
, ,
容易求出
可见,在扰动作用点之前的前向通道中加入积分环节,才可消除阶跃扰动产生的稳态误差。
解毕。
例3-27设单位反馈系统的开环传递函数为
已知系统的误差响应为
满足指标要求。最后得所选参数为:
K=60T=0.02(s)
解毕。
例3-25一复合控制系统如图3-39所示。
图中:
K1、K2、T1、T2均为已知正值。当输入量r(t)=t2/2时,要求系统的稳态误差为零,试确定参数a和b。
解系统闭环传递函数为
故
误差为
代入 及 、 、 ,得
闭环特征方程为
易知,在题设条件下,不等式
系统的稳态误差,可应用叠加原理求出,即系统的稳态误差是各部分输入所引起的误差的总和。所以,系统的稳态误差可按下式计算:
对于本例,系统的稳态误差为
本题给定的开环传递函数中只含一个积分环节,即系统为1型系统,所以
系统的稳态误差为
解毕。
例3-21控制系统的结构图如图3-37所示。假设输入信号为r(t)=at( 为任意常数)。
成立。由劳斯稳定判据,闭环系统稳定,且与待求参数 、 无关。此时,讨论稳态误差是有意义的。而
若
则有
系统的稳态误差为
因此可求出待定参数为
解毕。
例3-26控制系统结构如图3-40所示。误差E(s)在输入端定义。扰动输入是幅值为2的阶跃函数。
(1)试求K=40时,系统在扰动作用下的稳态输出和稳态误差。
(2)若K=20,其结果如何?
解由图得闭环传递函数
在题意要求下,应取
此时,闭环特征方程为:
令: ,解出,
故反馈通道传递函数为:
解毕。
例3-15系统特征方程为
试判断系统的稳定性。
解特征式各项系数均大于零,是保证系统稳定的必要条件。上述方程中s一次项的系数为零,故系统肯定不稳定。解毕。
例3-16已知系统特征方程式为
试用劳斯判据判断系统的稳定情况。
例3-24已知单位反馈系统的开环传递函数 。试选择参数 及 的值以满足下列指标:
(1)当r(t)=t时,系统的稳态误差ess≤0.02;
(2)当r(t)=1(t)时,系统的动态性能指标Mp%≤30%,ts≤0.3s(△=5%)
解
开环增益应取K≥50。现取K=60。因
故有
,
于是 取 %,计算得
此时
(S)
第三章
例3-1系统的结构图如图3-1所示。
已知传递函数 。今欲采用加负反馈的办法,将过渡过程时间ts减小为原来的0.1倍,并保证总放大系数不变。试确定参数Kh和K0的数值。
解首先求出系统的传递函数φ(s),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间ts与其时间常数成正比。根据要求,总传递函数应为
劳斯行列表为
由于 行中各项系数全为零,于是可利用 行中的系数构成辅助多项式,即
求辅助多项式对s的导数,得
原劳斯行列表中s3行各项,用上述方程式的系数,即8和24代替。此时,劳斯行列表变为
1 8 20
2 12 16
2 12 16
8 24
6 16
2.67
16
新劳斯行列表中第一列没有变号,所以没有根在右半平面。
由公式得
换算求解得: 、
解毕。
例3-13设系统如图3-35所示。如果要求系统的超调量等于 ,峰值时间等于0.8s,试确定增益K1和速度反馈系数Kt。同时,确定在此K1和Kt数值下系统的延迟时间、上升时间和调节时间。
解由图示得闭环特征方程为
即
,
由已知条件
解得
于是
解毕。
例3-14设控制系统如图3-36所示。试设计反馈通道传递函数H(s),使系统阻尼比提高到希望的ξ1值,但保持增益K及自然频率ωn不变。
(3)在扰动作用点之前的前向通道中引入积分环节1/s,对结果有何影响?在扰动作用点之后的前向通道中引入积分环节1/s,结果又如何?
解在图中,令
, ,
则
代入 ,得
令 ,得扰动作用下的输出表达式
此时,误差表达式为
即
而扰动作用下的稳态输出为
代入N(s)、G1、G2和H的表达式,可得
,Байду номын сангаас
(1)当 时, ,
(2)当 时, ,
解劳斯表为
1 18
8 16
由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。解毕。
例3-17已知系统特征方程为
试判断系统稳定性。
解本例是应用劳斯判据判断系统稳定性的一种特殊情况。如果在劳斯行列表中某一行的第一列项等于零,但其余各项不等于零或没有,这时可用一个很小的正数ε来代替为零的一项,从而可使劳斯行列表继续算下去。
即
比较系数得
解之得
、
解毕。
例3-10某系统在输入信号r(t)=(1+t)1(t)作用下,测得输出响应为:
(t≥0)
已知初始条件为零,试求系统的传递函数 。
解因为
故系统传递函数为
解毕。
例3-3设控制系统如图3-2所示。
试分析参数b的取值对系统阶跃响应动态性能的影响。
解由图得闭环传递函数为
系统是一阶的。动态性能指标为