开关量输入通道
第4章开关量信号的输入输出

智能仪器原理与设计------第4章开关量信号的输入输出第四章开关信号的输入/输出1.开关和开关量信号的区别?开关是一种有二个可选择的、有固定位置的装置,主要用于向单片机输入电平信号。
开关量信号就是通过拨动开关的位置,使单片机得到的一个固定不变的电平信号。
在智能仪器中用于向单片机输入控制命令或数据,开关信号可以通过机械式开关、电子式开关、温度开关等方式产生。
2.开关量信号的特点是什么?只有开和关、通和断、高电平和低电平两种状态的信号叫开关量信号,在智能仪器的电子电路中,通常用二进制数0和1来表示。
1智能仪器原理与设计------第4章开关量信号的输入输出3.开关量信号的作用?开关量输入、输出部分是智能仪器与外部设备的联系部件,智能仪器通过接受来自外部设备的开关量输入号和向外部设备发送开关量信号,实现对外部设备状态的检测、识别和对外部执行元器件的驱动和控制。
4.常见电子开关都有哪些?常见电子开关有:扳键开关、BCD码拔盘开关、磁性开关、光敏器件开关(光电开关、光纤开关等)、温度超限开关。
5.电子开关的缺点是什么?如何解决该缺点?由于外部装置输入的开关量信号的形式一般是电压、电流和开关的触点,这些信号经常会产生瞬时高压、过电流或接触抖动等现象。
因此为使信号安全可靠,在输入到单片机之前必须接入信号输人电气接口电路,对外部的输入信号进行滤波、电平转换和隔离保护等。
2智能仪器原理与设计------第4章开关量信号的输入输出外界的开关量信号在一般情况下可直接连入以单片机为核心的智能仪器中。
但当外界的开关量信号的电平幅度与单片机I/O端口的信号电平不相符时(由于这些电平信号功率有限,加上外界还存在各种干扰和影响),应在电平转换后(采用各种缓冲、放大、隔离和驱动电路等措施),再输入到单片机的I/O端口上。
34.1开关量信号的输入开关量信号和单片机的电气接口有TTL电平、CMOS 电平、非标准电平、开关或继电器的触点等,请说明TTL电平和CMOS电平的特征?4TTL电平(晶体管-晶体管逻辑电平),通常数据表示采用二进制规定,+5V等价于逻辑“1”,0V等价于逻辑“0”,这是计算机处理器控制的设备内部各部分之间通信的标准技术。
DDC控制器介绍

DDC控制器介绍控制器介绍DDCDDC是直接数字(Direct Digital Control)的简称,在DDC系统中计算机通过模拟量输入通道(AI)和开关量输入通道(DI)采集实时数据,然后按照一定的规律进行计算,最后发出控制信号,并通过模拟量输出通道(A0)和开关量输出通道(DO)直接控制生产过程。
DDC控制器控制系统的构成部分1、中央管理计算机。
中央管理计算机设置在中央监控室内,它将来自现场设备的所有信息数据集中提供给监控人员,并接至室内的显示设备、记录设备和报警装置等。
2、DDC(直接数字控制器,亦称下位机)。
DDC作为系统与现场设备的接口,它通过分散设置在被控设备的附近收集来自现场设备的信息,并能独立监控有关现场设备。
3、通信网络。
中央管理计算机与DDC之间的信息传送,由数据传输线路(通信网络)实现,较小规模的BAS系统可以简单地使用屏蔽双绞线作为传输介质。
4、传感器与执行器。
BAS系统的末端为传感器和执行器,它被装置在被控传感元件和执行元件上。
DDC控制器主要功能DDC主要功能包括以下几个方面:、对第三层的数据采样设备进行周期性的数据采集。
1.2、对采集的数据进行调整和处理。
3、对现场采集的数据进行分析,确定现场设备的运行状态。
4、对现场设备运行状况进行检查对比,并对异常状态进行报警处理。
5、根据现场采集的数据执行预定的控制算法而获得控制数据。
6、通过预定控制程序完成各种控制功能,包括比例控制、比例加积分控制、比例加积分加微分控制、开关控制、平均值控制、最大/最小值控制、焓值计算控制、逻辑运算控制和联锁控制。
7、向第三层的数据控制和执行设备输出控制和执行命令。
8、通过数据网关或网络控制器连接第一层的设备,与各上级管理计算机进行数据交换,向上传送各项采集数据和设备运行状态信息,同时接收各上级计算机下达的实时控制指令或参数的设定与修改的指令。
模块化设备控制器(MEC)是APOGEE现场管理和控制系统的组成部份,是一个高性能的直接数字控制器(DDC)。
2.3 开关量输入输出通道

接控 制设 备 7406 图2-3-7 典型继电器驱动电路
五、固态继电器驱动电路
1
3
1
3
2 (a) DC-SSR
4
2
(b) AC-SSR
4
图2-3-8 直流SSR与交流SSR
DC-SSR
AC-SSR
(a)
(b)
图2-3-9 基本的SSR驱动电路
2.3.3 开关量输入/输出通道设计举例
一、步进电机正反转控制
三、输入缓冲器(通常采用三态门)
三态,是指输出端来说的。 三态门缓冲器可以在引脚上输出1、0,这是两个常规的 逻辑状态。 三态门缓冲器还可以在引脚上什么也不输出,这称为高 阻态。 高阻态,就是说,门电路内部和引脚之间,电阻无穷大, 什么也不输出了。 引脚上的电平,可由其它电路来控制。 具有高阻态输出能力的门电路,就可以并联使用了。
TTL集电极 T 开路门
(a)功率晶体管驱动器
(b)达林顿驱动器
(b)MOSFET驱动器
图2-3-5 直流电源负载驱动电路
三、晶闸管交流负载驱动电路
+5v
+
D1
D2
交流 负载 ~
SKZ
LD
T
D3
D4
P1.0
-
74LS244
图2-3-6 交流负载驱动电路
四、继电器驱动电路
+12V
P1.0 8031 P1.1
2.3 开关量输入/输出通道 2.3.1 开关量输入通道
一、开关量输入通道的结构
微 机 总 线 输入 缓冲 器 输入 调理 电路 来 自 生 产 过 程
地址译码器 图2-3-1 开关量输入通道结构
二、输入调理电路 1.小功率输入调理电路
开关量信号的输入输出

§4.2 开关量信号的输出
一、开关量信号输出的通 道结构 4、注意: P1口可直接输出(锁存 器和地址译码电路可省 略)最多8个开关量信号。 P0口经锁存电路隔离可 接多组8个开关量输出。 当驱动小负载时,输出 驱动电路可省略。
§4.2 开关量信号的输出
二、开关量输出接口的简单设计 1、P1口开关量的输出 练习:通过P1口直接控制8个LED发光二 极管,画出硬件电路图,并写出控制发光 二极管点亮的指令。
§4.2 开关量信号的输出
一、开关量信号输出的通道 结构 3、各部分作用 锁存器:当开关量信号从 P0口输出时,锁存器起到ห้องสมุดไป่ตู้隔离数据总线的作用。常 用锁存器如74LS373、 74LS273、74LS377等 地址译码控制:锁存器的 锁存地址控制 输出驱动电路:提高输出 开关量信号的输出功率。
三、开关量输出的功率接口电路设计
2、中功率达林顿管驱动接 口电路 在驱动功率较大的继电 器和电磁开关等控制对 象,要求提供50~500 mA的电流时,可使 用MC1413 (ULN2003)、 MC1416(ULN2004) 等达林顿管集成电路。
三、开关量输出的功率接口电路设计
2、中功率达林顿管驱动接口 电路 若图中继电器需要100mA 吸合电流,则(V+—0.3) /(r+R2)=I=100,其中r 是继电器的线圈内阻,当已 知V+时,可求R2 取 MC1413的放大倍数 β=100,P1.0输出电流 =100mA/β=1mA, 1*R1+0.7+0.7+100*R2 =5, 可求R1
§4.2 开关量信号的输出
三、开关量输出的功率接口电路设计 1、小功率驱动接口:
过程通道

Computer Controlled Systems
P(t)
(e) 采样描述
X(t)
调制器
X*(t)
x*(t)=p(t)x(t)
因 τ0<<T ,所以分析时可近似认为τ0为0,以单位脉冲序列δT(t) 代替p(t)。
4.1 过程参数采样原理
单位脉冲序列:
Computer Controlled Systems
k 0 *
4.1 过程参数采样原理
Computer Controlled Systems
二、采样定理
对于角频率范围为( max , max )的连续信号进 行采样,当采样频率
s 2 max
时,采样器的输出信号
x*(t)才能充分表征连续输入信号x(t),换言之,为使 采样信号x*(t)的频谱能无失真地恢复连续输入信号 x(t)的频谱,采样周期T必须小于等于输入信号中变化 最小周期 Tmin 的1/2,即:
第二节 开关量输入通道(DI)
输入调理电路 输入调理电路有多种,通过调理电路可以将一个开关与计 算机的一位数字量对应起来。
+5V
R R R
Computer Controlled Systems
E
光电隔离转换 “断开” →逻辑电平“0” “闭合” →逻辑电平“1”
继电器隔离转换 “断开” →逻辑电平“0” “闭合” →逻辑电平“1”
1、影响采样周期选择的因素 (1)系统受扰动情况(扰动和噪声比有效信号的频率高) 若扰动和噪声都较小,采样周期T应选大些; 对于扰动频繁和噪声大的系统,采样周期T应选小些;
Computer Controlled Systems
(2)被控系统动态特性(慢对象:汽温,信号变化慢;快对象:水位) 滞后时间大的系统,采样周期T应选大些; 对于快速系统,采样周期T应选小些; (3)控制品质指标要求(控制品质反映了系统的动作快慢) 若超调量为主要指标,采样周期T应选大些; 若希望过渡过程时间短些,采样周期T应选小些; (一般而言,过渡过程时间长,超调则小,被调量是慢变的)
强制,通道等方法

DCS系统中强制DI(开关量输入)通道:1.首先打开桌面上的下位软件MoxGRAF。
2.进入下位后,用鼠标选择Open图标。
点击Open图标选择需要的下位应用文件。
3.进入需要的应用文件后,点击PRD_DI的子目录。
在子目录中选择Browser进行搜索相应的DI通道与位号。
4.搜到通道后点击Debug,只有启动Debug后才可以在线观察和强制。
5.用鼠标双击相应的通道(DI强制输入端),会出现一个WriteBOOL variable的系统对话框。
6.出现WriteBOOL variable对话框后,先点击Lock,然后再点击TRUE,如果对应的通道变成红色表示强制成功。
DCS系统中强制DO(开关量输出)通道:1.首先打开桌面上的下位软件MoxGRAF。
2.进入下位后,用鼠标选择Open图标。
点击Open图标选择需要的下位应用文件。
3.进入需要的应用文件后,点击PRD_DO的子目录。
在子目录中选择Browser进行搜索相应的DO通道与位号。
4.搜到通道后点击Debug,只有启动Debug后才可以在线观察和强制。
5.用鼠标双击相应的通道,会出现一个WriteBOOL variable的系统对话框。
6.出现WriteBOOL variable对话框后,先点击Lock,然后再点击TRUE,如果对应的通道变成红色表示强制成功。
强制通道完毕后释放通道的步骤:1.强制完毕后释放通道时,需先启Debug。
2.然后在菜单Debug中找到Diagnosis,点击开后会出现Lock Variables系统对话框。
3.在Lock Variables系统对话框中释放强制通道,其中Unlock all(释放全部通道)unlock (释放单个通道)。
4.释放完毕后关闭Debug。
TCS3000组态在线下装:1.在下装前可将程序备份2.在相应修改的程序页(PROGRAM)的界面下,先保存,再点击编译(Build Program)按钮进行程序编译。
智能仪表chapter2开关量输入通道

右图是一种限压保护电 路。该电路可将Vi’ 的信号 电平控制在0-VD ~VCC+VD 之间。 VD是二极管D1D2的管压降。 二极管D1D2应选择导通速 度快的开关二极管。
三、限电流保护
右图是一种限电流/限电 压保护电路。该电路可将输 入信号的电流限制一定范围 内。 Rs是PTC材料的自复保险丝 自复保险丝。 自复保险丝
+5V
74LS273
+5V
74LS273
+5V
+5V
D7~D0
数 据 缓 冲 器
c +
D7~D0
数 据 缓 冲 器
c +
选通脉冲
e
选通脉冲
-
e
(a 数字量同相传递
图 4-3 光电耦合隔离电路
(b 数字量反相传递
磁耦合器用磁信号实现信号的电气隔离。如ADuM1404是 4通道磁耦合数字隔离器。这种新的4通道数字隔离器仅用一颗 单芯片,不需要使用多个分立器件,与现在普遍使用的光电耦 合器相比,其印制电路板(PCB)面积缩小60%,每通道成本 降低40%,功耗降低98%。非常适合各种工业应用,包括数据
常用的隔离方式有: 光耦合: 光耦合:电气信号链路中间的一部分用光信号传递。常用的器件 是光电耦合器。 磁耦合: 磁耦合:电气信号链路中间的一部分用磁信号传递。
光电耦合器
光电耦合器 (Optocoupler) ) 由一个发光二极管和一个光敏三极 管组成。其工作原理是:当Vi为高 电平时,发光二极管发光,光敏三 极管受光导通,Vo成低电平;反之, 当Vi为低电平时,Vo成高电平(反 相逻辑)。 光电耦合器具有体积小、使用 寿命长、工作温度范围宽、抗干扰 性能强.无触点且输入与输出在电 气上完全隔离等特点,因而在各种 电子设备上得到广泛的应用。
DDC及操作

DDC控制器介绍及操作手册DDC是直接数字(Direct Digital Control)的简称,在DDC系统中计算机通过模拟量输入通道(AI)和开关量输入通道(DI)采集实时数据,然后按照一定的规律进行计算,最后发出控制信号,并通过模拟量输出通道(A0)和开关量输出通道(DO)直接控制生产过程。
DDC控制器控制系统的构成部分1、中央管理计算机。
中央管理计算机设置在中央监控室内,它将来自现场设备的所有信息数据集中提供给监控人员,并接至室内的显示设备、记录设备和报警装置等。
2、DDC(直接数字控制器,亦称下位机)。
DDC作为系统与现场设备的接口,它通过分散设置在被控设备的附近收集来自现场设备的信息,并能独立监控有关现场设备。
3、通信网络。
中央管理计算机与DDC之间的信息传送,由数据传输线路(通信网络)实现,较小规模的BAS系统可以简单地使用屏蔽双绞线作为传输介质。
4、传感器与执行器。
BAS系统的末端为传感器和执行器,它被装置在被控传感元件和执行元件上。
DDC控制器主要功能DDC主要功能包括以下几个方面:1、对第三层的数据采样设备进行周期性的数据采集。
2、对采集的数据进行调整和处理。
3、对现场采集的数据进行分析,确定现场设备的运行状态。
4、对现场设备运行状况进行检查对比,并对异常状态进行报警处理。
5、根据现场采集的数据执行预定的控制算法而获得控制数据。
6、通过预定控制程序完成各种控制功能,包括比例控制、比例加积分控制、比例加积分加微分控制、开关控制、平均值控制、最大/最小值控制、焓值计算控制、逻辑运算控制和联锁控制。
7、向第三层的数据控制和执行设备输出控制和执行命令。
8、通过数据网关或网络控制器连接第一层的设备,与各上级管理计算机进行数据交换,向上传送各项采集数据和设备运行状态信息,同时接收各上级计算机下达的实时控制指令或参数的设定与修改的指令。
模块化设备控制器(MEC)是APOGEE现场管理和控制系统的组成部份,是一个高性能的直接数字控制器(DDC)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4) 数字量输出通道:有的执行部件只要求提供数字量, 例如步进电机,控制电机启停和报警信号等,这时应采用数 字量输出通道。
应该注意,过程通道分类是以经过通道的信号形式来划 分的,并不以连续的对象来划分, 如模拟对象的模拟量可以 转换为频率信号(V—F变换)连接于数字输入通道;同样, 数 字输出通道完全可以接直流电动机,组成脉冲调宽控制 (PWM)。
过程通道包括模拟量输入通道、模拟量输出通道、数字量 输入通道和数字量输出通道。
(1) 模拟量输入通道:主要功能是将随时间连续变化的模 拟输入信号经检测、变换和预处理,最终变换为数字信号送入 计算机。常见的模拟量有压力、温度、液体流量和成分等。
(2) 模拟量输出通道:它将计算机输出的数字信号转换为 连续的电压或电流信号,经功率放大后送到执行部件对生产过 程或装置进行控制。
为了防止因过电压、瞬态尖峰或反极性信号损坏接口电路, 在开关量输入电路中,应采取适当的保护措施。图2-5和图2-6 分别是几种常用的保护电路, 其中,图2-5(a)和图2-5(b)分别 是采用齐纳二极管和压敏电阻将瞬态尖峰干扰箝位在安全电位 的保护电路。 图2-6(a)和(b)分别是反极性保护和高压保护电 路。
图2-5 瞬态尖峰保护电路 (a) 采用齐纳二极管; (b) 采用压敏电阻
图2-6 反极性和高压保护 (a) 反极性保护; (b)入信号来自机械开关或继电器触点,由于开关 触点闭合及断开时,常常会发生抖动,因此,输入信号的前沿 及后沿常常是非清晰信号,如图2-7所示。
输入缓冲器是对外部输入的信号起缓冲、加强以及选通的 作用,CPU通过读缓冲器读入数据。输出锁存器的作用是锁存 CPU送来的输出数据,供外部设备使用。
输入缓冲器和输出锁存器可以使用各种可编程的外围接口 电路,如8255、8155等,也可以使用简单的中小规模集成电路, 如74LS240、74LS244、74LS245、 74LS273、 74LS377等。
下面针对不同的情况分别介绍相应的调理方法。
1. 信号转换电路
(1) 电压或电流转换电路如图2-3(a)所示, 可根据电压
或电流的大小选择电阻R1和R2。
(2) 开关触点型信号输入电路如图2-3(b)所示, 这种电路 使得开关的通和断变成输出电平的高和低。
图2-3 信号转换电路 (a) 电压或电流输入; (b) 开关触点输入
人
人机 接口
计算机
I/O 通道
对象
图2-1 过程通道与人机接口
过程通道与人机接口是每个计算机控制系统中都必须具有 的重要组成部分,在计算机控制系统的设计中,许多精力都花 费在过程通道和人机接口的设计或选择上。许多控制计算机生 产厂家都设计和生产了各种各样的I/O模块供选用。
2.1 过程通道的分类
一般来说,计算机不会自主地工作,需要接收操作人员键 入的指令,其运行状态和结果也需要显示或打印,在现代大规 模控制系统中还应有通信和数据存盘功能,所有这些都是由人 与计算机之间的连接装置来完成的,我们称这种装置为人机接 口。
有了过程通道与人机接口,才能将人、计算机和生产过程 组成有机的整体,如图2-1所示。
数
据
缓
冲
微 型 计 算 机
、 地 址 译 码 、
控
制
逻
辑
输 入 缓 冲 器
输 出 锁 存 器
输 入 调 理
输 出 驱 动
工 业 现 场 设 备
图2-2 典型的开关量输入输出通道结构图
1. CPU接口逻辑
这部分电路一般由数据总线缓冲器/驱动器、 输入输出 口地址译码器、读写等控制信号组成。
2. 输入缓冲器和输出锁存器
图2-4 RC低通滤波电路
2.滤波电路
由于长线传输、电路、空间等干扰的原因,输入信号常常 夹杂着各种干扰信号,这些干扰信号有时可能使读入信号出错,
这就需要用滤波电路来消除干扰。 图2-4是一个RC低通滤波电
路。
这种电路的输出信号与输入信号之间会有一个延迟,可根
据需要来调整RC网络的时间常数。
3.保护电路
图2-7 开关或触点闭合及断开时的抖动
解决开关或触点的抖动问题可采用图2-8所示的双向消抖电 路。双向消抖电路是由两个与非门组成RS触发器, 把开关信号 输入到RS触发器的一个输入端A,当抖动的第一个脉冲信号使RS 触发器翻转时,D端处于高电平状态,故第一个脉冲消失后RS触 发器仍保持原状态,以后的抖动所引起的数个脉冲信号对RS触 发器的状态无影响,这样就消除了抖动。
3. 输入输出电气接口
典型的开关量输入输出电气接口的功能主要是滤波、 电 平转换、 隔离和功率驱动等, 关于这些内容, 将在后面详细 介绍。
2.2.2 开关量输入信号的调理
开关量输入通道的基本功能就是接收外部的状态信号, 这 些状态信号是以逻辑“1”或逻辑“0”出现的,其信号的形式 可能是电压、电流或开关的触点。在有些情况下,外部输入的 信号可能会引起瞬时的高电压、过电压、接触抖动以及噪声等 干扰。 为了将外部的开关量信号输入到计算机, 必须将现场 输入的状态信号经转换、保护、滤波、隔离等措施转换成计算 机能接收的逻辑信号,这就是开关量输入信号调理的任务。
2.2 开关量输入输出通道
2.2.1 开关量输入输出通道的一般结构形式
开关量输入输出通道一般由三部分组成: CPU接口逻辑、 输入缓冲器和输出锁存器、输入输出电气接口(亦即开关量输入 信号调理和输出信号驱动电路)。 一般情况下,各种开关量输 入输出通道的前两部分往往大同小异,所不同的主要在于输入 输出(I/O)电气接口。典型的开关量输入输出通道结构如图2-2 所示。
(3) 数字量输入通道:也称开关量输入通道。 凡是以电 平高低和开关通断等两位状态表示的信号统称为数字量或开关 量。 主要有三种形式:一种是以若干位二进制数表示的数字 量,它们并行输入到计算机,如拨码盘开关输出的BCD码等; 另一种是仅以一位二进制数表示的开关量,如启停信号和限位 信号等;还有一种是频率信号,它是以串行形式进入计算机的, 如来自转速表,涡轮流量计、感应同步器等信号。这些信号都 要通过数字量输入通道进入计算机。
图2-8 双向消抖电路
开关量输入通道
一、开关量输入通道的结构形式 二、开关量输入信号调理
为了实现计算机对生产过程或装置的控制,需要将对象的 各种测量参数按要求的方式送入计算机; 经计算机运算处理后 的数字信号也要变换成适合于对生产过程或装置进行控制的形 式。 因此,在计算机和生产过程之间必须设置信息传递和变换 的装置,这种装置就称为过程输入输出通道,简称为过程通道 或I/O通道。