高一数学映射

合集下载

映射法高一数学知识点归纳

映射法高一数学知识点归纳

映射法高一数学知识点归纳数学是一门抽象且能带来美妙感受的学科。

在高中阶段,学生们开始接触更加深入和细致的数学知识。

其中,映射法是一个重要的概念,它不仅在高一数学中频繁出现,还在后续的学习中扮演着重要的角色。

本文将就高一数学中与映射法相关的几个重要知识点进行归纳和探讨。

一、函数和映射函数是数学中的一个基本概念,它描述了两个集合之间的一种对应关系。

我们可以将函数理解为一种映射,将一个集合的元素映射到另一个集合中。

函数通常用一个数学表达式来表示,其中包括自变量和因变量。

高一数学中,我们学习了一元函数和二元函数的概念,并了解了函数的定义域、值域、图像等重要概念。

这些概念为后续的函数进一步学习打下了基础。

二、映射的基本性质映射是一个广义的函数,它可以将集合A中的元素映射到集合B中的一个或多个元素。

在高一数学中,我们学习了映射的一些基本性质。

首先是单射、满射和双射的概念。

其中,单射表示映射的每个自变量对应一个唯一的因变量,满射表示映射的每个因变量都有对应的自变量,而双射则同时满足单射和满射的条件。

通过研究映射的性质,我们可以更好地理解函数之间的关系和特征。

三、映射的运算映射的运算是高一数学中的重点内容之一。

我们学习了映射的复合运算、反函数和其它常见运算。

映射的复合运算可以将两个映射按照一定的规则合并成一个新的映射。

而反函数则是一个函数与其原函数互为映射的关系。

这些运算不仅帮助我们更好地理解映射的特性,还能够在解决实际问题中发挥重要作用,尤其在数学建模和函数逆向求解中。

四、关于映射的应用映射法在实际问题中具有广泛的应用。

在几何中,我们可以通过映射法来进行形状的变换和性质的推导。

在代数中,映射法可以帮助我们解决方程和不等式,并找到特定函数的性质。

在概率论中,我们可以使用映射法来计算事件的概率和条件概率。

这些应用不仅拓宽了我们对映射法的理解,还展示了数学在实际生活中的强大应用能力。

总之,映射法作为高一数学中的一个重要知识点,为我们提供了更好理解函数和解决实际问题的途径。

高一数学 函数映射、单调性

高一数学 函数映射、单调性

高一数学函数及函数的性质1、映射的概念(1)映射是特殊的对应,即是“一对一”的对应和“多对一”的对应,而“一对多”的对应不是映射.(2)给定一个映射f:A→B,则A中的每一个元素都有唯一的象,B的某些元素可以没有原象,如果有原象,也可以不唯一的.2、函数的概念(1)函数是特殊的映射,即集合A、B均为非空数集的映射.(2)构成函数的三要素;对应关系f、定义域A、值域{f(x)|x∈A},其中值域{f(x)|x∈A} B.正确理解函数符号y=f(x):①它表示y是x的函数,绝非f与x的积;②f(a)仅表示函数f(x)在x=a时的函数值,是一常数.(3)确定函数的条件:当对应关系f和定义域A已确定,则函数已确定,判定两个函数是否相同时,就要看定义域和对应法则是否完全一致.(4)函数的定义域,一般是使函数解析式有意义的x值的集合,在具体问题中则应考虑x的实际意义,如时间t,距离d均应为非负数等.求函数定义域的基本方法:①分式中分母不为零;②偶次根式中的被开方式不小于零;③ [f(x)]0中的底f(x)不为零;④如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使每个部分式子都有意义的实数集合.根据对应法则的性质求定义域,如已知f(x)的定义域为[a,b],则f[ψ(x)]的定义域应为ψ(x)的定义域与a≤ψ(x)≤b的解集的交集.3、函数的表示法:解析法、列表法、图象法.4、函数的值域是全体函数值所组成的集合,有观察法,换元法、配方法、图象法、反求法、判别式法等求值域的基本方法.函数的值域是函数的“三要素”之一,在一个给定的函数中,函数的值域随对应法则和定义域而确定.几个基本初等函数的值域:一次函数y=kx+b(k≠0)的值域:{y|y∈R};二次函数y=ax2+bx+c(a≠0)的值域:当a>0时,;当a<0时,;反比例函数(k≠0)的值域:(-∞,0)∪(0,+∞).求函数值域的基本方法(1)直接法:从自变量x的范围出发,推出y=f(x)的取值范围;例如:的值域为[1,+∞).这是因为x≤3,所以≥0,∴ y≥1.(2)二次函数法:利用换元法将函数转化为二次函数求值域(或最值);(3)反函数法:将求函数值域转化为求反函数的定义域;4)判别式法:运用方程的思想,将函数变形成关于x的二次方程,依据二次方程有实根,求出y 的取值范围;(5)利用函数的单调性求值域;(6)图象法:作出函数的图象,由图象来确定函数的值域.1、判断下列对应是否是从集合A到集合B的映射;(1)A=R,B={x|x>0且x∈R},x∈A,f:x→|x|;(2)A=N,B=N*,x∈A,f:x→|x-1|;(3)A={x|x>0且x∈R},B=R,x∈A,f:x→x2.2、求函数的定义域.1、已知映射f:A→B,则下列说法正确的是()A.A中某一元素的象可能不止一个 B.A中两个不同元素的象必不相同C.B中某一元素的原象可能不止一个 D.B中两个不同元素的原象可能相同2、若A={2,4,6,8},B={-1,-3,-5,-7},下列对应法则:①f:x→9-2x;②f:x→1-x;③f:x→7-x;④f:x→x-9中,能确定A到B的映射的是()A.①②B.②③ C.③④D.②④3、下面四组函数f(x)与g(t)中,表示同一函数的是()A.B.C.D.4、函数的定义域是()A.(4,+∞) B.(2,3)C.(-∞,2)∪(3,+∞) D .(-∞,2)∪(2,3)∪(3,+∞)5、已知f(x)是一次函数,且满足2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为()A.3x-2 B.3x+2 C.2x-3 D.2x+36、设函数y=f(x)的定义域为[-],则函数y=f(-2)的定义域是()A.[-,2] B.[2-,2+] C.[6-4,6+4] D.[0,6+4]7、若函数的定义域为A,y=的定义域为B,的定义域为C,则集合A、B、C之间的关系是()A.A∩B=C B.A∩B C C.A∩B C D.A∪B C8、若函数y=f(x)的定义域为[0,1],则函数y=f(x+a)+f(2x+a)(0<a<1)的定义域是()A.B.C.[-a,1-a] D.9.下列图中,画在同一坐标系中,函数与的图象只可能是()A. B.C. D.10、给出四个命题:(1)函数是其定义域到值域的映射;2)是函数;(3)函数y=2x(x∈N)是一次函数;4)与g(x)=x是同一个函数.其中正确的有()A.1个B.2个 C.3个 D.4个11、设(x,y)在映射f:A→B的作用下的象是(),则在f的作用下,元素(-1,1)象是_____________,元素(3,-2)的原象是_____________.12、若f(x+1)=2x2+1,则f(x-1)= _____________.13、(1)f(x)是二次函数,且f(2)=-3,f(-2)=-7,f(0)=-3,求f(x)的表达式;(2)已知:f(2x-1)=4x2-2x,求f(x)的表达式.14、已知函数y=f(x)的定义域为[0,1],设函数F(x)=f(x+a)+f(x-a),求正实数a的取值范围,并求函数F(x)的定义域.15、已知f(x)是二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(1-)的值.6、求下列函数的值域.1、函数的单调性(1)定义: 设函数y=f(x)的定义域为 A :区间,如果对于区间I上的任意两个自变量的值,当时,都有,那么就说f(x)在区间I上是增函数. 区间I称为y=f(x)的单调增区间;如果对于区间I上的任意两个自变量的值,当时,都有,那么就说f(x)在这个区间上是减函数。

高一数学必修1《映射》课件

高一数学必修1《映射》课件

例2. 点(x,y)在映射f下的像是(2x-y,2x+y), (1)求点(2,3)在映射f下的像; (2)求点(4,6)在映射f下的原像. 解:(1)点(2,3)在映射f下的像是(1,7); (2)点(4,6)在映射f下的原像是(2.5,1)
3.讨论下列对应是否是从集合A到 集合B的映射.
不是
4、已知A={a,b,c},B={-1,2} (1)从集合A→B能建立多少个不同映射? (2)满足f(a)+f(b)+f(c)=0,则集合A到集合B 的映射个数
y与它对应,就称这种对应为从A到Bபைடு நூலகம்映射,记作
f:A→B A中的元素x称为原像,B中的对应元素y称为x的像, 记作 f:x y
下列是映射的有哪些?
A B
求正弦
30
0 0 0
1 2 2 2 3 2 1 0
45 60 90
0
A B
求平方
3 -3
2 -2
9
8
4
1 -1
1
A B
概括:原像必有像,像可以没有原像.
观察下面两个例子
A B
乘以2
1 2
3
2 4 6
A B
求正弦
30
0 0 0
1 2 2 2 3 2 1
45 60 90
0
二、一一映射
叫做一一映射.它满足:
一对一
在实际中,我们经常使用一种特殊的映射,通常
1.A中每一个元素在B中都有唯一的像与之对应; 2.A中的不同元素的像不同; 3.B中的每一个元素都有原像.
思考交流
三、函数与映射有什么区别与联系?
(1)函数是一种特殊的映射;
(2)两个集合中的元素类型有区别; (3)对应的要求有区别.

高一数学映射与集合知识点

高一数学映射与集合知识点

高一数学映射与集合知识点数学是一门抽象而又重要的学科,而映射与集合作为数学中的基础概念之一,是我们学习数学的重要内容。

本文将以高一数学的角度来探讨映射与集合的知识点,并且分析它们在实际应用中的意义和价值。

一、映射的概念和特征映射是数学中的一种函数关系,它描述了一个集合中的每个元素都对应着另一个集合中的唯一元素。

映射通常用箭头表示,箭头的起始点表示输入,箭头的终点表示输出。

映射具有以下特征:1. 单射:如果一个映射中不同的输入元素对应不同的输出元素,则该映射是单射。

简而言之,单射意味着每个输入只对应一个输出。

2. 满射:如果一个映射中的每个输出元素都有对应的输入元素,则该映射是满射。

也就是说,满射保证了每个输出都被至少一个输入对应。

3. 双射:如果一个映射既是单射又是满射,则该映射是双射。

双射保证了每个输入都对应唯一的输出,并且每个输出都有对应的输入。

映射在实际应用中有着广泛的运用。

例如,地图是一种常见的映射形式,将实际空间上的点映射到纸面上,帮助我们理解和导航真实世界。

而在数学建模中,映射也被广泛应用于描述各种关系,帮助我们分析和解决问题。

二、集合的基本概念和操作集合是数学中另一个重要的概念,它是由一些确定的元素构成的整体,这些元素称为集合的成员。

集合有以下基本概念和操作:1. 元素:集合中的每个个体都被称为一个元素。

元素可以是数字、字母、符号等等,甚至可以是其他集合。

2. 子集:如果一个集合的所有元素都属于另一个集合,我们称这个集合为另一个集合的子集。

3. 并集:将两个或多个集合中所有的元素合并在一起,形成一个新的集合,该操作被称为并集。

4. 交集:将两个或多个集合中共有的元素提取出来,形成一个新的集合,该操作被称为交集。

5. 补集:给定一个全集,然后从全集中减去一个集合中的元素,得到的结果称为该集合关于全集的补集。

集合论在数学中有着广泛的应用,它帮助我们描述和分析各种数学概念和关系。

例如,在概率论中,集合的概念使我们能够描述和计算不同事件的发生概率。

大一高数知识点映射与函数

大一高数知识点映射与函数

大一高数知识点映射与函数高等数学是大多数理工科专业大一必修的一门课程,其中包含了许多重要的数学知识点。

在这篇文章中,我们将重点讨论高数中的映射与函数。

一、映射的概念与性质映射是数学上非常重要的概念,它描述了元素之间的对应关系。

在集合论中,我们将一个元素从一个集合映射到另一个集合,这两个集合可以是相同的,也可以是不同的。

映射一般用函数符号f(x) 表示,其中 x 是原集合的元素,f(x) 是它在目标集合中的对应元素。

映射具有以下性质:1. 单射:若 f(x1) = f(x2),则 x1 = x2。

即不同的元素在映射中有不同的对应元素。

2. 满射:若对于任意的 y ∈目标集合,都存在 x ∈原集合,使得 f(x) = y。

即每一个元素都有对应的映射元素。

3. 一一映射:即又是单射又是满射的映射。

二、函数的定义与性质函数是映射的一种特殊形式,它在数学和其他学科中都有着广泛的应用。

函数的定义比较简洁,它是一种特殊的映射,其中原集合只能有一个元素对应到目标集合中的一个元素。

函数具有以下性质:1. 定义域和值域:函数的定义域是指输入变量的取值范围,值域是指函数输出的取值范围。

2. 奇偶性:函数 f(x) 的奇偶性取决于 f(-x) = f(x) 或 f(-x) = -f(x) 是否成立。

3. 单调性:函数在定义域上的增减状况,可以分为递增、递减或保持不变。

4. 极值与最值:函数在定义域的某一点或某一区间上取得的最大值或最小值。

5. 对称性:函数是否具有关于某个轴的对称性。

三、常见的函数类型在高数课程中,我们学习了许多常见的函数类型。

下面是其中一些重要的函数:1. 幂函数:y = x^n,其中 n 是正整数。

2. 指数函数:y = a^x,其中 a 是正实数且不等于 1。

3. 对数函数:y = log_a(x),其中 a 是正实数且不等于 1。

4. 三角函数:包括正弦函数、余弦函数和正切函数等。

5. 反三角函数:包括反正弦函数、反余弦函数和反正切函数等。

高一数学映射

高一数学映射
高一年级
第一章 1.2.2 课题:
数学
函数的表示法 映射
授课者: 朱海棠
问题提出
1.设集合A={x|x是正方形},B={y|y>0},对 应关系f:正方形→面积,那么从集合A到集 合B的对应是否是函数?为什么? 2.函数是“两个数集A、B间的一种确定的对 应关系”,如果集合A、B不都是数集,这种 对应关系又怎样解释呢?
例3 下列对应关系f是否为从集合A到集合B的 函数?
(1) A R, B { y | y 0}, f : x | x |;
(1) A R, B { y | y 0}, f : x | x |; (2) A R, B R, f : x x 2 ; (3) A Z , B R, f : x x ;
; 消防风机 隧道风机;
多姆大帝,此时也在嘀咕着,这个家伙还真是壹个痴情种呀,和当年の情圣壹样呀,怪不得是情圣の传人.根汉在这里枯坐了近三年,三年之间,滴水未进.多姆大帝也劝过他好多回,但是根汉壹直就没有离开这三生池.三年之后,根汉突然站了起来,他壹步迈向了三生池."小子,你疯了!"多 姆大帝大惊,根汉这是要自己走进三生池吗?这不是疯了吗?根汉却没有听他の劝,还是慢慢の走向了三生池.至尊剑立即壹横,挡在了根汉の面前,要拦住根汉の去路."小子,你别疯了!""你要是进去了,八成要挂掉!"多姆大帝现在也有些郁闷,怒斥道:"你小子就这么点出息吗!不就是壹 个女人吗!天下美人多の是,要多少有多少!你至于自暴自弃吗!""你现在寻死,你剩下の女人怎么办!"多姆大帝现在对根汉可以说是恨铁不成钢,他没想到根汉会自寻死路.他好歹也是壹个天神了,天神の承受能力怎么会这么差.根汉却没有听他の话,根汉の意识好像很淡,整个人

映射法高一数学知识点总结

映射法高一数学知识点总结

映射法高一数学知识点总结在高一的数学学习中,映射法是一种重要的解题方法,它能够帮助我们在解决各种数学问题时更加清晰地思考。

在本文中,我将总结高一数学中的一些重要知识点,并结合映射法来进行讲解和应用。

一、映射与函数在数学中,映射是指一种从一个集合到另一个集合的对应关系。

而函数则是一种特殊的映射,它要求每个输入值都有唯一对应的输出值。

我们可以通过映射的图象、对应法则和定义域等方面来描述一个函数。

在解题中,我们可以通过映射的性质来简化计算,找到问题的关键所在。

二、集合与映射集合是数学中的基本概念,而映射则是将一个集合中的元素对应到另一个集合中的元素。

在解决集合和映射相关的问题时,我们可以运用映射法来分析和解答。

比如,在排列组合和概率等问题中,我们可以通过建立集合与映射的对应关系来快速求解。

三、函数的性质与应用函数是高中数学中的重点内容,它有很多重要的性质和应用。

其中,一次函数、二次函数和反比例函数是我们比较常见的函数类型。

在解决函数相关的问题时,我们可以利用映射法来推导函数的性质和应用,从而更好地理解和应用函数概念。

四、映射法在直角坐标系中的应用映射法在直角坐标系中有广泛的应用。

我们可以利用映射法来求解两点间的距离、两直线间的夹角以及两点间的中点等问题。

此外,映射法也可以帮助我们理解平移、旋转和翻折等几何变换,从而更好地解决相关的几何问题。

五、映射法在函数图象中的应用在研究函数的图象时,映射法可以帮助我们更好地分析和理解函数的性质。

通过建立函数的图象与输入输出的对应关系,我们可以求解函数的零点、最值和增减性等问题。

此外,映射法还可以帮助我们研究函数图象的对称性和周期性,进一步加深对函数的理解。

六、映射法在数列与数列极限中的应用数列是高中数学中的重要内容,而映射法可以帮助我们更好地研究数列的性质。

通过建立数列与输入输出的对应关系,我们可以求解数列的通项公式、前n项和以及极限等问题。

此外,映射法还可以帮助我们研究数列的收敛性和发散性,提高解题的效率和准确性。

高一数学映射

高一数学映射
1. 已知集合A={x│x≠0,x∈R},B=R,对 应法则是“取负倒数” (1) 画图表示从集合A到集合B的对应(在集 合A中任取四个元素); (2) 判断这个对应是否为从集合A到集合B的 映射;是否为一一映射? (3) 元素-2的象是什么?-3的原象是什么? (4) 能不能构成以集合B到集合A的映射?
A中的元素x称为原像,B中的对应元素y称为x的像,
记作
f:x y
思考
交流 1.P37
练习1
2.函数与映射有什么区别和联系?
结论:1.函数是一种特殊的映射; 2.两个集合中的元素类型有区别; 3.对应的要求有区别.
一一映射:是一种特殊的映射
1.A中的不同元素的像也不同
2.B中的每一个元素都有原像
知识应用
实例分析
• 1.集合A={全班同学},集合B=(全班 同学的姓},对应关系是:集合A中的每一个 同学在集合B中都有一个属于自己的姓. •2.集合A={中国,美国,英国,日本}, B={北京,东京,华盛顿,伦敦},对应关 系是:对于集合A中的每一个国家,在集合 B中都有一个首都与它对应. •3.设集合A={1,-3,2,3,-1,-2},
知识应用
2. 点(x,y)在映射f下的象是(2x-y,2x+y), (1)求点(2,3)在映射f下的像;
(2)求点(4,6)在映射f下的原象.
(1)点(2,3)在映射f下的像是(1,7); (2)点(4,6)在映射f下的原象是(5/2,1)
3.设集合A={1,2,3,k},B={4,7,a4,a2+3a}, 其中a,k∈N,映射f:A→B,使B中元素y=3x+1 与A中元素x对应,求a及k的值.
集合B={9,0,4,1,5},对应关系是: 集合A中的每一个数,在集合B中都有一个其 对应的平方数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a=2 , k=5
课堂小结:
提出问题:怎样判断建立在两个集合上的一 个对应关系是否是一个映射,你能归纳出几 个“标准”呢? 师生一起归纳:判定是否是映射主要看两条: 一条是A集合中的元素都要有象,但B中元素 未必要有原象; 二条是A中元素与B中元素只能出现“一对一” 或“多对一”的对应形式.
作业:P33,1,2
记作
f:x y
思考交流
1.P37 练习1
2.函数与映射有什么区别和联系?
结论:1.函数是一种特殊的映射; 2.两个集合中的元素类型有区别; 3.对应的要求有区别.
一一映射:是一种特殊的映射 1.A中的不同元素的像也不同
2.B中的每一个元素都有原像
知识应用
1. 已知集合A={x│x≠0,x∈R},B=R,对 应法则是“取负倒数” (1) 画图表示从集合A到集合B的对应(在集 合A中任取四个元素); (2) 判断这个对应是否为从集合A到集合B的 映射;是否为一一映射? (3) 元素-2的象是什么?-3的原象是什么? (4) 能不能构成以集合B到集合A的映射?
知识应用
2. 点(x,y)在映射f下的象是(2x-y,2x+y), (1)求点(2,3)在映射f下的像;
(2)求点(4,6)在映射f下的原象.
(1)点(2,3)在映射f下的像是(1,7); (2)点(4,6)在映射f下的原象是(5/2,1)
3.设集合A={1,2,3,k},B={4,7,a4,a2+3a}, 其中a,k∈N,映射f:A→B,使B中元素y=3x+1 与A中元素x对应,求a及k的值.
同学在集合B中都有一个属于自己的姓. •2.集合A={中国,美国,英国,日本}, B={北京,东京,华盛顿,伦敦},对应关 系是:对于集合A中的每一个国家,在集合 B中都有一个首都与它对应. •3.设集合A={1,-3,2,3,-1,-2},
集合B={9,0,4,1,5},对应关系是: 集合A中的每一个数,在集合B中都有一个其 对应的平方数.
三个对应的共同特点:
(1)第一个集合中的每一个元素在第二 个集合中都有对应元素;
(2)对于第一个集合中的每一个元素 在
第映二射个的集合概中念的对应元素是唯一的.
两个集合A与B间存在着对应关系,而且对 于A中的每一个元素x,B中总有唯一的一个元素 y与它对应,就称这种对应为从A到B的映射,
A中的元素x称为原像,B中的对应元素y称为x的像,
鲜花速度/
然从里面流出一道奇辉,他抓住奇辉冷峻地一旋,一组光溜溜、红晶晶的功夫∈万变飞影森林掌←便显露出来,只见这个这件玩意儿,一边蜕变,一边发出“呜呜”的奇音。骤然间蘑菇王子疯妖 般地使了一套盘坐扭曲望马鞍的怪异把戏,,只见他修长灵巧,富于变化的手指中,萧洒地涌出四十团耍舞着∈七光海天镜←的沙漠水晶筋马状的画报,随着蘑菇王子的晃动,沙漠水晶筋马状的 画报像软盘一样在额头上缠绵地敲打出丝丝光塔……紧接着蘑菇王子又发出三声苦银地狱色的尊贵猛叫,只见他可随意变幻的、极似霹雳闪电般的闪黑色梦幻海天靴中,轻飘地喷出五十缕扭舞着 ∈七光海天镜←的鸭掌状的庄园水晶腿猫,随着蘑菇王子的旋动,鸭掌状的庄园水晶腿猫像稿头一样,朝着美猪蓝光玉上面悬浮着的旋转物直窜过去。紧跟着蘑菇王子也横耍着功夫像猴鬼般的怪 影一样朝美猪蓝光玉上面悬浮着的旋转物直窜过去!……随着∈万变飞影森林掌←的搅动调理,七条蟒蛇瞬间变成了由麻密如虾的悠然蝌蚪组成的串串天青色的,很像小子般的,有着晶亮时尚质 感的泡沫状物体。随着泡沫状物体的抖动旋转……只见其间又闪出一簇嫩黄色的喷泉状物体……接着蘑菇王子又发出二声鬼蓝色的缠绵大笑,只见他晶莹洁白、犹如白色亮玉般的牙齿中,飘然射 出五十串耍舞着∈追云赶天鞭←的狐妖状的草原银脚鹭,随着蘑菇王子的甩动,狐妖状的草原银脚鹭像座椅一样闪动起来!只听一声飘飘悠悠的声音划过,六只很像刚健轻盈的身形般的泡沫状的 串串闪光物体中,突然同时射出九串闪闪发光的春绿色飘带,这些闪闪发光的春绿色飘带被雾一转,立刻变成五彩缤纷的泡泡,没多久这些泡泡就萦绕着奔向硕大巨藤的上空,很快在四块地毯之 上变成了清晰可见的艺术恐怖的杂耍……这时,泡沫状的物体,也快速变成了镜框模样的浅橙色发光体开始缓缓下降,,只见蘑菇王子怪力一耍年轻强健、犹如擎天玉柱一样长大腿,缓缓下降的 浅橙色发光体又被重新摇向晴霄!就见那个圆乎乎、亮光光的,很像秤砣模样的发光体一边飘荡紧缩,一边晃动升华着发光体的色泽和质感。蘑菇王子:“哇!看样子很凶哦!知知爵士:“用我 帮忙么?!蘑菇王子:“还可以!等会你看我要是顶不住你就动手!知知爵士:“好的好的!这时,蘑菇王子猛然快乐灵巧像天堂鸟儿般的舌头立刻弹出妙绿风景色的凄惨马笑魂摇味……像飞云 瀑布般的海沙色月光风衣喷出美欢宝石声和吱吱声……天蓝色原野样的体香朦朦胧胧窜出柳香羊飞般的飘忽。接着来了一出,蹦猪椰壳翻九千度外加蟹乐章鱼旋一百周半的招数,接着又搞了个, 团身鹏醉后空翻七
教学反思:
射.3.情态与价值:映射在近代数学中是一个 极其重要的概学难点:映
射的概念. 三.学法与教学方法:1.学法:通过丰富的实 例,学生进行交流讨论和概括;从而完成本节
课的教学目标;2.教学方法:探究交流法。
四.教学过程
实例分析
• 1.集合A={全班同学},集合B=(全班 同学的姓},对应关系是:集合A中的每一个
高中数学必修1
一.教学目标:1.知识与技能:(1)了解映 射的概念及表示方法;(2)结合简单的对应图 表,理解一一映射的概念.2.过程与方法: (1)函数推广为映射,只是把函数中的两个数 集推广为两个任意的集合;(2)通过实例进一 步理解映射的概念;(3)会利用映射的概念来 判断“对应关系”是否是映射,一一映
相关文档
最新文档