解析几何(教材)pdf
解析几何(全解)

直线的方程1、l ()1过两点()2,3A ,()6,5B ;()2过()1,2A ,且以()2,3a =为方向向量;()3过()3,2P ,倾斜角是直线430x y -+=的倾斜角的2倍; ()4过()5,2A -,且在x 轴,y 轴上截距相等;()5在y 轴上的截距为3-,且它与两坐标轴围成的三角形面积为6;()6过()2,3P -,且与x 轴、y 轴分别交于A 、B 两点,若点P 分AB比为2-2、(斜率与倾斜角)已知两点()1,2A -,(),3B m .()1求直线A B 的斜率k 和倾斜角α;()2求直线A B 的方程;()3若实数13m ⎡⎤∈--⎢⎥⎣⎦,求A B 的倾斜角α的范围3、 (两直线位置、距离)根据下列条件,求直线的直线方程()1求通过两条直线3100x y +-=和30x y -=的交点,且到原点距离为1;()2经过点()3,2A ,且与直线420x y +-=平行;()3经过点()3,0B ,且与直线250x y +-=垂直.4、(动直线相交)已知直线l 过点()0,0P 且与以点()2,2A --,()1,1B -为端点的线段相交(1)求直线l 的斜率及倾斜角α的范围.()2求函数sin 13cos y θθ-=+的值域 5、 (对称问题)已知直线l :2x-3y+1=0,点A (-1,-2),求:(1)点A 关于直线l 的对称点'A 的坐标;(2)直线m:3x-2y-6=0关于直线l 的对称直线'm 方程; (3)直线l 关于点A(-1,-2)对称的直线'l 的方程; 6、(定点问题)已知直线0)()2(:=-++++b a y b a x b a l 及点)4,3(P (1)证明直线l 过某定点,并求该定点的坐标 (2)当点P 到直线l 的距离最大时,求直线l 的方圆的方程圆的标准方程为222)()(r b y a x =-+-,其中圆心为),(b a ,半径为r圆的一般方程为220x y Dx Ey F ++++=,圆心坐标(,)22D E --,半径为2422FE D -+。
5-7解析几何吕林根第四版

利用三角函数关系
cos2 α = 1 + cos 2α , sin2 α = 1 − cos 2α ,
2
2
sinα ⋅ cosα = sin 2α ,
2
(2)可化为:
a
'11
= a11 + a22 2
+
a11
− 2
a12
cos 2α
+
a12
sin 2α ,
a
'22
= a11 + a22 2
−
a11
5 −3 −3 2
I3 = −3 5 2 = −128. −3 2 2 −4
所以
I3 = −128 = −8, I2 16
而特征方程λ 2 − 10λ + 16 = 0 的两根为 = λ1 2= , λ2 8,
所以曲线的简化方程(略去撇号)为:
2x2 + 8 y2 − 8 =0,
曲线的标准方程(略去撇号)为
I '1 = a '11 + a '22 = a11 + a22 = I1,
= I '2
a '1= 1 a '12 a '12 a '22
a= 11 a12 a12 a22
I2;
而
a '11 a '12 a '13
I '3 = a '12 a '22 a '23
a '13 a '23 a '33
a11 a12 a11x0 + a12 y0 + a13
a22 ( y '+ y0 )2 + a33= a22 y '2 + 2a22 y0 y '+ a22 y02 + a33
解析几何课件(第五版)精选全文

所求平面方程为
上一页
返回
解
§3.2 平面与点的相关位置
下一页
返回
上一页
下一页
返回
点到平面距离公式
上一页
下一页
返回
在第一个平面内任取一点,比如(0,0,1),
上一页
返回
定义
(通常取锐角)
两平面法向量之间的夹角称为两平面的夹角.
§3.3 两平面的相关位置
下一页
返回
按照两向量夹角余弦公式有
§1.5 标架与坐标
§1.7 两向量的数性积
§1.9 三向量的混合积
§1.8 两向量的矢性积
第二章 轨迹与方程
§2.1 平面曲线的方程
§2.2 曲面的方程
§2.4 空间曲线的方程
§2.3 母线平行与坐标轴的柱面方程
第三章 平面与空间直线
注意 空间曲面的参数方程的表达式不是惟一的.
抛物柱面
平面
抛物柱面方程:
平面方程:
三、母线平行与坐标轴的柱面方程
下一页
返回
从柱面方程看柱面的特征:
(其他类推)
实 例
椭圆柱面,
双曲柱面 ,
抛物柱面,
母线// 轴
母线// 轴
母线// 轴
上一页
下一页
返回
a
b
椭圆柱面
上一页
下一页
返回
y
平面的点法式方程
平面上的点都满足上方程,不在平面上的点都不满足上方程,上方程称为平面的方程,平面称为方程的图形.
其中法向量
已知点
上一页
下一页
返回
解
所求平面方程为
化简得
上一页
下一页
1-5解析几何吕林根第四版

因为M1为P2 P3的中点,故M1(
x2
+ 2
x3
,y2
+ 2
y3 ,z2
+ 2
z3
),又因为G为重心,
故有P1G 2= GM1,即重心G把中线分成定比λ 2,
P1
利用定比分点坐标公式可得
x x= 1 + x2 + x3 ,y y= 1 + y2 + y3 ,z
3
3
z1 + z2 + z3 . G 3
e1, e2 , e3 两两相互垂直的笛卡尔标架叫做笛卡尔直角标架;简称直角标架;
在一般情况下,叫做仿射标架.
P
e3 r
e1 O
e2
e3 e1 O e2
e3 e1 O e2
注: (1) 标架{O; e1, e2 , e3}中的向量 e1, e2, e3 是有顺序的,交换它们
的次序将会得到另一标架.
(2) 空间标架有无穷多个.
e3
e1 O
e2
e3
e2 O
e1
右手(旋)标架
左手(旋)标架
二、坐标
{ } 定义 1.5.2 (1)式中的 x, y, z 叫做向量 r 关于标架 O;e1, e2, e3 的
坐标或称为分量,记做 r{x, y, z} 或{x, y, z} .
{ } 定义 1.5.3 对于取定了标架 O;e1,e2,e3 的空间中任意点 P ,向量 OP { } 叫做点 P 的向径,或称点 P 的位置向量,向径 OP 关于标架 O;e1,e2,e3 的坐 { } 标 x, y, z 叫做点 P 关于标架 O;e1,e2,e3 的坐标,记做 P ( x, y, z) 或 ( x, y, z).
1-4解析几何吕林根第四版

证明: AG = λGD; BG = µGE;
CG = AG − AC = λ AD − AC
=
λ
•
1
(
1+ λ
AB + AC)
−
AC
1+λ 2
= λ AB − λ + 2 AC
2(1 + λ) 2(1 + λ)
CG = BG − BC = µ BE − BC 1+ µ
= µ • (AE − AB) − BC 1+ µ
八、共面向量的条件
定理1.4.7 三向量共面的充要条件是它们线性相关. 定理1.4.8 空间任何四个向量总是线性相关.
推论 空间四个以上向量总是线性相关.
例6
设 p = a − b + 5 − 1 b + b − 3a , q = 4a + 5b,
2
5
试证明 : p // q.
证明:
p
=
(1
−
5
组合,即
r = xe1 + ye2 + ze3 ,
C
并且其中系数 x, y, z 被
e1, e2, e3, r 惟一确定.
P
向量 e1, e2, e3 叫做空间向量的基底.
E3 e3 r
E1 e1 O e2 E2
B
A
例1 已知三角形OAB,其中= OA a= , OB b, 而M、N分别
是三角形OA,OB 两边上的点,且有OM= λ a (0 < λ < 1) ,
线性相关.
推论 一组向量如果含有零向量,那么这组向量必线性相关.
七、共线向量的条件
《北京师范大学-第四版-空间解析几何》考前救急

1 / 7 ·那些没记牢的公式潘志鹏 北京师范大学【摘要】主要记录了作者在《解析几何》期末考试来临前还是没有记牢的各种公式,用来在考试之前抱抱佛脚。
【关键词】解析几何 公式1. 向量1.1. 内积Cauchy-Schwarz 不等式:|a ⋅b |≤|a |2|b |2。
1.2. 混合积和双重外积双重外积公式: (a ⃗×b ⃗⃗)×c ⃗=(a ⃗⋅c ⃗)b ⃗⃗−(b ⃗⃗⋅c ⃗)a ⃗,a ⃗×(b ⃗⃗×c ⃗)=(c ⃗⋅a ⃗)b ⃗⃗−(b ⃗⃗⋅a ⃗)c ⃗,(a ⃗×b⃗⃗)×(c ⃗×d ⃗)=(c ⃗,d ⃗,a ⃗)b ⃗⃗−(c ⃗,d ⃗,b ⃗⃗)a ⃗。
定比分点公式:P 1P PP 2=λ,OP ⃗⃗⃗⃗⃗⃗=OP 1⃗⃗⃗⃗⃗⃗⃗⃗⃗+λOP 2⃗⃗⃗⃗⃗⃗⃗⃗⃗1+λ。
2. 平面平面点法式方程的向量形式:(OP ⃗⃗⃗⃗⃗⃗−OP 0⃗⃗⃗⃗⃗⃗⃗⃗)⋅N ⃗⃗=0。
平面一般方程的向量形式: OP ⃗⃗⃗⃗⃗⃗⋅N ⃗⃗+OD ⃗⃗⃗⃗⃗⃗⃗=0。
平面点位式方程: OP ⃗⃗⃗⃗⃗⃗=OP 0⃗⃗⃗⃗⃗⃗⃗⃗+μOP 1⃗⃗⃗⃗⃗⃗⃗⃗+νOP 2⃗⃗⃗⃗⃗⃗⃗⃗,{x =x 0+μx 1+νx 2y =y 0+μy 1+νy 2z =z 0+μz 1+νz 2。
3. 曲面3.1. 曲面基础直圆锥面的方程:|cosθ|=|PA ⃗⃗⃗⃗⃗⃗⋅l ⃗||PA ⃗⃗⃗⃗⃗⃗||l ⃗|,A (x 0,y 0,z 0)。
旋转曲面方程:以G:{F 1(x,y,z )=0F 2(x,y,z )=0为母线,x−a X =y−b Y =z−c Z 为轴的旋转曲面满足P (x 0,y 0,z 0)∈G,{ F 1(x 0,y 0,z 0)=0F 2(x 0,y 0,z 0)=0(x −a )2+(y −b )2+(z −c )2=(x 0−a )2+(y 0−b )2+(z 0−c )2X (x −x 0)+Y (y −y 0)+Z (z −z 0)=0,注意(a,b,c )不一定就是垂足所在位置!球坐标和常规坐标转化:{x =ρcosφcosψy =ρcosφsinψz =ρsinφ⇒{ρ=√x 2+y 2+z 2ψ=222φ=22。
解析几何第四版吕林根课后习题答案第五章

解析⼏何第四版吕林根课后习题答案第五章第五章⼆次曲线⼀般的理论§5.1⼆次曲线与直线的相关位置1. 写出下列⼆次曲线的矩阵A 以及1(,)F x y ,2(,)F x y 及3(,)F x y .(1)22221x y a b +=;(2)22221x y a b -=;(3)22y px =;(4)223520;x y x -++=(5)2226740x xy y x y -+-+-=.解:(1)22100100001a A b ?? ?= - ;121(,)F x y x a =221(,)F x y y b=3(,)1F x y =-;(2)22100100001a A b ?? ?=- -;121(,)F x y x a =221(,)F x y y b =-;3(,)1F x y =-.(3)0001000p A p -??= ? ?-??;1(,)F x y p =-;2(,)F x y y =;3(,)F x y px =-;(4)51020305022A ?? ?=-;15(,)2F x y x =+;2(,)3F x y y =-;35(,)22F x y x =+;(5)1232171227342A ??-- ? ? ?=---;11(,)232F x y x y =--;217(,)22F x y x y =-++;37(,)342F x y x y =-+-. 2. 求⼆次曲线22234630x xy y x y ----+=与下列直线的交点.(1)550x y --=(2)220x y ++=;(3)410x y +-=;(4)30x y -=;(5)2690x y --=.提⽰:把直线⽅程代⼊曲线⽅程解即可,详解略(1)15(,),(1,0)22-;(2??,??;(3)⼆重点(1,0);(4)11,26??;(5)⽆交点.3. 求直线10x y --=与222210x xy y x y -----=的交点. 解:由直线⽅程得1x y =+代⼊曲线⽅程并解⽅程得直线上的所有点都为交点. 4 .试确定k 的值,使得(1)直线50x y -+=与⼆次曲线230x x y k -+-=交于两不同的实点;(2)直线1,{x kt y k t=+=+与⼆次曲线22430x xy y y -+-=交于⼀点;(3)10x ky --=与⼆次曲线22(1)10xy y k y -+---=交于两个相互重合的点;(4)1,{1x t y t=+=+与⼆次曲线222420x xy ky x y ++--=交于两个共轭虚交点.解:详解略.(1)4k <-;(2)1k =或3k =(3)1k =或5k =;(4)4924k >. §5.2⼆次曲线的渐进⽅向、中⼼、渐进线1. 求下列⼆次曲线的渐进⽅向并指出曲线属于何种类型的(1)22230xxy y x y ++++=;(2)22342250x xy y x y ++--+=;(3)24230xy x y --+=.解:(1)由22(,)20X Y X XY Y φ=++=得渐进⽅向为:1:1X Y =-或1:1-且属于抛物型的;(2)由22(,)3420X Y X XY Y φ=++=得渐进⽅向为:(2:3X Y =-且属于椭圆型的;(3)由(,)20X Y XY φ==得渐进⽅向为:1:0X Y =或0:1且属于双曲型的.2. 判断下列曲线是中⼼曲线,⽆⼼曲线还是线⼼曲线.(1)22224630x xy y x y -+--+=;(2)22442210x xy y x y -++--=;(3)2281230y x y ++-=;(4)2296620x xy y x y -+-+=.解:(1)因为2111012I -==≠-,所以它为中⼼曲线;(2)因为212024I -==-且121241-=≠--,所以它为⽆⼼曲线;(3)因为200002I ==且004026=≠,所以它为⽆⼼曲线;(4)因为293031I -==-且933312--==-,所以它为线⼼曲线; 3. 求下列⼆次曲线的中⼼.(1)225232360x xy y x y -+-+-=;(2)222526350x xy y x y ++--+=;(3)22930258150x xy y x y -++-=.解:(1)由510,3302x y x y --=-++=??得中⼼坐标为313(,)2828-;(2)由5230,2532022x y x y ?+-=+-=??得中⼼坐标为(1,2)-;(3)由91540,15152502x y x y -+=??-+-=知⽆解,所以曲线为⽆⼼曲线. 4. 当,a b 满⾜什么条件时,⼆次曲线226340x xy ay x by ++++-=(1)有唯⼀中⼼;(2)没有中⼼;(3)有⼀条中⼼直线.解:(1)由330,2302x y b x ay ?++=++=??知,当9a ≠时⽅程有唯⼀的解,此时曲线有唯⼀中⼼;(2)当9,9a b =≠时⽅程⽆解,此时曲线没有中⼼;(3)当9a b ==时⽅程有⽆数个解,此时曲线是线⼼曲线.5. 试证如果⼆次曲线22111222132333(,)2220F x y a x a xy a y a x a y a =+++++= 有渐进线,那么它的两个渐进线⽅程是Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=式中00(,)x y 为⼆次曲线的中⼼.证明:设(,)x y 为渐进线上任意⼀点,则曲线的的渐进⽅向为00:():()X Y x x y y =--,所以Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=.6. 求下列⼆次曲线的渐进线.(1)226310x xy y x y --++-=;(2)2232340x xy y x y -++-+=;(3)2222240x xy y x y ++++-=.解:(1)由1360,2211022x y x y ?-+=--+=??得中⼼坐标13(,)55-.⽽由2260X XY Y --=得渐进⽅向为:1:2X Y =或:1:3X Y =-,所以渐进线⽅程分别为210x y -+=与30x y += (2)由310,22332022x y x y ?-+=-+-=??得中⼼坐标13(,)55-.⽽由22320X XY Y -+=得渐进⽅向为:1:1X Y =或:2:1X Y =,所以渐进线⽅程分别为20x y -+=与210x y --=(3)由10,10x y x y ++=??++=?知曲线为线⼼曲线,.所以渐进线为线⼼线,其⽅程为10x y ++=.7. 试证⼆次曲线是线⼼曲线的充要条件是230I I ==,成为⽆⼼曲线的充要条件是230,0I I =≠. 证明:因为曲线是线⼼曲线的充要条件是131112122223a a a a a a ==也即230I I ==;为⽆⼼曲线的充要条件是131112122223a a a a a a =≠也即230,0I I =≠. 8. 证明以直线1110A x By C ++=为渐进线的⼆次曲线⽅程总能写成111()()0A x By C Ax By C D +++++=. 证明:设以1110A x By C ++=为渐进线的⼆次曲线为 22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,则它的渐进线为Φ00(,)x x y y --=221101200220()2()()()0a x x a x x y y a y y -+--+-=,其中00(,)x y 为曲线的中⼼,从⽽有Φ00(,)x x y y --=111()()0A x By C Ax By C ++++= ,⽽Φ00(,)x x y y --=0 因为00(,)x y 为曲线的中⼼,所以有11012013a x a y a +=-,12022023a x a y a +=- 因此Φ000033(,)(,)(,)x x y y F x y x y a φ--=+-,令0033(,)x y a D φ-=-,代⼊上式得即111(,)()()F x y A x By C Ax By C D =+++++,所以以1110A x By C ++=为渐进线的⼆次曲线可写为111()()0A x By C Ax By C D +++++=.9.求下列⼆次曲线的⽅程.(1)以点(0,1)为中⼼,且通过(2,3),(4,2)与(-1,-3);(2)通过点(1,1),(2,1),(-1,-2)且以直线10x y +-=为渐进线. 解:利⽤习题8的结论即可得:(1)40xy x --=;(2)2223570x xy y x ---+=.§5.3⼆次曲线的切线1. 求以下⼆次曲线在所给点或经过所给点的切线⽅程.(1)曲线223457830x xy y x y ++---=在点(2,1);(2)曲线曲线223457830x xy y x y ++---=在点在原点;(3)曲线22430x xy y x y +++++=经过点(-2,-1);(4)曲线225658x xy y ++=经过点();(5)曲线222210x xy y x y -----=经过点(0,2).解:(1)910280x y +-=;(2)20x y -=;(3)10,30y x y +=++=;(4)1150,0x y x y +-=-+=;(5)0x =.2. 求下列⼆次曲线的切线⽅程并求出切点的坐标.(1)曲线2243530x xy y x y ++--+=的切线平⾏于直线40x y +=;(2)曲线223x xy y ++=的切线平⾏于两坐标轴.解:(1)450x y +-=,(1,1)和480x y +-=,(4,3)-;(2)20y ±=,(1,2),(1,2)--和20x ±=,(2,1),(2,1)--. 3. 求下列⼆次曲线的奇异点.(1)22326410x y x y -+++=;(2)22210xy y x +--=;(3)2222210x xy y x y -+-++=.解:(1)解⽅程组330,220x y +=??-+=?得奇异点为(1,1)-;(2)解⽅程组10,0y x y -=??+=?得奇异点为(1,1)-.4.试求经过原点且切直线4320x y ++=于点(1,-2)及切直线10x y --=于点(0,-1)的⼆次曲线⽅程. 解:利⽤(5.3-5)可得226320x xy y x y +-+-=.5.设有共焦点的曲线族2222221x y a h b h+=++,这⾥h 是⼀个变动的参数,作平⾏于已知直线y mx =的曲线的切线,求这些切线切点的轨迹⽅程. 解:设切点坐标为00(,)x y ,则由(5.3-4)得曲线的切线为0022221x x y ya hb h+=++,因为它平⾏与y m x =,所以有2220000x b my a h x my +=-+,代⼊220022221x y a h b h +=++整理得222220000(1)()0m x m x y m y m a b +----=,所以切点的轨迹为22222(1)()0mx m xy my m a b +----=.§5.4⼆次曲线的直径1. 已知⼆次曲线223754510x xy y x y +++++=.求它的(1)与x 轴平⾏的弦的中点轨迹;(2)与y 轴平⾏的弦的中点轨迹;(3)与直线10x y ++=平⾏的弦的中点轨迹.解:(1)因为x 轴的⽅向为:1:0X Y =代⼊(5.4-3)得中点轨迹⽅程6740x y ++=;(2)因为y 轴的⽅向为:0:1X Y =代⼊(5.4-3)得中点轨迹⽅程71050x y ++=;(3)因为直线10x y ++=的⽅向为:1:1X Y =-代⼊(5.4-3)得中点轨迹⽅程310x y ++=. 2.求曲线224260x xy x y +---=通过点(8,0)的直径⽅程,并求其共轭直径. 解:(1)把点(8,0)代⼊(2)(21)0X x Y y -+-= 得:1:6X Y =,再代⼊上式整理得直径⽅程为1280x y +-=,其共轭直径为122230x y --=.3.已知曲线22310xy y x y --+-=的直径与y 轴平⾏,求它的⽅程,并求出这直径的共轭直径. 解:直径⽅程为10x -=,其共轭直径⽅程为230x y -+=.4.已知抛物线28y x =-,通过点(-1,1)引⼀弦使它在这点被平分. 解:430x y ++=.5. 求双曲线22164x y -=⼀对共轭直径的⽅程,已知两共轭直径间的⾓是45度. 解:设直径和共轭直径的斜率分别为',k k ,则'23kk =.⼜因为它们交⾓45度,所以''11k k kk -=+,从⽽13k =-或2,'2k =-或13,故直径和共轭直径的⽅程为30x y +=和20x y -=或20x y +=和30x y -=.6.求证:通过中⼼曲线的直线⼀定为曲线的直径;平⾏于⽆⼼曲线渐进⽅向的直线⼀定为其直径. 证明:因为中⼼曲线直径为中⼼线束,因此过中⼼的直线⼀定为直径;当曲线为⽆⼼曲线时,它们的直径属于平⾏直线束,其⽅向为渐进⽅向,所以平⾏于⽆⼼曲线渐进⽅向的直线⼀定为其直径. 7.求下列两条曲线的公共直径.(1)223234440x xy y x y -+++-=与2223320x xy y x y --++=;(2)220x xy y x y ----=与2220x xy y x y ++-+=. 解:(1)210x y -+=;(2)5520x y ++=.8.已知⼆次曲线通过原点并且以下列两对直线 320,5540x y x y --=??--=?与530,210y x y +=??--=?为它的两对共轭直径,求该⼆次曲线的⽅程. 解:设曲线的⽅程为22111222132333(,)2220F x y a x a xy a y a x a y a=+++++=,则由(5.4-3)和(5.4-5)可得1112221323331111,,1,,,0222a a a a a a ==-=-=-=-=,所以曲线的⽅程为220x xy y x y ----=.§5.5⼆次曲线的主直径与主⽅向1.分别求椭圆22221x y a b +=,双曲线22221x y a b-=,抛物线22y px =的主⽅向与主直径.解:椭圆的主⽅向分别为1:0和0:1,主直径分别为0,0x y ==;双曲线的主⽅向分别为1:0和0:1,主直径分别为0,0x y==;抛物线的主⽅向分别为0:1和1:0,主直径分别为0y =. 2.求下列⼆次曲线的主⽅向与主直径. (1)22585181890x xy y x y ++--+=;(2)22210xy x y -+-=;(3)229241618101190x xy y x y -+--+=.解:(1)曲线的主⽅向分别为1:(-1)和1:1,主直径分别为0,20x y x y -=+-=;(2)其主⽅向分别为1:1和1:(-1),主直径分别为0,20x y x y +=-+=;(3)其主⽅向分别为3:(-4)和4:3,主直径分别为3470x y -+=;(4)任何⽅向都是其主⽅向,过中⼼的任何直线都是其主直径.3.直线10x y ++=是⼆次曲线的主直径,点(0,0),(1,-1),(2,1)在曲线上,求该曲线的⽅程.解:设⼆次曲线⽅程为22111222132333(,)2220F x y a x a xy a y a x a y a =+++++=,把点坐标(0,0),(1,-1),(2,1)分别代⼊上⾯⽅程同时利⽤直线10x y ++=为其主直径可得111222132333774,,4,,4,022a a a a a a ==-==-==,所以所求曲线⽅程为22474780x xy y x y -+-+=.4.试证⼆次曲线两不同特征根确定的主⽅向相互垂直.证明:设12,λλ分别曲线的两不同特征根,由它们确定的主⽅向分别为11:X Y 与22:X Y 则1111211112122111,,a X a Y X a X a Y Y λλ+=??+=?与1121222212222222,a X a Y X a X a Y Y λλ+=??+=?,所以11211211112121212212()()X X YY a X a Y X a X a Y Y λλ+=+++11212211222221221221()(),a X a Y X a X a Y X X X Y Y λλ=+++=+从有121212()()0X X YY λλ-+=,因为12λλ≠,所以12120X X YY +=,由此两主⽅向11:X Y 与22:X Y 相互垂直.§5.6⼆次曲线⽅程的化简与分类1. 利⽤移轴与转轴,化简下列⼆次曲线的⽅程并写出它们的图形.(1)225422412180x xy y x y ++--+=;(2)222410x xy y x y ++-+-=;(3)25122212190x xy x y +---=;(4)222220x xy y x y ++++=. 解(1)因为⼆次曲线含xy 项,我们先通过转轴消去xy ,设旋转⾓为α,则324ctg α=,即21324tg tg αα-=,所以12tg α=或-2.取2tg α=-,那么sin α=,cos α=,所以转轴公式为''''2),2).x x y y x y ?=+??=-+代⼊原⽅程化简再配⽅整理得新⽅程为''2''26120x y +-=;类似的化简可得(2)''2''250y +=;(3)''2''294360x y --=;(4)''2210x -=.2.以⼆次曲线的主直径为新坐标轴,化简下列⽅程,并写出的坐标变换公式与作出它们的图(1)22845816160x xy y x y +++--=;(2)22421040x xy y x y --++=;(3)22446830x xy y x y -++-+=;(4)2244420x xy y x y -++-=. 解:(1)已知⼆次曲线的距阵是 8242584816?? ?- ? ?--??, 18513I =+=,2823625I ==,所以曲线的特征⽅程为213360λλ-+=,其特征根为14λ=,29λ=,两个主⽅向为11:1:2X Y =-,22:2:1X Y =;其对应的主直径分别为8200x y -+=,7740x y +-=. 取这两条直线为新坐标轴得坐标变换公式'''')1,2) 2.x x y y x y ?=--??=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为 '2'294360x y +-=.(2)已知⼆次曲线的距阵是 225222520-?? ?- ? ???坐标变换公式''''2)1,) 2.x x y y x y ?=--??=++代⼊已知曲线⽅程并整理得曲线在新坐标系⽅程为'2'23210-+-=. (3)已知⼆次曲线的距阵是423214343----,坐标变换公式''''92),101).5 x x yy x y=--=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为'2' 50-=. (4)坐标变换公式''''22),51).5x x yy x y=--=++代⼊已知曲线⽅程并整理得曲线在新坐标系下的⽅程为'2510y-=.3.试证在任意转轴下,⼆次曲线的新旧⽅程的⼀次项系数满⾜关系式'2'222 13231313a a a a+=+.证明:设旋转⾓为α,则''131323cos sina a aαα=-,''231323sin cosa a aαα=+,两式平⽅相加得'2'22213231313a a a a+=+.4.试证⼆次曲线222ax hxy ay d++=的两条主直径为220x y-=,曲线的两半轴的长分别为. 证明:求出曲线的两主直径并化简即可得.§5.7应⽤不变量化简⼆次曲线的⽅程1. 利⽤不变量与半不变量,判断下列⼆次曲线为何种曲线,并求出它的化简⽅程与标准⽅程. (1)22 66210x xy y x y++++-=;(2)223234440x xy y x y-+++-=;(3)2243220x xy y x y-++-=;(4)22442210x xy y x y-++--=;(5)222246290x xy y x y-+--+=;(6);(7)22 22240x xy y x y++++-=;(8)22 4412690x xy y x y-++-+=.解:(1)因为12I=,213831I==-,13331116311=-,322II=-,⽽特征⽅程2280λλ--=的两根为124,2λλ==-,所以曲线的简化⽅程(略去撇号)为224220x y --=曲线的标准⽅程为 2221012x y --=,曲线为双曲线;类似地得下⾯:(2)曲线的简化⽅程(略去撇号)为 222480x y +-=,曲线的标准⽅程为 22142x y +=,曲线为椭圆;(3)曲线的简化⽅程(略去撇号)为22(2(20x y +=,曲线的标准⽅程为22011x y -=,曲线为两相交直线;(4)曲线的简化⽅程(略去撇号)为250y -=,双曲线的标准⽅程为2y =,曲线为抛物线;(5)曲线的简化⽅程(略去撇号)为2233((022x y +=,曲线的标准⽅程为220x y +=,曲线为⼀实点或相交与⼀实点的两虚直线;(6)曲线的简化⽅程(略去撇号)为220,0,0)y x a y a -=≤≤≤≤(,曲线的标准⽅程为2y =,0,0)x a y a ≤≤≤≤(曲线为抛物线的⼀部分;(7)曲线的简化⽅程(略去撇号)为 2250y -=,曲线的标准⽅程为 252y =,曲线为两平⾏直线;(8)曲线的简化⽅程(略去撇号)为 250y =,曲线的标准⽅程为 20y =,曲线为两重合直线.2. 当λ取何值时,⽅程 2244230x xy y x y λ++---= 表⽰两条直线.解:⽅程 2244230x xy y x y λ++---=表⽰两条直线当且仅当3222110213I λ-=-=---,即4λ=.3. 按实数λ的值讨论⽅程2222250x xy y x y λλ-+-++= 表⽰什么曲线.解:因为12I λ=,2(1)(1)I λλ=-+,3(53)(1)I λλ=+-,12(51)K λ=-,所以当λ的值变化时,1231,,,I I I K 也随着变化,它们的变化关系如下表:4. 设221112221323332220a x a xy a y a x a y a +++++= 表⽰两条平⾏直线,证明这两条直线之间的距离是d = . 证明:曲线的⽅程可简化为:这⾥当曲线表⽰两条平⾏的实直线时,10K <.所以这两条直线之间的距离是d =5. 试证⽅程 221112221323332220a x a xy a y a x a y a +++++= 确定⼀个实圆必须且只须212124,0I I I I =<.证明:当曲线 221112221323332220a x a xy a y a x a y a +++++=表⽰⼀个实圆的充要条件是其特征⽅程2120I I λλ-+=有相等实根且120I I <,即21240I I ?=-=且120I I <,从⽽⽅程确定⼀个实圆必须且只须212124,0I I I I =<.6. 试证如果⼆次曲线的10I =,那么20I <. 证明:因为111220I a a =+=即1122a a =-,所以1112222211221211121222()a a I a a a a a a a==-=-+,⽽11122,,a a a 不全0,所以有20I <. 7. 试证如果⼆次曲线的230,0I I =≠,那么10I ≠,⽽且120I I <.证明:当230,0I I =≠时,由5.2节习题7知,曲线为⽆⼼曲线,从⽽有10I ≠,⽽且120I I <.。
第3讲空间解析几何—曲面、曲线及其方程

第3讲 空间解析几何—曲面、曲线及其方程本节主要内容第三节 曲面及其方程1 曲面方程的概念2 旋转曲面3 柱 面 4二次曲面第四节 空间曲线及其方程1 空间曲线的一般方程2 空间曲线的参数方程3 空间曲线在坐标面上的投影讲解提纲:第七章 空间解析几何与向量代数第三节 曲面及其方程一、 曲面方程的概念空间曲面研究的两个基本问题是:1.已知曲面上的点所满足的几何条件,建立曲面的方程;2.已知曲面方程,研究曲面的几何形状.二、旋转曲面以一条平面曲线绕其平面上的一条直线旋转一周形成的曲面叫做旋转曲面,旋转曲线和定直线分别叫做旋转曲面的母线和轴。
三、柱面平行于定直线并沿定曲线C 移动的直线L 形成的轨迹叫做柱面,定曲线C 叫做柱面的准线,动直线L 叫做柱面的母线。
四、二次曲面三元二次方程0),,(=z y x F 所表示的曲面称为二次曲面。
例题选讲:曲面方程的概念例1 建立球心在点),,(0000z y x M 、半径为R 的球面方程. 解:易得球面方程为2222000()()()x x y y z z R -+-+-=例2 求与原点O 及)4,3,2(0M 的距离之比为1:2的点的全体所组成的曲面方程. 解:易得曲面方程为22224116()(1)()339x y z +++++=。
例3 已知()1,2,3,A ()2,1,4,B - 求线段AB 的垂直平分面的方程.解:设点(,,)M x y z 为所求平面上的任一点,由 A M B M ==整理得26270x y z -+-=。
例4方程2222440x y z x y z ++-++=表示怎样的曲面?旋转曲面例5 将xOz 坐标面上的抛物线25z x =分别绕x 轴旋转一周,求所生成的旋转曲面的方程.解:易得旋转曲面的方程225y z x +=例6 直线L 绕另一条与L 相交的定直线旋转一周, 所得旋转曲面称为叫圆锥面. 两直线的交点称为圆锥面的顶点, 两直线的夹角α)20(πα<<称为圆锥面的半顶角. 试建立顶点在坐标原点, 旋转轴为z 轴, 半顶角为α的圆锥面方程解:在yoz 坐标平面上,直线L 的方程为 c o tz y α= 可得圆锥面的方程为2222()z x y α=+柱面例7 分别求母线平行于x 轴和y 轴,且通过曲线222222216x y z x y z ⎧++=⎨-+=⎩的柱面方程.解:母线平行于x 轴的柱面方程:22316y z -= 母线平行于y 轴的柱面方程:223216x z += 二次曲面.椭球面:1222222=++cz b y a x )0,0,0(>>>c b a抛物面椭圆抛物面 qy p x z 2222+= (同号与q p )双曲抛物面 z qy p x =+-2222 ( p 与q 同号)双曲面单叶双曲面 1222222=-+c z b y a x )0,0,0(>>>c b a双叶双曲面 1222222-=-+c z b y a x )0,0,0(>>>c b a二次锥面 0222222=-+cz b y a x例8 由曲面,0,0,0===z y x 1,122=+=+z y y x 围成的空间区域(在第一卦限部分), 作它的简图.课堂练习 1.求直线11:121x y z L --==绕z 轴旋转所得到的旋转曲面的方程. 2.指出方程221x y -=及22z x =-所表示的曲面. 3 方程()()22234z x y =-+--的图形是怎样的?第四节 空间曲线及其方程一、 空间曲线的一般方程 ⎩⎨⎧==0),,(0),,(z y x G z y x F二、空间曲线的参数方程 ⎪⎩⎪⎨⎧===)()()(t z z t y y t x x三、 空间曲线在坐标面上的投影⇒⎩⎨⎧==.0),,(,0),,(z y x G z y x F ⇒=0),(y x H ⎩⎨⎧==00),(z y x H例题选讲:空间曲线的一般方程例1方程组 221493x y y ⎧+=⎪⎨⎪=⎩表示怎样的曲线?空间曲线的参数方程例2 若空间一点M 在圆柱面222a y x =+上以角速度ω绕z 轴旋转, 同时又以线速度v 沿平行于z 轴的正方向上升 (其中ω、v 是常数), 则点M 构成的图形叫做螺旋线. 试建立其参数方程.解:取时间t 为参数,在t=0时,动点位于x 轴上的一点(,0,0)A a 处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
JJJJG
2MD ,所以 MD
1
(b
a)
,且
JJJG MB
JJJJG MD
1 (a b) .
2
2
前面已经规定,模为 1 的向量叫单位向量. 对于非零向量 a ,与它同方向的单
位向量叫做向量 a
的单位向量 ,
常记为
a0
或
e a
.这里有
|
a0
|=|
e a
|
1.
按照向量的数乘规定, a a0 与 a0 (即 a )的方向相同,a 的模也相同.显然有公
D
C
M
b
A
a
B
图7
解 由于平行四边形的对角线互相平分,所以
JJJG JJJJG
JJJG
a + b = AC 2AM , (a + b) 2MA
4
于是
JJJG MA
1
(a
+
b)
;因为
JJJJG MC
JJJG
JJJJG
MA ,所以 MC
1 (a + b) .
2
2
又 a + b
JJJG BD
JJJJG
因此,若把向量 a 与 b 移到同一个点 O ,则从 a 的终点 A 向 b 的终点 B 所引向量 便是向量 b 与 a 的差 b a (图 6(b)).
特别地,当 b = a 时,有 a a = a + (a) = 0 .
3
由三角形两边之和大于第三边的原理,有 a+b d a b 及 a-b d a b
数乘向量满足下列性质:
(1)结合律 O(Pa) P(Oa) (OP)a ;
这是因为由数乘向量规定可知,向量 O(Pa), P(Oa), (OP)a 、都是平行的向量,
它们的指向也是相同的,且 O(Pa) P(Oa) (OP)a OP a ,
所以 O(Pa) P(Oa) (OP)a .
(2)分配律 (O P)a = Oa Pa ; O(a b) = Oa Ob.
z
z
k
O
j
y
O
y
i
x
图9
x
图 10
三条坐标轴中的任意两条可以确定一个平面,这样定出的三个平面统称为坐标
6
面. x 轴及 y 轴所确定的坐标面叫做 xOy 面,另两个由 y 轴及 z 轴和由 z 轴及 x 轴
所确定的坐标面,分别叫做 yOz 面及 zOx 面.三个坐标面把空间分成八个部分,
每一部分叫做一个卦限.含有 x 轴 y 轴与 z 轴正半轴的那个卦限叫做第一卦限,其
M 的坐标,记作 M (x, y, z) .
JJJJG 这里, 向量 r = OM 称为点 M 关于原点 O 的向径.上述定义表明,一个点与该点
这个规律同样可用数乘向量定义来证明,证明从略.
注 向量的加法及数乘统称为向量的线性运算.
JJJG
JJJG
JJJG JJJG
例 1 平行四边形 ABCD中,设 AB a ,AC b .试用 a 和 b 表示向量 MA 、MB 、
JJJJG JJJJG MC 和 MD ,这里 M 是平行四边形对角线的交点(图 7).
如果两个非零向量 a 和 b 的方向相同或者相反,就称两个向量共线也叫平
行,记为 a//b (共线或平行).由于零向量的方向是任意的,因此认为零向量与任
1
o
何向量都平行, 记为 0 // a . 类似还有向量共面的概念. 如果 k 个向量平行于同一个平面,就称这 k 个
向量共面.此时若把它们的起点放在同一点,则 ቤተ መጻሕፍቲ ባይዱ 个终点和公共起点必在同一个 平面上.
式:
a = a a0
或写成
a =| a | e .即向量 a 等于它的模与它的单位向量乘积. a
规定当
O
z
0
时,
a O
1 O
a.
,则 a
的单位向量 公式为:
a0
a, 或 a
e a
a a.
这表示一个非零向量 a 除以它的模是同方向的单位向量 a0 . 利用 Oa 与 a 共线(平行),可得向量的共线定理.
2. 向量的线性运算
2.1 向量的加减法
JJJG
JJJG
设两个向量 a 和 b ,任取一点 A ,作 AB a ,再以 B 为起点,作 BC b ,连
JJJG 接 AC (图 2),那么向量 AC c 称为向量 a 与 b 的和,记作 a + b ,即 c a + b .
上述作出两向量之和的方法叫做向量相加的三角形法则.
C
D
C
a+b b
b
a+b
A
a
BA
a
B
图2
图3
力学上有求合力的平行四边形法则,数学上也有向量相加的平行四边形法则. JJJG JJJG
这就是:设向量 a,b 不平行,作 AB a, AD b ,以 AB、AD 为边作一平行四边 JJJG
形 ABCD,连接对角线 AC(图 3),显然, 向量 AC 等于向量 a 与 b 的和 a + b .
所以符合交换律,又如图 4 所示,先作 a + b 再加上 c ,即得和 (a + b) + c ,如以 a
与 b + c 相加,则得同一结果,即符合结合律.
2
a+b+c
c
a4
a5
b+c
a3
a+b
s
a2
a
b
a1
图4
图5
由于向量加法符合交换律和结合律,故 n 个向量 a1, a2 ,", an 相加可写成:
向量的加法符合下列运算规律: (1)交换律 a + b = b + a
(2)结合律 (a + b) + c = a + (b + c)
这是因为,按向量加法的规定(三角形法则),从图 3 可见: JJJG JJJG JJJG
a + b AB BC AC c JJJG JJJG JJJG
b + a AD DC AC c
量起点的任意性,数学上称这种向量为自由向量. 我们只讨论自由向量.
JJJG
JJJG
向量的大小叫做向量的模或长度.向量 AB, a 的模依次记作| AB |与| a |.模
o
是 1 的向量叫做单位向量. 模是 0 的向量叫做零向量,记作 0 或 0 .注意,零向量
的起点和终点重合,零向量的方向可以看作是任意的.
解析几何的基本思想就是用代数方法来处理几何问题.为了把代数运算引入 到几何中,需要把空间结构代数化.为此需要引进向量的代数运算,通过向量引进 坐标系.本讲义主要讨论向量的运算与空间解析几何的基本内容.
§1 向量及其线性运算 1.向量概念
向量是数学的基本概念之一,是空间解析几何的重要工具, 它在许多与数学 相关的学科中也是解决问题的有力工具.
(O P)a = 0 ,即 O P a = 0.
因 a z 0 ,故 O - P 0 ,即 O P . 证毕.
5
定理 1 是建立数轴的理论依据.我们知道,给定一个点、一个方向及单位长
度,就确定了一条数轴.由于一个单位向量既确定了方向,又确定了单位长度,
因此,给定一个点及一个单位向量就确定了一条数轴.设点 O 及单位向量 i 确定
从而轴上的点 P 与实数 x 有一一对应的关系.据此,定义实数 x 为数轴上点 P 的 JJJG
坐标. 由此可知,轴上点 P 的坐标为 x 的充要条件是 OP xi .
3. 空间直角坐标系
在空间取定一点 O 和三个两两垂直的单位向量 i 、 j 、 k ,就确定了三条都
以 O 为原点的两两垂直的数轴,依次记为 x 轴(横轴)、 y 轴(纵轴)、 z 轴(竖
对角线、三条坐标轴为棱作长方体 RHMK - OPNQ .如图 12 所示,有
JJJJG JJJG JJJG JJJJG JJJG JJJG JJJG r OM OP PN NM OP OQ OR
JJJG
JJJG
JJJG
设
OP xi , OQ yj , OR zk ,
JJJJG
则
r OM xi + yj + zk (向径公式)
上式称为向量 a = r 的坐标分解式, xi 、 yj 、 zk 称为向量 r 沿三个坐标轴方向
的分向量.
z
z
Ⅲ
Ⅱ
R
K
Ⅳ
Ⅰ
H
M
O
y
O
Qy
Ⅶ
Ⅵ
P
N
Ⅷ
Ⅴ
x
x
图 11
图 12
JJJJG 显然,给定向量 r = OM ,就确定了点 M ,进而确定了三个有序数 (x, y, z) ;
JJJJG 反之,给定三个有序数 (x, y, z) ,也就确定了向量 r = OM 与点 M .于是点 M 、
a1 + a2 " an ,
并按向量相加的三角形法则,可得 n 个向量相加的法则如下:使前一向量的终点
作为次一向量的起点,相继作向量 a1, a2 ,", an ,再以第一向量的起点为起点,最
后一个向量的终点为终点作一向量,这个向量即为所求的和.如图 5,有
s = a1 + a2 a3 a4 a5 设 a 为向量,与 a 的模相同而方向相反的向量叫做 a 的负向量,记作 a .由
其中等号在 a 与 b 同向或反向时成立. 2.2 数乘向量法