陆地生态系统通量观测的原理与方法
亚洲区域陆地生态系统碳通量观测研究进展

展 [1]. 研究地球系统的碳循环过程和控制机理 , 评价 陆地生态系统对温室气体的吸收或排放能力 , 分析 全球碳源 /汇的时 -空分布特征 , 预测未来的气候变化 趋势和评价生态系统碳循环对全球变化的响应与适 应特征, 是现代地球系统科学、生态与环境科学关注
2004-07-14 收稿 , 2004-11-01 收修改稿 * 国家重点基础研究发展规划项目 (编号 : G2002CB412501)和中国科学院知识创新工程重大项目 (编号: KZCX1-SW-01-01A)共同资助 ** E-mail: yugr@
中国科学 D 辑 地球科学 2004, 34 (增刊Ⅱ): 15~29
15
亚洲区域陆地生态系统碳通量观测研究进展*
于贵瑞
①**
张雷明
①②
孙晓敏
①
李正泉
①②
伏玉玲
①②
(① 中国科学院地理科学与资源研究所, CERN 综合研究中心, 北京 100101; ② 中国科学院研究生院, 北京 100039)
摘要
[5] [4] [1]
与生态系统类型上的分布并不均衡 . 按地带性划分 , 26 个站点分布在温带地区 , 约占总数的一半 . 按生 态系统类型划分 , 30 个集中在森林 , 农田观测站点 也大部分集中于稻田 . 由此可见 , 现有的站点还远 远不能覆盖各区域的主要生态系统类型 , 还需要不 断增加观测站点的数量 , 增强观测站点的区域和生 态系统的代表性 , 以准确评价亚洲区域的陆地生态 系统碳源、 汇强度 . 近年来 , 中国的通量观测保持了 很好的发展势头 , 中国林业科学院和国家气象局都 在启 动 一定 规模 的 通量 观测 研 究计 划 ( 个 人 交流 ), 将为发展亚洲地区的通量观测事业起到进一步的推 动作用 . 值得关注的是 , 亚洲区域的一些卫星遥感 和环境监测方面的大型研究计划正在与通量观测研 究网络密切配合 (图 1), 这无疑会极大地提高通量观 测研究网络的综合研究能力 , 拓宽观测成果的应用 领域 . 本文重点评述了亚洲地区在通量观测设备研发、 观测技术改进、 典型生态系统 CO2 通量特征及环境控 制机理和生态系统碳循环模型模拟等研究领域所取 得的重要进展 , 并探讨了亚洲地区通量观测研究所 面临的主要科学问题、解决途径和新的区域合作机 制.
陆地生态系统通量观测的原理与方法(第二版)

陆地生态系统通量观测的原理与方法(第二版)
陆地生态系统通量观测是深入了解陆地生态系统及其能量循环的关键。
波尔特(Pörtner)等人的第二版《高等教育:陆地生态系统通量观测的原理与方法》,
将围绕国际包括学科,把握最先进的理论研究,分析研究范围,结合地方实践,意在引导读者利用适当的参数来理解陆地生态系统通量观测,从而深入探讨全球变化如何影响大尺度通量,以及改写通量观测计划。
本书首先介绍了陆地生态系统通量观测关键概念及关联框架,提供了基础知识。
然后,重点介绍了这一领域的观测原理,着重讨论了气候变化对植被通量的影响,并列出了各种远距离观测技术以及如何从这些技术中选择最佳观测模式。
这些讨论旨在激发读者关注和技能,帮助读者构建有效的科学设计,以评估陆地生态系统通量的变化。
此外,该书还讨论了数据处理的的多种实证方法,如回归分析,相关性分析,
统计模型等,着重介绍了观测设计、数据处理与结果评估的全过程,并针对实际情况提供了丰富的实用技巧和经验。
对于那些有兴趣深入研究陆地生态系统通量学的学生而言,这本书无疑可以为学习概念及其实施提供一个完整而又有效的框架。
因此,它所提供的全面信息及知识资源,为读者实现陆地生态系统通量观测的学习提供了有力的帮助。
中科院-生态系统水碳氮循环与通量观测原理与技术

2.7尺度Scale
• 在不同现象,分析和取样上,尺度被用作以上提及的 六个概念的同义词,还有一些其他相关定义被使用。
• 虽然尺度这一词汇的使用纷繁复杂而混乱不堪,但是 我们强调与以下三者具有联系。
1)被研究现象的结构和过程。(即存在空间尺度,也 存在时间尺度。)
2)取样方案和统计分析应该被分开考虑。(就是说 sampling和analysis的尺度是相互分离而不相互混淆的)
4.1.1美国矮桦Betula glandulosa
样线法 记录分布位置 和覆盖度
Yukon,Canada
1001个0.1×0.1m2的连续样方
4.1.2白刺果豚草Ambrosia dumosa
Joshua Tree National Park,America
样地为100×100 m2 取样样方为5×5 m2 记录分布位置
ECNU
1.2尺度概念--种类
现象(phenomenon) 尺度 观测(observational) 尺度
分析(analysis) 尺度
1.2.1现象尺度
27*27 cm
格局的空间特征:
斑块大小(tile size) 种间间距(phase lag) 现
象
尺 度
过程的空间特征: 行动的范围
(range of action)
• 在支撑(Support)任何一个特征上的某个改 变,都将新定义一个变量。
• 取样单元一旦改变,两组即便是同一属性的测 得变量也必然是截然分开的不同变量。
2.6比例尺Cartographic ratio
• 当数据被提出或存储为地图时,存在一个 地图上的距离所代表现实世界真实距离的 比值。
• large scale ≠ large extents
涡度协方差计算碳通量

涡度协方差计算碳通量涡度协方差法是一种常用于计算陆地生态系统碳通量的方法。
通过测量大气和植被层的温度和湿度变化,结合涡度相关技术和统计学方法,可以估算出碳通量的速率和方向。
本文将介绍涡度协方差法的原理、数据采集和处理流程,并探讨其在碳通量研究中的应用。
1. 原理涡度协方差法基于湍流理论,将陆地生态系统中的碳转化过程视为湍流运动。
湍流对水汽和热量的垂直混合导致温度和湿度的不均匀分布,进而影响大气和植被层之间的气体交换。
涡度协方差法通过测量和分析这种垂直湍流运动,计算出碳通量的大小和方向。
2. 数据采集涡度协方差法需要收集大气和植被层的相关气象数据,包括温度、湿度、风速和风向。
这些数据可以通过气象站、自动气象站或先进的遥感技术获取。
为了获取准确的结果,需要在地面上安装测量仪器,并进行现场观测。
数据采集的时间跨度应覆盖较长的时间段,以获得更全面的信息。
3. 数据处理将采集到的温度、湿度、风速和风向数据进行处理,得出碳通量的计算结果。
数据处理时需要注意以下几个方面:- 数据质量控制:对所采集的数据进行质量控制,剔除异常值和误差较大的数据。
- 时间尺度划分:将数据按照一定的时间尺度(如小时、日、月)进行划分和平均,以获得更稳定和可靠的结果。
- 湍流运动分析:使用涡度协方差相关技术,分析湍流运动的特征、强度和方向,推导出碳通量的速率和方向。
4. 碳通量估算通过涡度协方差法计算得出的涡度协方差通量(CO2 flux)是描述大气和植被层之间的碳交换速率的关键参数。
根据湍流理论和质量守恒原理,可以估算出碳通量的大小和方向。
在陆地生态系统中,正值表示植被吸收大气中的CO2,负值表示植被释放CO2到大气中。
5. 碳通量研究应用涡度协方差法被广泛应用于陆地生态系统的碳通量研究中,包括森林、草地、湿地等不同类型的生态系统。
通过对碳通量的观测和分析,可以评估生态系统的碳收支、碳储量和碳交换对气候变化的响应。
同时,涡度协方差法也可用于验证和改进碳循环模型,提高对碳通量的预测和估算精度。
中国陆地生态系统通量观测站点空间代表性

中国陆地生态系统通量观测站点空间代表性王绍强;陈蝶聪;周蕾;何洪林;石浩;闫慧敏;苏文【摘要】涡度相关技术是测定大气与陆地生态系统之间CO2交换、水分和能量通量最直接的方法,可用于研究土壤、植被与大气间的CO2交换及其调控机制.收集了11个影响净碳交换量的主要变量信息,包括气象因素、土壤因素和地形因素的非生物因子、实际植被状态以及植被生产力,采用多元地理变量空间聚类分析方法,绘制出不同聚类数(25、50、75、85、100、150和200类)的通量生态区.结合中国现有通量观测站点的空间分布格局,与新生成的通量生态区和已有的自然地理区划进行对比分析,发现由于中国地形复杂,生态系统类型多样,现有85个涡度相关通量观测站点仅能刻画部分中国生态系统类型的净碳交换量时空特征,通量生态区划分为100-150类比较合适.考虑到涡度相关通量观测运行成本,通量站点可增加至150个,从而使得优化后的通量观测网络能够代表中国主要类型的生态系统,并且有利于通量观测数据与遥感资料的有效结合,提高碳水通量观测从站点扩展到区域尺度的精度,从而更好地检验过程机理模型的模拟结果.【期刊名称】《生态学报》【年(卷),期】2013(033)024【总页数】14页(P7715-7728)【关键词】涡度相关通量;生态区;多元地理变量;空间聚类【作者】王绍强;陈蝶聪;周蕾;何洪林;石浩;闫慧敏;苏文【作者单位】中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京100101;中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京100101;中国科学院大学,北京100049;中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京100101;中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京100101;中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京100101;中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京100101;中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室,北京100101【正文语种】中文涡度相关技术是测定大气与生态系统之间CO2交换、水分和能量通量最直接的方法,所提供的数据越来越多地被用作区域性和全球性陆地生态系统和大气间CO2、水、能量交换的分析依据[1]。
陆地生态系统通量观测的原理与方法

陆地生态系统通量观测的原理与方法
陆地生态系统通量观测是指对陆地生态系统进行实时或近实时的监测,以获取其能量、物质和信息的流动情况。
这些流动情况可以帮助我们了解陆地生态系统的运作机制,为环境管理、生态系统模拟和模型建立提供数据支持。
通量观测的原理基于物理和化学定律,比如气体定律、热力学第一定律和热力学第二定律。
通量观测的方法通常包括测量气体浓度、温度、湿度、风速和风向等参数,以及利用生物标志物(如树干呼吸、土壤呼吸、植物光合作用等)来估算生态系统的能量和物质流动。
还可以使用传感器、监测站和遥感技术进行通量观测。
举个例子,对于森林生态系统的通量观测,可以使用气体分析仪测量森林中二氧化碳的浓度,从而估算森林的碳汇能力。
还可以利用森林的树干呼吸(即树干对大气中二氧化碳进行吸收和释放的过程)来估算森林的碳汇能力。
还可以使用遥感技术对森林的生长情况进行监测,如利用卫星遥感数据来估算森林的蓄积量、森林覆盖度和叶面积指数(LAI)等。
还可以使用生物标志物,如土壤呼吸、植物光合作用和蒸腾速率来估算森林的能量和物质流动情况。
对于草地生态系统的通量观测,可以使用气体分析仪测量草地中的氧气和二氧化碳浓度,从而估算草地的碳汇能力。
还可以使用生物标志物,如土壤呼吸、植物光合作用和蒸腾速率来估算草地的能量和物质流动情况。
通量观测也可以应用于其他陆地生态系统,如农田、城市和沙漠等。
不同的生态系统可能需要使用不同的观测方法和技术,但基本原理是相通的。
亚洲区域陆地生态系统碳通量观测研究进展

七、结论
总的来说,亚洲区域的陆地生态系统碳通量观测研究在设备研发、观测技术 改进以及典型生态系统的CO2通量特征和环境控制机理等方面取得了一些重要进 展。然而,仍面临一些科学问题需要解决。未来,需要进一步加强新技术的研究 和应用,深入探索气候变化和人类活动对生态系统碳循环的影响机制,并积极参 与国际合作,共同推动亚洲地区的陆地生态系统碳通量观测研究的发展。
亚洲区域陆地生态系统碳通量 观测研究进展
目录
01 一、引言
三、典型生态系统
03 CO2通量特征及环境 控制机理
二、通量观测设备的
02 研发与观测技术的改 进
04
四、生态系统碳循环 模型模拟
目录
05 五、面临的科学问题 与解决途径
07 七、结论
06
六、新洲地区拥有丰富的生态环境和独特的生态系统,包括森林、草原、沙漠和 湿地等。这些生态系统在全球碳循环中起着重要的作用,它们不仅吸收大量的二 氧化碳(CO2),还通过呼吸作用释放出大量的碳。因此,对亚洲区域陆地生态 系统碳通量的观测和研究,对于理解全球碳循环过程,预测气候变化趋势,以及 制定相应的环境政策具有重大意义。
针对这些问题,解决途径主要包括:一是加强新技术的研究和应用,如无人 机观测和卫星遥感等,以提高数据采集的效率和精度;二是深入研究气候变化和 人类活动对生态系统碳循环的影响机制,为制定相应的环境政策提供科学依据; 三是加强国际合作,通过共享数据和资源,共同解决面临的科学问题。
六、新的区域合作机会
亚洲地区的陆地生态系统碳通量观测研究不仅需要本地区的科学家们的努力, 也需要国际社会的支持和合作。例如,可以通过参与国际研究项目,如 "FLUXNET"等,来提高亚洲地区的研究水平和技术能力。同时,也可以通过举办 国际会议和研讨会等方式,加强学术交流和合作。
涡度相关技术及其在陆地生态系统通量研究中的应用

1. 引言涡度相关技术是一种用于测量大气和陆地生态系统之间气体和能量通量的先进技术。
它通过测量空气中的微小涡旋来分析和计算各种气体(如二氧化碳、水汽、氮氧化物等)和能量(如热量)在不同生态系统中的通量。
本文将着重介绍涡度相关技术的原理、应用及其在陆地生态系统通量研究中的重要性。
2. 涡度相关技术的原理涡度是指流体(气体或液体)中的旋转运动。
在大气和陆地生态系统中,气体和能量的传输是通过对流和涡旋的方式完成的。
涡度相关技术利用了这种特性,通过测量单位时间内某一点上的气体或能量的变化来计算通量。
主要的涡度相关技术包括风速测量、气体浓度测量和温度测量,通过这些参数的测量和计算,可以得到气体和能量的通量数据。
3. 涡度相关技术在陆地生态系统通量研究中的应用涡度相关技术在陆地生态系统通量研究中有着广泛的应用,特别是在研究碳循环、水循环和能量平衡等方面。
它可以帮助科研人员更准确地了解生态系统中气体和能量的流动情况,进而对生态系统的健康和功能进行评估和预测。
涡度相关技术在陆地生态系统通量研究中的重要性不言而喻。
它可以帮助科研人员更全面地了解生态系统的气体交换和能量平衡,为进一步的生态系统研究提供宝贵的数据支持。
通过这些数据,科研人员可以更好地理解生态系统的结构和功能,并对其未来的发展趋势做出更准确的预测。
5. 个人观点和理解作为一种先进的气体和能量通量测量技术,涡度相关技术在陆地生态系统通量研究中发挥着不可替代的作用。
它为科研人员提供了一种全新的研究方法和数据来源,使他们能够更深入地了解生态系统的运行规律和响应机制。
我个人认为,涡度相关技术将会在未来的生态学研究中发挥越来越重要的作用,为人们探索地球上的自然奥秘提供强有力的支持。
6. 总结涡度相关技术是一种重要的气体和能量通量测量技术,它在陆地生态系统通量研究中有着广泛的应用前景。
通过对涡度相关技术的深入了解和应用,我们可以更好地认识和保护地球上的生态系统。
希望本文的介绍能够让您对涡度相关技术有更清晰的认识,对陆地生态系统通量研究有所启发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陆地生态系统通量观测是指对陆地生态系统进行实时或近实时的监测,以获取其能量、物质和信息的流动情况。
这些流动情况可以帮助我们了解陆地生态系统的运作机制,为环境管理、生态系统模拟和模型建立提供数据支持。
通量观测的原理基于物理和化学定律,比如气体定律、热力学第一定律和热力学第二定律。
通量观测的方法通常包括测量气体浓度、温度、湿度、风速和风向等参数,以及利用生物标志物(如树干呼吸、土壤呼吸、植物光合作用等)来估算生态系统的能量和物质流动。
还可以使用传感器、监测站和遥感技术进行通量观测。
举个例子,对于森林生态系统的通量观测,可以使用气体分析仪测量森林中二氧化碳的浓度,从而估算森林的碳汇能力。
还可以利用森林的树干呼吸(即树干对大气中二氧化碳进行吸收和释放的过程)来估算森林的碳汇能力。
还可以使用遥感技术对森林的生长情况进行监测,如利用卫星遥感数据来估算森林的蓄积量、森林覆盖度和叶面积指数(LAI)等。
还可以使用生物标志物,如土壤呼吸、植物光合作用和蒸腾速率来估算森林的能量和物质流动情况。
对于草地生态系统的通量观测,可以使用气体分析仪测量草地中的氧气和二氧化碳浓度,从而估算草地的碳汇能力。
还可以使用生物标志物,如土壤呼吸、植物光合作用和蒸腾速率来估算草地的能量和物质流动情况。
通量观测也可以应用于其他陆地生态系统,如农田、城市和沙漠等。
不同的生态系统可能需要使用不同的观测方法和技术,但基本原理是相通的。