电势差的公式

电势差的公式
电势差的公式

电势差的公式

电势差的计算公式有哪些

电压,也称作电势差或电位差,是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作用从A点移动到B点所做的功,电压的方向规定为从高电位指向低电位的方向。

1、电场中某点的电荷的电势能跟它的电量的比值,叫做这点电势

U=E/q

其中U表示电势,E表示电势能,q表示电荷量.

2、电势能E=W=Uq

电势差的公式Uab=φa-φb

a、b两点的电势差等于a的电势和b的电势的差值。

如何求电势差

电势差是指电场中两点之间电势的差值,也叫电压,用字母U表示。在国际单位制中,电势差的单位是伏特,简称为伏,符号是V。1库电荷从电场中的一点移动到另一点,如果电场力做了1焦耳的功,这两点间的电势差就是1伏。

Uab=φa-φb

电荷q在电场中由一点A移动到另一点B时,电场力所做的功与电荷

量的比值叫做A、B两点的电势差。关系式为:Uab=Wab/q。

电压差和电势差的区别

(1)电压,也称作电势差或电位差。

(2)电压是衡量单位电荷在静电场中由于电势不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作用从A点移动到B点所做的功,电压的方向规定为从高电位指向低电位的方向。

电压的国际单位制为伏特(V,简称伏),常用的单位还有毫伏(mV)、微伏(μV)、千伏(kV)等。此概念与水位高低所造成的“水压”相似。

需要指出的是,“电压”一词一般只用于电路当中,“电势差”和“电位差”则普遍应用于一切电现象当中。

电解槽正常生产的主要技术参数

电解槽正常生产的主要技术参数铝电解槽经过焙烧、启动和后期管理之后进入正常生产阶段,正常生产阶段的电解槽是在规定的电流强度下进行生产的。其特征是:电解槽的各项技术参数已达到了规定的范围建立了较稳定的电热平衡制度,阴极周围的侧壁上已牢固的形成电解质-氧化铝结壳(俗称伸腿)构成了较好的炉膛内形,另外可看到阳极不氧化、不着火、阳极周围的电解质均匀沸腾,电解质与炭渣分离较好,阳极底下没有过量的沉淀,炉面结壳完整并覆盖一定数量的氧化铝保温。也就是说电解槽的正常生产是在一定的技术参数和常规作业制度的密切配合下实现的。 电解槽生产的技术参数是以电解槽的类型、容量和操作人员的技术水平而定。技术参数包括:槽工作电压、极距、电解温度、电解质成份(分子比)两水平、炉底压降、效应系数。 下面我们分别来讲各项技术参数在铝电解生产中的作用: 1、系列电流强度:每个电解系列都有额定的电流强度、额定的电压、与之对应 有一定的产铝量。额定的电流强度一经确定下来,尽可能保持恒定的电流强度不变,以保证整个电解系列生产的稳定性。 2、槽工作电压:电解槽的工作电压由阳极压降(约0.34V)、电解质压降(约 1.57V)、阴极压降(约0.36V)、母线压降(约0.20V)、极化电压(约1.70V)、效应 分摊电压(约0.10V)。只随氧化铝浓度的变化而稍有变化。 槽工作电压随生产操作而变动,但极化电压和母线压降变化较小,只随氧化铝浓度的变化而稍有变化。变化较大的是阳极压降、电解质压降和阴极压降这三项也是维持电解温度热量来源的电压。其中电解质压降时刻在变化,所以平时工作电压的高低在某种意义上来说就是电解质压降的高低。因而工作电压对电解温度有明显的影响过高或过低保持电压都会给电解槽带来变化。 1.槽电压过高保持不但浪费电能而且电解质热量收入增多,会使电解槽走向热过程,炉膛熔化、原铝质量受影响,并影响电流效率。 2.槽电压保持过低也不行,虽然最初因热收入减少可能会出现低温时的坏处,电解温度低,电解质会下缩产生沉淀的机会增多,而形成结壳会使炉底电阻增加而发热,由冷行程转为热行程。其结果的损失,可能比高电压时要大的多,槽电压过低还可能造成压槽、滚铝和不灭效应等技术事故,因而在生产中决定各种情况下的槽工作电压的保持一定要谨慎。正常生产的槽电压应该时稳定的,如果出现波动应该查明原因及时处理。 3、极距:通常所说的极距是指阳极底掌到铝液镜面之间的距离。它既是电解过 程中的电化学反应区域又是维持电解温度的热源中心,对电流效率和电解温度有着直接影响。

接触电压测量

接触电压测量 接触电压擦了系列产品可分为:DF9000大型地网变频大电流接地特性测量系统,DF910K大型地网变频大电流接地阻抗测量系统,DF902K变频抗干扰接地阻抗测量仪。1、DF9000大型地网变频大电流接地特性测量系统:系统输出功率大(2-20KW),电压高(0-1000V),输出电流大(0-50A)。精确测量接地阻抗,接地电抗,接地电阻,接触电压,跨步电位差,场区地表电位梯度,接触电压,接触电位差,跨步电压,转移电位,导通电阻,土壤电阻率等参数,可全面测量大型地网的各项特性参数,完全满足新版DL/T475-2006《接地装置特性参数测量导则》的要求。2、DF910K大型地网变频大电流接地阻抗测量系统:系统输出功率大(5-20KW),输出电压(0-1000V),输出电流(0-50A)。精确测量接地阻抗,接地电阻,接触电位差,接地电抗,导通电阻,土壤电阻率等参数。3、DF902K变频抗干扰接地阻抗测量仪:系统输出功率2kW,输出电压(0-200-400V).测试输出电流(0-10A)。精确测量接地阻抗,接地电阻,接地电抗,导通电阻,土壤电阻率等参数。可满常规接地网的测量。 主要用于 1.精确测量大型接地网接地阻抗、接地电阻、接地电抗; 2.精确测量大型接地网场区地表电位梯度; 3.精确测量大型接地网接触电位差、接触电压、跨步电位差、跨步电压; 4.精确测量大型接地网转移电位; 5.测量接地引下线导通电阻; 6.测量土壤电阻率变频抗干扰接地阻抗测试:也称大地网接地电阻测试仪,变频大电流接地阻抗测试仪,大型接地网接地阻抗测试系统、接地装

置特性参数测试系统、大地网接地阻抗测试仪,接地阻抗测试仪等。 DF9000变频大电流多功能地网接地特性测量系统: 一、概述 DF9000变频大电流多功能地网接地特性测量系统是上海大帆电气有限公司和上海交通大学联合研制的最新成果,主要用于精确测量大型接地网特性参数的软硬件系统,系统主要功能:精确测量接地阻抗,接地电阻、接地电抗,场区地表电位梯度,接触电压,跨步电压,土壤电阻率,地网电流分布情况等参数。DF9000变频大电流多功能地网接地特性测量系统通过对接地网注入一个异于工频的电流,有效地避免了50Hz及其它干扰信号引起的测量误差,可精确、经济、安全的测量接地网接地阻抗,接触电压,跨步电压,场区地表电位梯度等参数,同时使得测量过程变得方便而安全。DF9000变频大电流多功能地网接地特性测量系统主要包括:大功率变频信号源、耦合变压器、高精度多功能选频万用表、Rogowski线圈及其它附件等组成。 二、系统主要技术特点 ☆采用军用电子对抗数字滤波技术,抗干扰能力极强。(关键性能) 选频特性尖锐,通频带±0.3Hz。实测200V的干扰在±1Hz偏频测量引起的误差低于0.1mV,干扰抑制能力达到万分之一以上,远胜于部分进口仪器百分之几的抗干扰能力,保证了测试精度。系统还单独增加设计有50Hz陷波器,可完全滤除50Hz工频干扰。 ☆系统输出功率大(2-20KW),电压高(0-1000V),输出电流大(0-50A)彻底解决了同类设备输出功率和电压偏小,现场难以升流的问题。目前的地网测量设备大多功率偏小,如较常见的设备输出为100V/5A

防雷接地计算书

工程设计计算书 110kV变电站工程施工图设计阶段 工程代号: B1481S 专业:电气计算项目:防雷接地计算书 主任工程师: 组长: 主要设计人: 校核: 计算: 防雷计算

一. 避雷针的保护半径计算 单支避雷针的保护范围 当5h .0h x <时, P )2h 5h .1(r x x -= 式中: x r —避雷在 水平面上的保护半径 h —避雷针高度 x h —被保护物的高度m P —高度影响系数, 1;P 30m,h =≤ 当h m ≥120>30m 时,h p 5.5= ; #1,#2,#5独立避雷针高度为24米,站内#3架构避雷针高度为26米,站内#4架构避雷针高度为26米(此避雷针为二期),全站取被保护物高度为10米。 (1) 对于#1,#2避雷针,当10h x =m 时,5h .0h x < P )2h 5h .1(r x x -= 1)102245.1(??-?= 16m = (2)对于#3避雷针,当10h x =m 时,5h .0h x < P )2h 5h .1(r x x -= 1)102625.1(??-?= =19m (3)对于#5避雷针,当5h x =m 时,5h .0h x < P )2h 5h .1(r x x -= 1)52425.1(??-?= =26m

二. 两支避雷针的保护范围 1 两支等高避雷针的保护范围: (1) 两针外侧的保护范围按单支避雷针计算: (2) 两针间的保护最低点高度O h 按下式计算: 7P D h h o - = 式中:O h —两针间保护范围上部边缘最低点高度,m ; D —两避雷针间的距离,m ; (3) 两针间x h 水平面上保护范围的一侧最小宽度x b 按下式计算: 当o x h 2 1 h ≥ 时, )h h (b x o x -= 当o x h 2 1h < x o x h 2h 5.1b -= 2 两支不等高避雷针的保护范围 (1)两针外侧的保护范围分别按单支避雷针的计算方法确定。 (2)不等高化成等高避雷针间距离: 当P h h D D h h )(21 21'12--=≥时, 三 避雷针的具体保护范围计算 两避雷针间的距离按图纸上实际数据计算 (1)#1—#2针联合保护范围(等高), D=40.2 m ,10m h x = 7P D h h o -=1 740.2 24?- ==18.3m , o x h 2 1h ≥ )h h (b x o x -==3.8103.18=-m (2)#2—#3针联合保护范围(不等高), D=34.8m ,10m h x =

跨步电压

跨步电压 一、所谓跨步电压 就是指电气设备发生接地故障时,在接地电流入地点周围电位分布区行走的人,其两脚之间的电压。 1.电气设备碰壳或电力系统一相接地短路时,电流从接地极四散流出,在地面上形成不同的电位分布,人在走近短路地点时,两脚之间的电位差叫跨步电压。 2.定义 当架空线路的一根带电导线断落在地上时,落地点与带电导线的电势相同,电流就会从导线的落地点向大地流散,于是地面上以导线落地点为中心,形成了一个电势分布区域,离落地点越远,电流越分散,地面电势也越低。如果人或牲畜站在距离电线落地点8~10米以内。就可能发生触电 3.跨步电压事故,这种触电叫做跨步电压触电。 人受到跨步电压时,电流虽然是沿着人的下身,从脚经腿、胯部又到脚与大地形成通路,没有经过人体的重要器官,好像比较安全。但是实际并非如此!因为人受到较高的跨步电压作用时,双脚会抽筋,使身体倒在地上。这不仅使作用于身体上的电流增加,而且使电流经过人体的路径改变,完全可能流经人体重要器官,如从头到手或脚。经验证明,人倒地后电流在体内持续作用2秒钟,这种触电就会致命。 二.试验结果证明 脉冲电压幅值为0.6~30千伏时,跨步电压和接触电压对牛的内部肌体没有任何损伤。 如跨步电压的幅值提高到40~70千伏,而接触电压的幅值提 1. 跨步电压的演示图 高到42~56千伏时,牛的中枢神经系统和血液循环机能受到影响。这是暂时性影响,经过休息后可以完全恢复,没有生命危险。 2.如跨步电压的幅值提高到96千伏,接触电压的幅值提高到74千伏时,牛的呼吸失常,心脏活动机能损伤,产生不可逆过程,有生命危险。 一旦误入跨步电压区,应迈小步,双脚不要同时落地,最好一只脚跳走,朝接地点相反的地区走,逐步离开跨步电压区。 3.人站在接地短路回路上,两脚距离为0.8米,人身所承受的电压,称为跨步电压。 三.危害 当跨步电压达到40~50V时,将使人有触电危险,特别是跨步电压会使人摔倒进而加大人体的触电电压,甚至会使人发生触电死亡。 四.增设接地极改变跨步电压 增设垂直接地极对于降低接触电压和跨步电压具有非常显著的作用,一是垂直极的引入,降低了地电位升(GPR),而接触及跨步电压均与GPR有着直接的关系。二是因为增设垂直极后,大部分故障电流通过垂直极流入大地,相应减少了水平导体的散流量,因此地表面的水平方向电流密度大大减少,造成水平方向电场强度大大降低。

电流电压公式

(1)串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流到处相称I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和... (1)串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流到处相称I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和P=P1+P2 (2)并联电路 总电流等于遍地电流之和I=I1+I2 遍地电压相称U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和P=P1+P2 (3)统一用电器的电功率 ①定额功率比现实功率等于定额电压比现实电压的平方Pe/Ps=(Ue/Us)的平方 2.有关电路的公式 (1)电阻R ①电阻等于材料疏密程度乘以(长度除以横截平面或物体表面的大)R=疏密程度×(L÷S) ②电阻等于电压除以电流R=U÷I ③电阻等于电压平方除以电功率R=UU÷P (2)电功W 电功等于电流乘电压乘时间W=UIT(普式公式) 电功等于电功率乘以时间W=PT 电功等于电荷乘电压W=QT 电功等于电流平方乘电阻乘时间W=I×IRT(纯电阻电路) 电功等于电压平方除以电阻再乘以时间W=U?U÷R×T(同上) (3)电功率P ①电功率等于电压乘以电流P=UI ②电功率等于电流平方乘以电阻P=IIR(纯电阻电路) ③电功率等于电压平方除以电阻P=UU÷R(同上) ④电功率等于电功除以时间P=W:T (4)电热Q 电热等于电流平方成电阻乘时间Q=IIRt(普式公式) 电热等于电流乘以电压乘时间Q=UIT=W(纯电阻电路 功率=1.732*定额电压*电流是三相电路中星型接法的纯阻性负载功率计算公式 功率=定额电压*电流是单相电路中纯阻性负载功率计算公式 P=1.732×(380×I×COSΦ)是三相电路中星型接法的感性负载功率计算公式 单相电阻类电功率的计算公式= 电压U*电流I 单相机电类电功率的计算公式= 电压U*电流I*功率因子COSΦ 三相电阻类电功率的计算公式= 1.732*线间电压U*线电流I (星形接法)

接地计算

修改码:0 表GD118 计算书首页 工程名称湖南华润鲤鱼江发电B厂设计阶段施工图 计算书名称全厂接地装置的接地电阻、接触电位和跨步电位计算 批准: 审核: 校核: 设计: 计算日期年月日

1.总述: 本计算书为湖南华润鲤鱼江发电B厂500kV开关站防雷接地计算。计算目的是为了校验升压站接地网布置的合理性,以及接地网表面最大接触电压和跨步电压应小于允许值。计算依据为中华人民共和国电力行业标准DL/T621-1997《交流电气装置的接地》(备案号:684-1997)。 2.入地短路电流计算: 2.1 鲤鱼江发电B厂远景主结线示意图: 鲤鱼江发电A厂远景规划4?300MW机组,每两台机组以发电机-变压器组扩大单元接线形式接入发电B厂500kV开关站。由于A厂资料暂缺,暂按两台300MW机组相当于一台600MW机组等效考虑计算。 短路点发生在500kV母线上,取S d=1000MVA,U d=525kV,则: 短路电流基准值I d=S d/3U d=1000/(3?525)=1099.71A 系统零序电抗X0=0.1161(以上均为归算在统一基准值下的电抗标幺值)。 主变零序电抗标幺值X T1*=0.15?1000÷720=0.2083 启备变零序电抗标幺值X T0*=0.20?1000÷50=4 由于启备变零序电抗远远大于主变零序电抗及系统阻抗,故在零序网络图中启备变分支可忽略不计。

X 0∑= X 0//( X T1*/6) =0.1161//(0.2083/6)=0.0267 单相接地短路电流I k =28.613 kA(短路电流数据见图F2351C-D-06) 流经变压器中性点电流: I n = I k ? X 0/{ X 0+ X T1*/6} =28.613?0.1161/{0.1161+0.0347} =22.03kA 3 全厂接地网的接地电阻及接触电压与跨步电压计算: 2005年07月初,本院勘测队在鲤鱼江发电B 厂厂区内,实测93个测量点, 测量时天气晴朗,地表干燥。从测量结果看,各点的电阻率偏高,属于高土壤电 阻率地区,现取平均值1797.05Ω·m ,季节系数ψ取1.2,则ρ=ψρ0=2156.46 Ω·m 。 全厂接地网基本是以水平接地体为主,且边缘闭合的复合接地网,水平 接地体采用—60×6镀锌扁铁,接地网长度L 1=810m ,宽度L 2=405m ,接地网外 缘边线总长度L 0=2780m ,水平接地极的总长度L=21400m ,接地网面积S=328050m 2。接地网沿长方向布置的均压带根数n 1=16,沿宽方向布置的均压带 根数n 2=21。 全厂接地网接地电阻R g ≈0.5ρ/ S =0.5×2156.46÷328050 =1.88Ω 全厂接地网均压带可近似认为等间距,均压带等效根数由下式计算: n=2(L/L 0)(L 0/4S )1/2 =2?21400÷2780?(2780/4328050)1/2 =16.95≈17 (B8) 均压带直径d=0.03m 2.3 入地短路电流及接触电压和跨步电压计算: 发电厂内发生接地短路,流经接地装置电流: I=(I k -I n )(1-ke 1) =(28.613-22.03)(1-0.5) (B1) =3.29kA 发电厂外发生接地短路,流经接地装置电流: I=I n (1-ke 2) =22.03? (1-0.1) (B2) =19.83kA 入地短路电流取上述两式中较大值,I=19.83kA 本厂属于有效接地系统,按接地规程规定,全厂接地装置的接地电阻应 R ≤I 2000=198302000 =0.10Ω。 接地装置电位U g =IR g

电解槽的安全用电

LOGO https://www.360docs.net/doc/773395116.html,

电气学习的认识 £电压、电流 U=IR 短路断路 £态度:我以为没有事,并不代表他没事(每个人的知 识层次是不同的) £心态:不接触、不用,永远不会有事,如果动,必须先了解,再掌握,后会用 £用电安全是相对的:对用心的人是安全的,对好事的人是危险的 £电气的核心目的是用电 £具备的条件:能学、会学、能懂、会用缺一不可

绝缘的概念 £所谓绝缘,就是使用不导电的物质将带电体隔离或包裹起来,以对触电起保护作用 的一种安全措施。良好的绝缘是保证电气设备与线路的安全运行,防止人身触电事故发生的最基本和最可靠的手段。

相关的电气及触电知识 £电路:电流流过的路径,由电源、负载、控制电器和保护电气、导线组成。 £短路:电源不经过负载直接接通叫作短路。此时的能量释放根据电源的大小来 决定。 £在一般情况下,人体电阻可按 1000~2000欧 £电气设备分为高压和低压两种: £高压:电压等级在1000V及以上者; £低压:电压等级1000V以下者。

设备不停电时的安全距离 £电压等级10 kV及以下 0.70 m £ 35 kV1.00m £ 110kV1.50m £ 220kV3.00m £雷雨天气,需要巡视室外高压设备时,应穿绝缘靴, 并不得靠近避雷器和避雷针。

人体的电流 £感知电流——引起感觉的最小电流。如轻 微针刺,发麻。 £平均(概率50%),男:1.1 mA ;女:0.7 mA £摆脱电流——能自主摆脱带电体的最大电 流。 £平均(概率50%),男:16mA;女:10.5 mA £最低(概率0.5%),男: 9mA;女: 6 mA £室颤电流——引起心室发生心室纤维性颤 动的最小电流。 50mA £一般人体所能忍受的安全电流可按30 mA考虑 £人体触电后非死即伤

接触电压和跨步电压

接触电压和跨步电压? 在配电变压器低压侧中性点不接地的系统中,发生单相接地故障时,接地电流通过接地装置和大地是以接地点为中心向周围的大地扩散,此时,大地表面便形成了一个电位分布区,该分布区内的不同地点便具有不同的电位。电气设备如开关等若发生接地故障,这时人手接触接地故障的设备外壳(或构架等)时,人体的手与两脚之间便产生一个电位差,这个电位差便称为接触电压。 人体直接接触带电体的一相时,就形成带电体、人体、大地构成的回路,这样造成的触电称为单相触电。

单相触电 人体的两个不同部位同时接触两相电源带电体而引起的触电称为两相触电。 两相触电 架空导线断线落地,发生单相接地故障时,人若在接地点周围(电位分布区内)行走,两脚便处于不同电位的地面上,这时两脚之间的电位差称跨步电压。接触电压的大小与发生接地故障设备离开地下接地体的远近有关;若离开接地体愈近,接触电压就愈小;反之,接触电压则愈大。 跨步电压的大小与人离接地体(点)的远近也有关;人站立处离接地体(点)愈近,跨步电压就愈大缺;反之便愈小。

跨步电压触电

怎样防止跨步电压的危害? 高压线路断线后,落在地面上,或者低压线绝缘破损触碰在电杆的拉线上,电流就会从落地点向四面八方流入地内。如果一旦误入断线附近,产生的跨步电压就会对性命直接造成威胁。跨步电压是断线落地点或带电拉线入地点周围地面上任何两点间的电压,两点间距离愈大电压愈高。当人走进这个地区时,前脚着地点的电压,高于后脚落地点的电压,两脚间就存在电压差,因而就有电压加在人身上。人与电线落地点越近,跨步的步用越大,跨步电压就越高,触电后果就越严重。如果遇到高压线断落,自己又在跨步电压范围内,这个范围一般离电线落地点20m以内,这时,应迈小步,双脚不要同时落地,最好一只脚跳走,朝接地点相反的地区走,逐步离开跨步电压区。

地网跨步电压、接触电压测量方法

地网跨步电压、接触电压测量方法 一、概述 当发生接地故障时,若出现过高的接触电压或跨步电压,可能发生危及人身安全的事故。一般将距接地设备水平0.8m处,以及与沿该设备金属外壳(或构架)垂直于地面的距离为1.8m出的两处之间电压,称为接触电压。人体接触该两处时就要承受接触电压。当电流流经接地装置时,在其周围形成不同的电位分布,人的跨步约为0.8m,在接地体径向的地面上,水平距离0.8m的两点间电压,称为跨步电压。人体两脚接触该两处时就要承受跨步电压。 1、电站地网对角线长度约:1000m。 2、电站单相接地故障电流取设计部门提供的15kA。 二、测量方法 一般可利用电流、电压三极法测量接地电阻的试验线路和电源来进行接触电压、跨步电压的测试。 1、测量接触电压 按接线图,加上电压后,读取电流和电压表的指示值,其电压值表示当接地体流过测量电流为I时的接触电压,流过短路接地电流Imax时的实际接触电压:Uc=U* Imax/I=KU Uc—接地体流过短路接地电流Imax时的实际接触电压(V) U—接地体流过电流I时实际的接触电压(V) K—X系数,其值等于Imax/I 2、测量跨步电压 按接线图,加上电压后,使接入接地体的电流为I,将电压极插入离接地体0.8,1.8,2.4,3.2,4.0,4.8,5,6m,以后增大到每5m移动一点,直到接地网的边缘,测量各点对接地体的电位。这一方向完成后,再在另一方向按上面的方法完成测量。 对地网两点之间最大电位差Umax,应乘以系数K,求出接地体流过电流Imax 的实际电位差。在地网设计上,一般要求这个值不大于2000V。 在电位分布图上可得到任意相距0.8m两点间的跨步电压:Ua= K(Un–Un-1) Ua—任意相距两点间的实际跨步电压(V) Un–Un-1—任意相距0.8m两点间测量的电压差(V) K—X系数,其值等于Imax/I

电解槽一般常出现问题

电解槽一般常出现以下问题: 1、涂层脱落。 2、单槽电压出现波动打开后发现阳极极网下陷,严重时极网与加强筋的焊接处断裂。 3、某一电解槽连续多次维修,直到单槽位置调整后才能运行,且与所修单槽相邻的单元开车时出现槽电压升高现象。 4、当单槽电压出现升高时打开后发现膜下部呈规则状起泡。 5、槽电压突然升高打开后膜边部出现撕裂现象。 6、有时槽电压升高打开后膜与极片都没有问题。 7、膜针孔现象有几种现象导致? 8、什么原因导致电槽爆炸? 9、集液管变形后流量变化对槽电压有什么影响? 10、膜被污染是什么原因? 11、单元槽电压上涨的原因? 1:①开停车时极化电流送反;②电槽长时间无电流循环,原电池反应损坏电极③安装极网时划伤开车后腐蚀②膜漏后氢氧根到阳极生成氧气腐蚀阳极涂层,氯气到阴极腐蚀阴极涂层 2:气相压差过高压坏极网 3:不能正常运行?描述下啊,是槽电压不正常吗?还是出液不正常?调整后相邻单元槽升高很明显吗?还有啥具体现象?

4:①多高?工艺指标正常吗?膜下部的话能导致产生气泡的指标有阴极液流量小或槽内阴极循环不畅、进槽碱浓度高,阳极流量小、相对电流密度大、进槽盐水浓度低或循环不畅等都会造成浓度不均而造成水泡,另外还有酸度大,阴阳极温差大,正压差过大,槽温过高 ②如果指标没问题,可能是粘结剂涂抹过多,流到极网面上,附着在离子膜上使电流效率下降,发生盐泡和针孔,并使槽电压上升 ③如果阳极垫片比阴极垫片更突出于电解槽内的话,突出部位也容易产生盐泡和针孔 5膜撕裂:①膜本身的问题,没检查好、膜试漏没做好②阴极有毛刺对膜产生机械损伤③垫片粘接不牢,压力增大时垫片被挤压会连带所装的膜拉伸使膜受伤,严重时会使靠近边框处撕裂④阳极垫片太靠里,产生水泡、针孔甚至撕裂⑤经常发生电解液浓度和稳定的突变 6槽电压升高:①如果是整个电槽子的单元槽都偏高,一般是操作因素的影响,需要检查是否过电流、阴阳极循环流量、盐水杂质、电解液浓度温度PH、电槽压力压差②如果是单个单元槽升高,一般是膜泄露或者极板损伤,如果膜和极板都没有问题就不知道了,检查下单元槽进出软管电解液情况, 7膜针孔:参照4和5,膜起泡、针孔、撕裂的原因都差不多,就是严重等级的问题 8:电解槽爆炸一般都是由氯气和氢气混合造成的,比如没控制好压力压差过大等原因造成离子膜机械损伤严重使CL2和H2大量混合引起爆炸;电流超出最大负荷时产生大量气体槽内压力过大,造成槽喷裂;氢气泄漏

三相电流计算公式

三相电流计算公式 I=P/(U*所以1000W的线电流应该是。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是,电压等于380V时,电流是,以上说的是指的单相的情况。380V 三相的时候,公式是I=P/(U*,电流大小是 三相电机的电流计算I= P/*380* 式中:P是三相功率是根号3) 380 是三相线电压(I 是三相线电流) 是功率因数,这里功率因数取的是,如果功率因数取或者,计算电流还小。电机不是特别先进的都是按计算。按10kW计算:I=10kW/*380* =10kW/ = A 三相电机必须是三相电源,10KW电动机工作时,三根电源线上的工作电流都是 A 实际电路计算的时候还要考虑使用系数,启动电流等因素来确定导线截面积、空开及空开整定电流。 三相电中,功率分三种功率,有功功率P、无功功率Q和视在功率S。电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 三种功率和功率因素cosΦ是一个直角功率三角形关系:两个直角边是有功功率P、无功功率Q,斜边是视在功率S。三相负荷中,任何时候这三种功率总是同时存在:S2=P2+Q2 S=√(P2+Q2) 视在功率S= 有功功率P=Φ 无功功率Q=Φ 功率因数cosΦ=P/S 根号3,没有软件写不上,用代替 系统图 Pe:额定功率Pj:计算有功功率Sj:计算视在功率Ij:计算电流Kx:同时系数cosφ:功率因数Pj=Kx*Pe Sj=Pj/cosφ 单相供电时,Ij=Sj/Ue 三相供电时,Ij=Sj/√3Ue 电气系统图里的符号是有标准的 KM表示交流接触器 KA表示中间继电器, KT表示时间继电器; FR表示热继电器;

跨步电压的危害及预防措施

跨步电压的危害及预防措施 一、概述 当的一根带电导线断落在地上时,落地点与带电导线的相同,电流就会从导线的落地点向大地流散,于是地面上以导线落地点为中心,形成了一个电势分布区域,离落地点越远,电流越分散,地面电势也越低。如果人或牲畜站在距离电线落地点8~10米以内。就可能发生事故,这种触电叫做。 人受到跨步电压时,电流虽然是沿着人的下身,从脚经腿、胯部又到脚与大地形成通路,没有经过人体的重要器官,好像比较安全。但是实际并非如此,因为人受到较高的跨步电压作用时,双脚会抽筋,使身体倒在地上。这不仅使作用于身体上的电流增加,而且使电流经过人体的路径改变,完全可能流经人体重要器官,如从头到手或脚。经验证明,人倒地后电流在体内持续作用2秒钟,这种触电就会致命。 脉冲电压幅值为~30千伏时,跨步电压和对牛的内部肌体没有任何损伤。 跨步电压示意图 如跨步电压的幅值提高到40~70千伏,而接触电压的幅值提高到42~56千伏时,牛的和血液循环机能受到影响。这是暂时性影响,经过休息后可以完全恢复,没有生命危险。 如跨步电压的幅值提高到96千伏,接触电压的幅值提高到74千伏时,牛的呼吸失常,心脏活动机能损伤,产生不可逆过程,有生命危险。 一旦误入跨步电压区,应迈小步,双脚不要同时落地,最好一只脚跳走,朝接地点相反的地区走,逐步离开跨步电压区。 二、危害

当跨步电压达到40~50V时,将使人有触电危险,特别是跨步电压会使人摔倒进而加大人体的触电电压,甚至会使人发生触电死亡。 当电气设备发生接地故障,接地电流通过接地体向大地流散,在地面上形成分布电位。这时若人们在接地短路点周围行走,其两脚之间.(人的跨步一般按米来考虑)的电位差,就是跨步电压。由跨步电压引起的人体触电,称为跨步电压触电。人体受到跨步电压作用时,人体虽然没有直接与带电导体接触,也没有放弧现象,但电流是沿着人的下身;从一只脚经胯部到另一只脚,与大地形成通路。触电时先是感觉脚发麻,后是跌倒。当触到较高的跨步电压时,双脚会抽筋而倒在地上。跌倒后,由于头脚之间的距离大,故作用于身体上的电压增高,触电电流相应增大,而且也有可能使电流经过人体的路径改变为经过人体的重要器官,如从头到脚或从头到手。因而增加触电的危害性。人体倒地后,电压持续2秒钟,人就会有致命危险。跨步电压的大小决定于人体离接地点的距离,距离越远,跨步电压数值越小,在远离接地点20米以外处,电位近似于零越接近接地点,跨步电压越高。 三、预防措施 1利用多种形式,各种宣传媒介,如黑板报、村广播、村民大会、放电影、田间地头、中小学生课堂等进行安全用电常识的宣传工作,讲跨步电压触电的危害及后果。 2村电工负责每年对本村供电区内的全部电力设备进行春检和秋检,落实安全措施,堵塞漏洞,预防事故的发生。 3架空线和接户线要经常维护,定期进行全面巡视检查,遇有大风、雨、雪、雾、冰雹、洪水等恶劣天气和用电高峰季节,要增加巡视检查次数和夜巡次数,对危及用电安全的设备、线路及时处理或采取暂停供电的应急措施。

电流 电阻 电压 计算公式

电流电阻电压计算公式 1、串联电路电流和电压有以下几个规律:(如:R1,R2串联) ①电流:I=I1=I2(串联电路中各处的电流相等) ②电压:U=U1+U2(总电压等于各处电压之和) ③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个阻值相同的电阻串联,则有R总=nR 2、并联电路电流和电压有以下几个规律:(如:R1,R2并联) ①电流:I=I1+I2(干路电流等于各支路电流之和) ②电压:U=U1=U2(干路电压等于各支路电压) ③电阻:(总电阻的倒数等于各并联电阻的倒数和)或。 如果n个阻值相同的电阻并联,则有R总= R 注意:并联电路的总电阻比任何一个支路电阻都小。 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒)。 5、利用W=UIt计算电功时注意:①式中的W、U、I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6、计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 【电学部分】 1电流强度:I=Q电量/t 2电阻:R=ρL/S 3欧姆定律:I=U/R 4焦耳定律: ⑴Q=I2Rt普适公式) ⑵Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5串联电路: ⑴I=I1=I2 ⑵U=U1+U2 ⑶R=R1+R2 ⑷U1/U2=R1/R2 (分压公式) ⑸P1/P2=R1/R2 6并联电路: ⑴I=I1+I2 ⑵U=U1=U2 ⑶1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] ⑷I1/I2=R2/R1(分流公式) ⑸P1/P2=R2/R1 7定值电阻: ⑴I1/I2=U1/U2 ⑵P1/P2=I12/I22 ⑶P1/P2=U12/U22

ETAP接地网计算

接地网计算培训讲稿 一、关于接地网的基本知识。 在电力系统中,为了保护设备和人身的安全,接地现象是非常常见的。将电气装置、设施该接地部分经接地装置与大地做良好的电气连接称为接地。接地根据用途可以分为工作接地、保护接地、防雷接地和防静电接地。接地装置由接地体和接地线两部分组成。 埋入地中并且与大地直接接触的金属导体称为接地体;把电气装设施该接地部分经接地体连接起来的金属导体称为接地线。接地体又分为人工接地体和自然接地体。兼作接地体用的直接与大地接触的各种金属构件、非可燃气体或液体的金属管道、建筑物中的钢筋、电缆外皮、电杆基础上的避雷线和中性线等都是自然接地体;为满足接地装置接地电阻要求而专门埋设的接地体称为人工接地体。我们所研究的接地网就是一种人工接地体,接地网由由水平接地体和垂直接地体,接地网的材料一般有钢管、角钢、圆钢、扁钢和铜带,接地网祈祷的作用有泻放电流和均压作用。 不同形状接地体周围土壤电位分布演示。 电流经接地体流入大地,在大地表面形成分布电位。接地体和大地零电位点间的电压称为接地装置的对地电压(或对地电位)。接地线电阻和接地体的对地电阻(电流自接地体向外散流所遇到的电阻,又称散流电阻或扩散电阻)之和成为接地装置的接地电阻。接地线电阻基本上很小,所以可以认为接地电阻就等于扩散电阻。接地电阻数值上等于对地电位与从接地体流入大地电流的比值。按流过接地体的电流是工频电流求得的电阻称为工频接地电阻;按流过接地体的电流是冲击电流求得的电阻称为冲击接地电阻。接地电阻和土壤电阻率、接地体规格有关。所以改变接触电阻的主要手段就是改变土壤电阻率和改变接地体敷设。土壤的电阻率大小主要取决于土壤中导电离子的浓度和水分含量。干燥的土壤是不导电的,有时候为了降低土壤电阻率还会采用降阻济。 评估接地网是否满足要求的指标除了接地电阻和对地电位外,还有接触电压和跨步电压。人站在地面上里设备水平距离0.8米处手触到设备外壳、构架离地面1.8米处,加于人手与脚之间的电压称为接触电压;人在分布电位区域中沿散流方向行走,步距为 0.8米时两脚间的电压称为跨步电压。在大接地短路电流系统中接触电压和跨步电压应 满足: ;

解析离子膜电解槽电压升高的原因

解析离子膜电解槽电压升高的原因 摘要:本文通过槽电压的引入,对离子膜电解槽电压升高的原因进行了深入细致的分析,同时提出了预防改进的措施。 关键词:离子膜电解槽电压升高原因分析 考核离子膜电解槽运行性能的重要技术经济指标是槽电压,是电解生产是否正常的考核标志。它与能耗密切相关,与离子膜的生产成本有着直接影响,因此在操作中要求尽量低的槽电压。为保证电解槽在低压下稳定运行,对影响电压的因素进行以下分析。 一、槽电压的结构 槽电压的计算公式为: V=Va+Vb+η阴+η阳+I(R金+R液),式中,V表示单槽电压V;Va表示理论分解电压V;Vb表示膜电压V;η阴为阴极过电压V;η阳为阳极过电压V;I为电流强度A;R金、R液分别表示金属导体、溶液的电阻Ω。其中Va是不变的,V的大小取决于其他项。 二、分析槽电压升高的原因 1.阴阳极性能不同程度的退化影响着单元槽电压 以前生产的离子膜厚度大,膜电压较高,但膜的强度也高,保护了阴阳极涂层。近年来,在高电流密度电解装置的运行控制自动化程度上已有了很大的提高,但配置的离子膜厚度小,强度较低,但要求的操作水平较高,一旦运行压力和压差失控发生故障,会严重的损伤离子膜,也不能有效地保护阴阳极涂层,甚至破坏性地腐蚀阴阳极基网。 当电解槽完成了一个膜寿命周期运行以后,即使更换了新膜,也不可能将单元槽电压恢复如初。这都源于阴阳极性能的逐步退化和网面是否平整以及膜极距弹性下降曾在以前运行中受到的意外影响变差造成的。 阴阳极涂层的有效使用期为6-8年。有效期过后,因阴阳极损坏而使单元槽电压上升达到250 mv以上。通常如果离子膜由于携带的杂质进入造成的电压明显上升或电流效率明显下降而膜的物理损伤并不严重,其阴阳极属于自然劣化,阴阳极寿命应损失1/4,如此情况下,电压上升一般在50~70 mv左右。 然而,电解装置的管理者为进行换膜工作,一般都会选择性能状态较差、电

功率电压电流公式 功率电压电流公式大全

功率电压电流公式功率电压电流公式大全 1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方) U:电压,V; I:电流,A; P:有功功率,W; R:电阻

纯电感无功功率Q=I2*Xl(式中2为平方)Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率Q=I2*Xc(式中2为平方)Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为初相。 8、交流电路最大值与在效值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接

I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电压,V; N1、N2:一次、二次线圈圈数; I2、I1:二次、一次电流,A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联电路 I=U/Z Z=[R2+(XL-Xc)2]和的开平方(式中2为平方)Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

306KA电解槽电压摆的原因及处理

306KA电解槽电压摆的原因及处理 摘要指出了306kA电解槽沉淀生成的原因、探讨消除沉淀的方法。 关键词炉底沉淀;电能利用率;换极作业;堵卡打击头;技术参数匹配 电解槽炉底沉淀对电解槽安全高效生产有很大的危害,一方面沉淀随着液体流动而磨损阴极,据邱竹贤研究,软沉淀的电导率是传统电解质的一半,沉淀会使周边的阴极有很大的电流密度,容易受到腐蚀,缩短槽寿命,另一方面,槽底沉淀会增加槽底电阻,使炉膛畸形,造成电解槽电压不稳定,迫使电解槽的极距降低,增加铝的再溶解量,大幅度降低电流效率,升高运行电压,降低了吨铝电能利用率,增加了吨铝成本。 某厂306KA电解槽自投产以来,技术参数和作业方式经过多次调整,逐渐总结出适宜的做法,预防并消除了炉底沉淀,稳定了电解槽况,提高了电流效率,降低了电耗。 1 306KA电解槽沉淀产生的原因 现代电解铝工艺普遍采用中间点式下料的方法向电解槽内添加氧化铝粉,正常情况下,不会产生沉淀,但是在实际生产中,会出现短时间内进入大量的氧化铝粉和电解质块的情况,物料无法被全部溶解,便沉积槽底,形成在铝水下的沉淀,经久不化,则变成结壳。产生沉淀的主要原因有: 1)換极作业操作不合理性是沉淀的重要原因之一。初期換极存在以下三种问题,是制造沉淀的主要原因:(1)是換极前不扒出极上浮料,提极后残极四周浮料全部进入槽内;(2)是更换阳极时壳面开口不合理,造成进入过多物料;(3)是管理制措施不完善,提极时掉入电解槽的块料捞不干净; 2)堵击头现象造成的沉淀,也是投生成沉淀的重要原因之一,306KA电解槽中缝设计阳极间距为200mm,由于电解槽不稳定,加之使用的打壳气缸是小气缸,高压风在0.45mp左右,所以电解槽下料点堵打击头现象十分严重,经常出现在下料口堆积大量氧化铝粉,此时一旦下料口被打开,堆积的氧化铝粉迅速进入电解槽中,在下料点处的槽底形成大量沉淀,长时间堆积变成槽底结壳; 3)下料方式落后造成的电解槽炉底沉淀增加,306KA电解槽在设计时采用中间下料点五点同时进料,但在经几年的运行实践表明,五点同时下料一次性对电解槽供料量过大,下料经常出现沉淀,严重时变成结壳,也有悖于现代电解槽低氧化铝浓度稳定运行的理念,不利于氧化铝粉的充分溶解,易形成沉淀; 4)技术参数匹配不合理,GeaD等人对电解槽槽底沉淀的研究得出,槽底沉淀的组成主要是Al2O3和冰晶石的成分,沉淀物中的电解质成分非常接近于Na3AlF6槽内沉淀与氧化铝粉的共晶点温度为955℃z左右,因此,当电解槽使

电流电压功率之间的关系及公式.

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦 特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个;

3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时

跨步电压触电是么回事

跨步电压触电是么回事

————————————————————————————————作者:————————————————————————————————日期:

跨步电压触电是怎么回事 实际上跨步电压触电也是属于间接触电形式。当两脚跨在为接地电流所确定的各种电位的地面上,且其跨距为 0.8m时,两脚间的电位差,称为跨步电压,由跨步电压造成的触电称为跨步电压触电。如图所示。

图接地电流由单根接地体向四周流散的情况 1—接地导线;2—接地体;3—流散电流 Ue—对地电压;Ie—接地电流;QF—油断路器 在图中,跨步电压为Us=φ1-φ2 式中 Us———跨步电压,V; φ1———人左脚所站处的电位,V; φ2———人右脚所站处的电位,V。接触电压则是指在接地电流回路上,一人同时触及的两点之间的电位差。接触电压通常以水平方向为0.8m,垂直方向1.8m 计算。图中的 Uc 表示人接触到油断路器 QF 时的接触电压,等于油断路器 QF 的电位φ3 和脚所站地方的电位φ之差,即 Uc=φ3-φ 接地电流是指由于绝缘损坏而发生的经故障点流入地中的电流,亦称

故障接地电流。在图中。接地电流经油断路器QF的外壳、接地导线、钢管接地体而散流入地中。下列情况和部位可能发生跨步电压触电。 ① 带电导体特别是高压导体故障接地或接地装置流过故障电流时,流散电流在附近地面各点产生的电位差,可造成跨步电压触电。 ② 正常时有较大工作电流流过的接地装置附近,流散电流在地面各点产生的电位差,可造成跨步电压触电。 ③ 防雷装置遭受雷击,或高大设施、高大树木遭受雷击时,极大的流散电流在其接地装置或接地点附近地面产生的电位差,可造成跨步电压触电跨步电压的大小受接地电流大小、人体所穿的鞋和地面特征、两脚之间的跨距、两脚的方位以及离接地点的远近等因素的影响。人的跨距一般按 0.8m 考虑。由于跨步电压受很多因素的影响,以及由于地面电位分布的复杂性,几个人在同一地带(如在同一棵大树下,或在同一故障接地点附近)遭到跨步电压触电完全可能出现截然不同的后果。人体受到跨步电压触电时,电流是沿着人的下身,从脚到脚与大地形成回路,使双脚发麻或抽筋并很快倒地。跌倒后由于头脚之间的距离大,使作用于人身体上的电压增高,电流相应增大,并有可能使电流通过人体内部重要器官而出现致命的危险。

相关文档
最新文档