线性代数 线性方程组的基本概念
线性代数线性方程组基本概念

证明
由 r ( A) r ( A b) 知 A X = b 有解,
组
即存在 x~1, x~2 ,, x~n ,使得
x~1 A1 x~2 A2 x~n An b .
(1) 若 r n , 则 A1, A2 , , An 线性无关, 故 b 只能由 A1, A2 , , An 的惟一地线性表示, 即 A X = b 的解是惟一的。
即得 念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
2. 线性方程组解的惟一性 P112 定理4.2 (2) 线
性 定理 设 r ( A) r ( A b) r , 则 r n A X = b 有惟一解。
方 程
P123
4
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
四 章
1. 线性方程组的一般形式
2. 线性方程组的矩阵形式 P111 线
性
方
程
组
简记为 A X b ,
其中 A 称为系数矩阵, A~ ( A b) 称为增广矩阵。
5
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
若 A X = b 有解,
组
则 b 可由 A1 , A2 , , An 线性表示,
故向量组 A1 , A2 , , An 与 A1 , A2 , , An , b 等价,
即得 r ( A) r ( A b).
7
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
线 定理 线性方程组 A X = b 有解的充要条件是 r ( A) r ( A b).
高等数学线性代数线性方程组教学ppt(4)

1.2 高斯消元法
对线性方程组消元的三种变换(统称为线性方程组 的初等变换):
(1)交换方程组中某两个方程的位置; (2)以非零常数k乘以方程组中某个方程; (3)用数k乘以方程组中某个方程后加到另一个方程 上去.
定理1 线性方程组经过初等变换后得到的新方程组 与原方程组同解.
例1
解线性方程组
R( A) n;
(2)若R(A) n 1,则 A 0, AA* A E O,
由例5知:R( A) R( A*) n, R( A*) n R( A) n (n 1) 1, 即R( A*) 1.
另一方面,由于R(A) n 1, 因此A存在n 1阶非零子式,即A* O, 从而R( A*) 1.
R( A*) 1;
任一解都可以表示为
x 0 k11 knrnr ,
其中k1, , knr R. 即,当R(A) R(A | b)时,有
Ax b的通解
Ax b的一个特解 Ax 0的通解.
行阶梯形矩阵对应的方程组,叫行阶梯 形方程组;
行阶梯形方程组中,每个方程的第一个 未知量称为主未知量(主变量),其余变量叫 自由未知量(自由变量);
用消元法解线性方程组,就是用初等行 变换将方程组的增广矩阵化为行阶最简形, 得到的行阶梯方程组与原方程组同解.
例2 求解非齐次方程组的通解
x1 x1
3.设0是Ax b的某个解(称为特解),则Ax b 的任一个解向量都可表示成0与对应的 Ax 0的解之和,即有
0 .
证 :由于 0 ( 0 ),记 0,由性质1知 是导出组Ax 0的解,则 0 .
故只要 取遍Ax 0的全部解, 0 就取遍了 Ax b的所有解.
三、Ax b解的结构定理 定理4 若Ax b有解,1, ,nr是对应的Ax 0 的基础解系,0是Ax b的一个特解,则Ax b的
第三章线性方程组

第三章 线性方程组本章说明与要求:本章主要介绍线性方程组的基本概念以及求解线性方程组的消元法,并由此引出矩阵及其初等变换的有关概念.讨论一般的n 元线性方程组的求解问题.一般的线性方程组的形式为⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111(I)方程的个数m 与未知量的个数n 不一定相等,对于线性方程组(I ),需要研究以下两个问题:(1) 怎样判断线性方程组是否有解?即它有解的充分必要条件是什么?(2) 方程组有解时,它究竟有多少个解及如何去求解?。
本章重点:解线性方程组;线性方程组解的判定.。
本章难点:用矩阵的初等变换解线性方程组;线性方程组解的判定.§1 线性方程组的消元法解二元、三元线性方程组时曾用过加减消元法,实际上是解一般n 元线性方程组的最有效的方法.下面通过例子介绍如何用消元法解一般的线性方程组.例1.求解线性方程组⎪⎩⎪⎨⎧=--=+-=+-5212253321321321x x x x x x x x x(1)解:交换第一、三两个方程的位置: ⎪⎩⎪⎨⎧=+-=+-=--2531252321321321x x x x x x x x x第一个方程乘以(–1)加于第二个方程,第一个方程乘以(–3)加于第三个方程,得:⎪⎩⎪⎨-=+-=+1385433232321x x x x第二个方程乘以(–5)加于第三个方程,得⎪⎩⎪⎨⎧=--=+=--774352332321x x x x x x(2) 第三个方程乘以(–71),求得x 3=–1,再代入第二个方程,求出x 2=–1,最后求出x 1=2.这样就得到了方程组(1)的解:⎪⎩⎪⎨⎧-=-==112321x x x方程组(2)称为阶梯形方程组.如果在本例中,把原方程组中的第一个方程改为2x 1–3x 2+ x 3=6,得到一个新的方程组⎪⎩⎪⎨⎧=--=+-=+-5212632321321321x x x x x x x x x(3)用类似的方法,可以把方程组化为 ⎩⎨⎧-=+=+-431232321x x x x x (4)即 ⎩⎨⎧--=--=32313453x x x x 显然,此方程组有无穷多个解.如果在本例中,把原方程组的第一个方程改为2x 1–3x 2+ x 3=5,作出新的方程组 ⎪⎩⎪⎨⎧=--=+-=+-5212532321321321x x x x x x x x x(5)用类似的方法,可得到⎪⎩⎪⎨-=-=+104332321x x (6)显然方程组无解. 上面的方法具有一般性,即无论方程组只有一个解或有无穷个解还是没有解,都可用消元法将其化为一个阶梯形方程组,从而判断出它是否有解.分析一下消元法,不难看出,它实际上是反复地对方程组进行变换,而所作的变换,也只是由以下三种基本的变换所构成:1. 交换方程组中某两个方程的位置;2. 用一个非零数乘某一个方程;3. 用一个数乘某一个方程后加到另一个方程上.这三种变换称为线性方程组的初等变换.用消元法解线性方程组的过程就是对线性方程组反复地实行初等变换的过程.方程组(I)的全部解称为(I)的解集合.如果两个方程组有相同的解集合,就称它们是同解的或等价的方程组.现在证明:初等变换把方程组变成与它同解的方程组.考虑线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111 (I)我们只对第三种变换来证明.为简便起见,不妨设把第二个方程乘以数k 后加到第一个方程上,这样,得到新方程组⎪⎪⎩⎪⎪⎨⎧=+++=++++=++++++mn mn m m n n n n n b x a x a x a b x a x a x a kb b x ka a x ka a x ka a 22112222212121212221212111)()()( (I ' ) 设x i =c i (i =1,2,…,n )是(I)的任意一个解.因(I)与(I ' )的后m –1个方程是一样的,所以,x i =c i (i =1,2,…,n )满足(I ' )的后m –1个方程 .又x i =c i (i =1,2,…,n )满足(I)的前两个方程,所以有⎩⎨⎧=+++=+++22222211211122121111b x c a x c a x c a b x c a x c a x c a n n n n n n 把第二式的两边乘以k ,再与第一式相加,即为21212221212111)()()(kb b c ka a c ka a c ka a n n n +=++++++这说明x i =c i (i =1,2,…,n )又满足(I')的第一个方程,故x i =c i (i =1,2,…,n )是(I')的解.类似地可以证明(I ')的任意一个解也是(I)的解,这就证明了(I) 与(I ')是同解的.容易证明另外两种初等变换,也把方程组变成与它同解的方程组.下面来说明,如何利用初等变换来解一般的线性方程组.对于方程组(I),首先检查x 1的系数.如果x 1的系数a 11, a 21, … , a m 1全为零,那么方程组(I)对x 1没有任何限制,x 1就可以任意取值,而方程组(I)可看作x 2, …, x n 的方程组来解.如果x 1的系数不全为零,不妨设a 11≠0不等于零,否则可利用初等变换1,交换第一个方程与另一个方程的位置,使得第一个方程中x 1的系数不为零.然后利用初等变换3,分别把第一个方程的)(111a a i -倍加到第i 个(i =2,3,…, m )方程,于是方程组(I)变成 ⎪⎪⎩⎪⎪⎨⎧=++=++=+++m n mn m n n n n b x a x a b x a x a b x a x a x a 222222*********(Ⅱ) 其中 n j m i a a a a a j i ij ij ,,2 ,,,2 ,'1111⋅⋅⋅=⋅⋅⋅=-= 显然方程组(Ⅱ)与(Ⅰ)是同解的.对方程组(Ⅱ)再按上面的考虑进行变换,并且这样一步一步做下去,必要时改变未知量的次序,最后就得到一个阶梯形方程组.为了讨论方便,不妨设所得到的阶梯形方程组为⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧====++=++++=++++++000001222222111212111r r n rn r rr n n r r n n r r d d x c x c d x c x c x c d x c x c x c x c (Ⅲ)其中c ii ≠0, i =1,2,…,r .方程组(Ⅲ)中“0 = 0”是一些恒等式,可以去掉,并不影响方程组的解.我们知道,(I)与(Ⅲ)是同解的,根据上面的分析,方程组(Ⅲ)是否有解就取决于第r +1个方程0 = d r +1是否矛盾,于是方程组(I)有解的充分必要条件为d r+1= 0.在方程组有解时,分两种情形:1) 当r =n 时,阶梯形方程组为⎪⎪⎩⎪⎪⎨⎧==++=+++n n nn n n n n d x c d x c x c d x c x c x c 2222211212111 (Ⅳ)其中c ii ≠0, i =1,2,…, n .由克莱姆法则(Ⅳ)有唯一解,从而(I)有唯一解.例如 前面讨论过的方程组(1)⎪⎩⎪⎨⎧=--=+-=+-5212253321321321x x x x x x x x x经过一系列的初等变换后,变为阶梯形方程组⎪⎩⎪⎨⎧=--=+=--774352332321x x x x x x这时方程的个数等于未知量的个数,方程组的唯一解是⎪⎩⎪⎨⎧-=-==112321x x x2) 当 r <n 时,这时阶梯形方程组为⎪⎪⎩⎪⎪⎨⎧=+++=+++++=++++++++++++211221122222111111212111d x c x c x c d x c x c x c x c d x c x c x c x c x c n rn r rr r rr n n r r r r n n r r r r其中 c ii ≠0, i =1,2,…, r , 写成如下形式⎪⎪⎩⎪⎪⎨⎧---=---=++---=+++++++++n rn r rr r rr n n r r r r n r r n r r x c x c d x c x c x c d x c x c x c x c d x c x c x c 112211222222111111212111(Ⅴ)当x r+1,…,x n 任意取定一组值,就唯一确定出x 1,…,x r 值,也就是定出方程组(Ⅴ)的一个解,一般地,由(Ⅴ)可以把x 1,x 2…,x r 的值由x r+1,…,x n 表示出来.这样表示出来的解称为方程组(I)的一般解,因x r+1,…,x n 可以任意取值,故称它们为自由未知量.显然,(Ⅴ)有无穷多个解,即(I)有无穷多个解.如上面讨论过的方程组(3)⎪⎩⎪⎨⎧=--=+-=+-5212632321321321x x x x x x x x x经过一系列的变换后,得到阶梯形方程组⎩⎨⎧-=+=+-431232321x x x x x 将x 1,x 2用x 3表示出来即有⎩⎨⎧--=--=32313453x x x x 这就是方程组(3)的一般解,而x 3是自由未知量.用消元法解线性方程组的过程,归纳起来就是,首先用初等变换把方程组化为阶梯形方程组,若最后出现一些等式“0 = 0”,则将其去掉.如果剩下的方程当中最后一个方程是零等于一个非零的数,那么方程组无解,否则有解.方程组有解时,如果阶梯形方程组中方程的个数等于未知量的个数,则方程组有唯一解;如果阶梯形方程组中方程个数小于未知量的个数,则方程组有无穷多个解.当线性方程组(1)中的常数项b 1= b 2=…= b m = 0时,即⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n mn m m n n n n x a x a x a x a x a x a x a x a x a(Ⅵ)称为齐次线性方程组.显然,齐次线性方程组是一定有解的.因为x 1= x 2=…= x n =0就是它的一个解.这个解称为齐次方程组的零解.我们所关心的是它除了零解之外,还有没有非零解?把上述对非齐次线性方程组讨论的结果应用到齐次线性方程组,就有如下定理.定理 在齐次线性方程组(Ⅵ)中,如果m<n ,则它必有非零解.证明:因为(Ⅵ)一定有解,又r ≤m<n ,所以它有无穷多个解,因而有非零解.§2 线性方程组有解判别定理从消元法解线性方程组的过程中可看到,在对方程组作初等变换时,只是对方程组的系数和常数项进行运算,而未知量并没有参加运算,也就是说,线性方程组的解仅仅依赖于方程组中未知量的系数与常数项.因此,在用消元法解线性方程组时,为了书写简便起见,可以只写出方程组的系数和常数项.通常把方程组(I)的系数和常数项写成下列表格的形式⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅m mn m m n n b a a a b a a a b a a a 21222221111211表中的第i 行代表方程组(I)的第i 个方程,第j 列表示x j 的系数,最后一列表示常数项.这个表称为线性方程组(I)的增广矩阵.去掉最后一列,得到另一个表⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n a a a a a a a a a 212222111211它称为线性方程组的系数矩阵.已知用消元法解线性方程组就是对方程组反复地施行初等变换,反映在矩阵上,就是1) 交换矩阵的某两行的位置;2) 用一个非零的数去乘矩阵的某一行;3) 用一个数乘某一行后加到另一行上.这三种变换称为矩阵的初等行变换.类似地,有1’) 交换矩阵的某两列的位置;2’) 用一个非零的数去乘矩阵的某一列;3’) 用一个数乘某一列后加到另一列上.1’) ,2’) ,3’)称为矩阵的初等列变换.矩阵的初等行变换和矩阵的初等列变换统称为矩阵的初等变换.利用方程组的初等变换把线性方程组化为阶梯形方程组,相当于用矩阵的初等行变换至多利用第一种列变换,把方程组的增广矩阵化为阶梯形矩阵.这一节我们利用矩阵秩的概念来讨论线性方程组解的情况.设线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111(1)的系数矩阵和增广矩阵分别为A 和A , 即 A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅mn m m n n a a a a a a a a a 212222111211, A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅m mn m m n n b a a a b a a a b a a a 21222221111211. 定理1 线性方程组(1)有解的充分必要条件是:系数矩阵的秩与增广矩阵的秩相等,即r (A )=r (A )证:必要性如果方程组(1)有解,则β可由α1,α2,…,αn 线性表出,从而向量组α1,α2,…,αn ,β 可由α1,α2,…,αn 线性表出.又显然α1,α2,…,αn 可由α1,α2,…,αn ,β 线性表出,于是 {α1,α2,…,αn }≅{α1,α2,…,αn ,β}.所以 r {α1,α2,…,αn }=r {α1,α2,…,αn ,β},因此 r (A )=r (A )充分性 若 r (A )=r (A ),则有 r {α1,α2,…,αn }=r {α1,α2,…,αn ,β},又向量组 α1,α2,…,αn 可由α1,α2,…,αn ,β 线性表出,于是由§4的定理4知{}n ααα,,,21 ≅{}βααα,,,,21n ,因此β可由n ααα,,,21 线性表出,这就表明线性方程组(1)有解.此定理与前面§1介绍的消元法所得的结果是一致的.用消元法解线性方程组就是用初等行变换把增广矩阵化为阶梯形矩阵,这个阶梯形矩阵在适当调动前几列的顺序之后可能有两种情形:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 1222221111211r r rn rr n r n r d d c c d c c c d c c c c 或者⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 222221111211r rn rr n r n r d c c d c c c d c c c c其中c ii ≠0,i =1,2,…, r ,d r+1≠0.在前一种情形,我们说原方程组无解,而后一种情形方程组有解.实际上,把阶梯形矩阵中最后一列去掉,就是系数矩阵经过初等变换所变成的阶梯形矩阵.所以,当d r+1≠0时,r (A )≠r (A ),方程无解;当d r+1=0时,r (A )=r (A ),方程组有解.例1 判断方程组有解还是无解.⎪⎩⎪⎨⎧=++-=-++=+--72512420563432143214321x x x x x x x x x x x x解:⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛---→----→---=5000011216700563172432140112167005631712151241205631A 显然,r (A )=3,而r (A )=2,所以方程组无解.下面讨论线性组在有解的条件下解的情况.设线性方程组(1)有解,则r (A )=r (A )=r ,因而A 必有一个r 阶子式D ≠0(当然它也是A 的不为零的r 阶子式).为方便叙述起见,不妨设D 位于A 的左上角.显然这时D 所在的行是A 的一个极大无关组,第r +1, r +2, …, m 行都可由它们线性表出.因此方程组(1)与⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++r n rn r r n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111(2)同解.当r =n 时,由克拉默法则,方程组(2)有唯一解,即线性方程组有唯一解. 当r<n 时,把方程组(2)改写为⎪⎪⎩⎪⎪⎨⎧---=+++---=+++---=+++++++++n rn r r r r r rr r r n n r r r r n n r r r r x a x a b x a x a x a x a x a b x a x a x a x a x a b x a x a x a 112211212222222121111111212111 (3)此方程组作为x 1,x 2,…,x r 的方程组时,其系数行列式正是D ,而D ≠0,由克拉默法则,对于x r+1,x r+2,…,x n 的任意一组值,方程组(3)都有唯一解,也就是方程组(1)都有唯一解.x r+1,x r+2,…,x n 就是方程组(1)的一组自由未知量.对于(3)用克拉默法则,可解出x 1,x 2,…,x r :⎪⎪⎩⎪⎪⎨⎧'++'+'='++'+'='++'+'=++++++n rn r rrr r n n r r n n r r x c x c d x x c x c d x x c x c d x 11211222111111 (4)这就是线性方程组(1)的一般解.从上面的讨论可得:定理2 当线性方程组有解时,(1) 若r (A )=r =n ,则方程组有唯一解.(2) 若r (A )=r<n ,则方程组有无穷多解.例2 求解方程组⎪⎩⎪⎨⎧=-+-=-+-=-+-1223223553132432143214321x x x x x x x x x x x x解:对增广矩阵A 作初等行变换化为阶梯形矩阵→⎪⎪⎪⎭⎫ ⎝⎛------→⎪⎪⎪⎭⎫ ⎝⎛------=104101041011321122322355311321A⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛----000001041011501000001041011321由于r (A )=r (A )=2<4,所以方程组有解无穷多解,而且方程的全部解为⎩⎨⎧+-=++-=424314151x x x x x x 3、x 4为自由未知量.对于齐次线性方程组,由于它的系数矩阵A 与增广矩阵的秩总是相等的,所以齐次方程组总是有解的,至少有零解.那么,何时有非零解呢?将定理2用于齐次线性方程组立即可得到如下推论.推论1 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n mn m m nn n n x a x a x a x a x a x a x a x a x a 有非零解的充分必要条件是:系数矩阵的秩r (A )=r<n . 推论2 齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 有非零解的充分必要条件是:系数行列式D =0 例3 λ取何值时方程组⎪⎩⎪⎨⎧=++++=+-+=+++0)3()1(30)1(02)3(321321321x x x x x x x x x λλλλλλ 有非零解?并求其一般解.解:计算系数行列式λλλλλλλλλλλλλλλλλλ 0 0 1 1 0 21 1 1 0 1 1 02 1 31 1 02 13 )1(31 1 2 1 3-=+--=+-=++-+=D =λ2(λ–1)令D =0,知λ=0或 λ=1时,方程组有非零解.(1) 当λ=0时,易求得一般解为⎩⎨⎧=-=3231x x x x x 3为自由未知量.(2) 当λ=1时,易求得一般解为⎩⎨⎧=-=32312x x x x x 3为自由未知量.思考题:1. 当λ为何值时,下述齐次线性方程组有非零解?并且求出它的一般解.⎪⎩⎪⎨⎧=+++=--+-=---0)3(14202)8(023)2(321321321x x x x x x x x x λλλ 2. 当a 与b 取什么值时,线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 5432154325432154321334536223231 有解?在有解的情况下,求它的一般解.§3 线性方程组的应用线性方程组是线性代数的核心内容之一,它不仅可以广泛地应用于科学、工程计算和统计分析等领域,同时也应用于财经类的后继课程. 很多实际问题的处理最后也往往归结为比较容易处理的线性方程组的问题, 由于数学软件的优化普及, 使线性方程组能够更好地解决我们现实中的问题. 本节将简要介绍线性方程组在几何学、运筹学、经济学等方面的基本应用.一、在解析几何中的应用解析几何是数与形的有机结合, 它将几何体用代数形式巧妙的表示出来, 然后通过研究代数方程的相关性质, 从而揭示几何图形的内在本质. 例1 已知平面上三条不同直线的方程分别为1L :230ax by c ++=,2L :230bx cy a ++=, 3L :230cx ay b ++=,试证:这三条直线交于一点的充分必要条件为0a b c ++=.证 必要性 设三直线1L , 2L , 3L 交于一点, 则线性方程组232323ax by c bx cy a cx ay b +=-⎧⎪+=-⎨⎪+=-⎩(1) 有唯一解, 故系数矩阵222a b A b c c a ⎛⎫ ⎪= ⎪ ⎪⎝⎭与增广矩阵232323a b c A b c a c a b -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭的秩均为2, 于是det()0A =, 即22223det()236()()23ab cA bc a a b c a b c ab ac bc cab-=-=++++----=0, 所以0a b c ++=.充分性 由0a b c ++=, 则从必要性的证明可知, det()0A =, 故()3r A <. 而22222132()2[()]2[()]0224a bac b a a b b a b b b c =-=-++=-++≠,因此()()2r A r A ==. 所以线性方程组(1)有唯一解, 即三直线1L ,2L ,3L 交于一点. 例2 要使得平面上三点()111,x y P , ()222,x y P , ()333,x y P 在同一条直线上, 则需满足什么条件?解 三点位于平面同一条直线上, 不妨令直线为0ax by c ++=, ,,a b c 不全为零. 三点坐标满足齐次线性方程组112233000ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 从而有以,,Y X Z 为未知量的方程组112233000x Yy x Yy x Yy X ++Z =⎧⎪X ++Z =⎨⎪X ++Z =⎩ 存在非零解 ,,a Y b Z c X ===; 由线性方程组解的判别方法可知:齐次线性方程组有非零解等价于1122331131x y r x y n x y ⎛⎫⎪<= ⎪ ⎪⎝⎭(n 为未知量的个数); 因此, 平面上三点,()i i i x y P (1,2,3i =)在1122331131x y r x y n x y ⎛⎫⎪<= ⎪ ⎪⎝⎭条件下共线. 二、在运筹学中的应用在运筹学中, 很多问题往往要用到线性方程组中的知识去运算求解.例3 有三个生产同一产品的工厂1A 、2A 和3A , 其年产量分别为40吨、20吨和10吨, 该产品每年有两个用户1B 和2B , 其用量分别为45吨和25吨, 由各产地i A 到各用户j B 的距离ij C (千米), 如下表所示(1,2,3,1,2i j ==). 各厂的产品如何调配才能使运费最少?(按每吨产品每千米的运费为1元计算)解 为了解决这个问题, 我们假设各厂i A 调运到各用户j B 的产品数量为ij x (1,2,3,1,2i j ==).容易看出, 三个厂的总产量与两个用户的总用量刚好相等, 所以对产地来说产品应全部调出, 因此有111240x x +=, (2)212220x x +=, (3) 313210x x +=, (4)同时对用户来说调来的产品刚好是所需要的, 因此又有11213145x x x ++=, (5) 12223225x x x ++=, (6)以上方程(2)-(6)就是ij x 应满足的一些条件. 要使运费最小, 即使得112131122232455892587236s x x x x x x =+++++达到最小.于是, 题目要解决的问题是:如何选择非负数ij x ,1,2,3,1,2i j ==, 使之满足(2)-(6), 而是总运费s 最小.三、在经济学中的应用例4 假设一个经济系统由三个行业:五金化工、能源(如燃料、电力等)、机械组成, 每个行业的产出在各个行业中的分配见下表, 每一列中的元素表示占该行业总产出的比例. 以第二列为例, 能源行业的总产出的分配如下:80%分配到五金化工行业, 10%分配到机械行业, 余下的供本行业使用. 因为考虑了所有的产出, 所以每一列的小数加起来必须等于 1. 把五金化工、能源、机械行业每年总产出的价格(即货币价值)分别用123,,p p p 表示. 试求出使得每个行业的投入与产出都相等的平衡价格.产出分配购买者五金化工 能源 机械 0.2 0.8 0.4 五金化工 0.3 0.1 0.4 能源 0.50.10.2机械假设一个国家的经济分为很多行业, 例如制造业、通讯业、娱乐业和服务行业等. 我们知道每个部门一年的总产出, 并准确了解其产出如何在经济的其它部门之间分配或“交易”.把一个部门产出的总货币价值称为该产出的价格(price). 我们有如下结论: 存在赋给各部门总产出的平衡价格, 使得每个部门的投入与产出都相等.解 表可以看出, 沿列表示每个行业的产出分配到何处, 沿行表示每个行业所需的投入. 例如, 第1行说明五金化工行业购买了80%的能源产出、40%的机械产出以及20%的本行业产出, 由于三个行业的总产出价格分别是123,,p p p , 因此五金化工行业必须分别向三个行业支付1230.2,0.8,0.4p p p 元. 五金化工行业的总支出为1230.20.80.4p p p ++. 为了使五金化工行业的收入1p 等于它的支出, 因此希望11230.20.80.4p p p p =++.采用类似的方法处理上表中第2、3行, 同上式一起构成齐次线性方程组1123212331230.20.80.40.30.10.40.50.10.2p p p p p p p p p p p p=++⎧⎪=++⎨⎪=++⎩ 该方程组的通解为1233 1.4170.9171.000p p p p ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 此即经济系统的平衡价格向量, 每个3p 的非负取值都确定一个平衡价格的取值. 例如, 我们取3p 为 1.000亿元, 则1 1.417p =亿元,20.917p =亿元. 即如果五金化工行业产出价格为1.417亿元, 则能源行业产出价格为0.917亿元, 机械行业的产出价格为1.000亿元, 那么每个行业的收入和支出相等. 在研究一些数量在网络中的流动时自然推导出线性方程组. 例如, 城市规划和交通工程人员监控一个网络状的市区道路的交通流量模式;电气工程师计算流经电路的电流;以及经济学家分析通过分销商和零售商的网络从制造商到顾客的产品销售, 许多网络中的方程组涉及成百甚至上千的变量和方程.例5 下图给出了某城市部分单行道的交通流量(每小时过车数).假设 (1) 流入网络的流量等于全部流出网络的流量;(2) 全部流入一个节点的流量等于全部流出此节点的流量. 请确定该交通网络未知部分的具体流量.100x x解 首先写出表示流量的线性方程组, 然后求出方程组的通解. 图中各节点的流入量和流出量见下表:网络节点 流入量流出量A 24x x + 1300x +B 100400+ 26x x +C 7200x +3400x +D 300500+ 45x x +E 56x x +200600+F 400600+ 78x x +G 300600+ 9500x +H 9200x + 10xJ 10500x +400700+整个系统20001381000x x x +++根据假设(1)和(2), 经过简单整理, 可得到该网络流系统满足的线性方程组为124263745567891013830050020080080010004006001000x x x x x x x x x x x x x x x x x x -++=⎧⎪+=⎪⎪-+=⎪+=⎪⎪+=⎨⎪+=⎪=⎪⎪=⎪⎪++=⎩ 交通流量模式(即方程组的通解)为124385464789102005008008001000400600x x xx x x x x x x x x x =⎧⎪=-⎪⎪=-⎪=-⎪⎨=⎪⎪=-⎪=⎪⎪=⎩,48,x x 是自由变量.。
线性方程组的解法教案

线性方程组的解法教案一、引言线性方程组是数学中常见的一个重要概念,解决线性方程组问题是解析几何、线性代数等学科的核心内容。
本文将介绍线性方程组的基本概念和解法,帮助读者更好地理解和应用线性方程组。
二、线性方程组的基本概念1. 定义:线性方程组由一组线性方程组成,每个方程中的未知数的最高次数都为1,且系数皆为实数或复数。
线性方程组可以表示为以下形式:a₁x₁ + a₂x₂ + ... + aₙxₙ = b₁a₁x₁ + a₂x₂ + ... + aₙxₙ = b₂...a₁x₁ + a₂x₂ + ... + aₙxₙ = bₙ其中,a₁、a₂、...、aₙ分别为系数,x₁、x₂、...、xₙ为未知数,b₁、b₂、...、bₙ为常数项。
2. 解的概念:对于线性方程组,找到一组使得所有方程都成立的值,即为其解。
如果线性方程组存在解,则称其为相容的;如果不存在解,则称其为不相容的。
三、线性方程组的解法1. 列主元消去法列主元消去法是解决线性方程组的常用方法之一。
具体步骤如下:(1) 将线性方程组化为增广矩阵形式,写成增广矩阵[A|B]的形式。
(2) 对增广矩阵进行初等行变换,化简成上三角形矩阵[U|C]的形式,即上面的元素都为0。
(3) 从最后一行开始,按列主元所在的列进行回代求解,得到每个未知数的值。
2. 矩阵的逆和逆的应用矩阵的逆是解决线性方程组的另一种有效方法。
具体步骤如下:(1) 将线性方程组化为矩阵形式,即AX = B。
(2) 若矩阵A可逆,即存在逆矩阵A⁻¹,则方程组的解可以表示为X = A⁻¹B。
3. 克拉默法则克拉默法则是解决线性方程组的另一种方法,适用于方程组的系数矩阵为方阵的情况。
具体步骤如下:(1) 将方程组的系数矩阵记为A,常数项矩阵记为B。
(2) 分别计算方程组系数矩阵的行列式D和将常数项矩阵替换为方程组系数矩阵第i列后的新矩阵Di的行列式Di,并计算比值di = Di / D。
线性代数Ⅳ—线性方程组

c1 , c2 为任意常数
其中
1 1 1 0 ξ = c1 + c2 为对应齐次线性方程组的通解 0 2 1 0 1 2 0 η = 1 为非齐次线性方程组的特解 2 0
16
例 已知 α1 = (1, 4, 0, 2)T α 2 = ( 2, 7,1, 3)T α 3 = ( 0,1, 1, a)T β = ( 3,10, b, 4)T 问:(1) a,b为何值时,β 不能由 α1 , α 2 , α 3 线性表示 (2) a,b为何值时,β 可以由 α1 , α 2 , α 3 线性表示,并写出 表达式 例 设线性方程组
x1 = 0 , x2 = 0 , , xn = 0 即 x = (0 , 0 , , 0)T 必为方程组的一个解向量
称零解.
有时,齐次线性方程组还有非零解.
4
2 求解齐次线性方程组
2.1 齐次线性方程组有非零解的条件
定理一: 定理一:n 元齐次线性方程组 Ax = 0 有非零解(仅有零解) A 的列向量 α1 , α 2 , , α n 线性相关(无关)
x = η + k1ξ1 + k 2ξ 2 + + k n rξ n r (k1 , k 2 , , k n r为任意常数)
~
即 非齐次线性方程组的通解=非齐次线性方程组的一个特解 +对应齐次线性方程组的通解
14
3.3 求解非齐次线性方程组 求解非齐次线性方程组——消元法 消元法
通过例题理解 例:求解线性方程组
11
3 求解非齐次线性方程组
3.1 非齐次线性方程组的讨论
非齐次线性方程组 Ax = b ( b ≠ 0 ) 解的情况有三种 (1)无解 (2)有唯一解 (3)有无穷多组解
线性代数讲义03线性方程组

第三章 线性方程组第一节 线性方程组与矩阵的行等价一 线性方程组以前学过求解二元一次方程组与三元一次方程组的方法. 这里研究一般的一次方程组.定义3.1 多元一次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111称为线性方程组. 方程组有m 个方程, n 个未知数i x (1,2,,i n =), 而ij a (1,2,,i n =;m j ,,2,1 =)是未知数的系数, j b (m j ,,2,1 =)是常数项.如果0=j b (m j ,,2,1 =), 则称为齐次线性方程组, 否则称为非齐次线性方程组.数组n c c c ,,,21 是方程组的一个解, 如果用它们分别代替方程组中的未知数n x x x ,,,21 , 可以使方程组变成等式组. 方程组的全部解的集合称为方程组的通解. 相对于通解, 称方程组的一个解为特解.定义3.2 如果两个线性方程组有相同的通解, 则称它们同解.按照定义, 两个方程组同解是指它们的解的集合相等. 集合相等是一种等价关系, 因此方程组同解也是一种等价关系. 特别, 方程组同解具有传递性.通过消元, 可将线性方程组变成比较简单的同解方程组, 从而得到原方程组的解.例3.1 解线性方程组⎪⎩⎪⎨⎧=++=++=+-52452132321321321x x x x x x x x x .解 从上向下消元, 得同解方程组1232332312243x x x x x x -+=⎧⎪-=⎨⎪-=-⎩. 这种方程组称为阶梯形方程组. 从下向上消元, 得同解方程组⎪⎩⎪⎨⎧-=-=-=310232321x x x .再除以第一个未知数的系数, 得线性方程组的解2/31-=x , 52=x , 33=x .解线性方程组的基本方法是加减消元法. 求解过程中常用三种运算.定义3.3 下列三种运算称为方程组的初等变换.(1) 交换两个方程的位置;(2) 用一个非零常数乘以一个方程;(3) 将一个方程的k 倍加到另一个方程上去.注意 如果用一种初等变换将一个线性方程组变成另一个线性方程组, 则也可以用初等变换将后者变成前者. 即初等变换的过程是可逆的.定理3.1 用初等变换得到的新的线性方程组与原方程组同解.证 先证明只进行一次初等变换.首先如果一组数是原方程组的解, 则它满足方程组中的每一个方程. 此后, 无论进行的是哪种初等变换, 这组数也满足新方程组的每个方程, 因此是新方程组的解. 反之, 由于初等变换的可逆性, 新方程组的解也是原方程组的解. 因此, 两个方程组同解.最后, 由于方程组同解的传递性, 进行任意多次初等变换所得方程组与原方程组同解.二 矩阵的行等价用矩阵乘法, 可以将线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111写作 11121121222212n n m m mn n a a a x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b 21, 称为线性方程组的矩阵表示. 其中n m ⨯矩阵)(ij a A =称为方程组的系数矩阵, 1⨯n 列矩阵),,,(21'=n x x x x 称为未知数(矩阵), 1⨯m 列矩阵),,,(21'=m b b b b 称为常数(矩阵). 此时, 线性方程组可以简写作b Ax =.如果数组n c c c ,,,21 是线性方程组b Ax =的解, 令列矩阵12(,,,)n c c c ξ'=, 则有矩阵等式A b ξ=. 列矩阵12(,,,)n c c c ξ'=是方程组的解的矩阵表示.将常数矩阵添加到系数矩阵上作为最后一列, 得到分块矩阵),(b A A =, 称为线性方程组的增广矩阵.线性方程组与其增广矩阵是互相唯一确定的. 因此, 可以将方程组的语言翻译成矩阵的语言. 从线性方程组的初等变换, 产生矩阵的行初等变换的概念.定义3.4 设A 是矩阵, 则下列三种运算称为对矩阵A 的行初等变换.(1) 交换A 的两行;(2) 用非零常数k 乘以A 的一行;(3) 将A 的一行的k 倍加到另一行上去.定义 3.5 如果通过行初等变换, 可以将矩阵A 变成矩阵B , 则称矩阵A 与B 行等价. 记作B A r−→−. 仿照定理3.1的证明, 可以得到下面的结果.性质3.1 行等价是一种等价关系, 即具有下述性质.(1) 反身性: A A r −→−; (2) 对称性: 如果B A r −→−, 则A B r −→−; (3) 传递性: 如果B A r −→−,C B r −→−, 则C A r −→−. 当一类对象具有多种不同的等价关系时,要用不同的符号予以区别. 矩阵的相等是一种等价关系, 已经用等号表示为B A =. 作为矩阵的另一种等价关系, 行等价使用符号B A r −→−. 用矩阵的行等价的概念, 可以将定理3.1写作:定理3.2 如果两个线性方程组的增广矩阵行等价,则这两个线性方程组同解.通过初等变换, 可以从线性方程组产生一个阶梯形方程组. 换成矩阵的语言, 通过行初等变换, 可以从矩阵产生下面的具有特殊结构的矩阵.如果矩阵中某行中所有元素都是0, 则称为零行, 否则称为非零行.定义3.6 具有下面的性质的矩阵称为行阶梯形阵.(1) 非零行在上, 零行在下;(2) 每个非零行的第一个非零元素(首元素)在上面的非零行的首元素的右下方.例3.2 用行初等变换化简矩阵⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A .解 做行初等变换, 得⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A ⎪⎪⎪⎭⎫ ⎝⎛---−→−343042201312r ⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r . 经过消元, 得到的已经是行阶梯形阵. 继续消元, 得⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r A ⎪⎪⎪⎭⎫ ⎝⎛----−→−3100100208012r ⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r .最后, 每行除以其首元素, 得⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r A ⎪⎪⎪⎭⎫ ⎝⎛-−→−310050102/3001r .定义3.7 具有下列性质的行阶梯形阵称为行最简阵.(1) 每个非零行的首元素等于1;(2) 包含首元素的列的其它元素都是0.在例3.2中, 最后得到的是行最简阵. 由以上的讨论, 可得下面的定理.定理3.3 对于任意矩阵A , 存在一个行最简阵R , 使得A 与R 行等价.如果矩阵A 与行阶梯形阵R 行等价,则称R 是A 的行阶梯形阵. 如果A 与行最简阵R 行等价, 则称R 为矩阵A 的行等价标准形.其实, 例3.2中的矩阵就是例3.1中线性方程组的增广矩阵. 而矩阵的行初等变换的过程与线性方程组的初等变换的过程完全一样. 唯一的区别在于这里只有系数和常数, 没有未知数和等号. 由于增广矩阵与线性方程组可以互相唯一确定, 缺少未知数和等号完全不影响问题的解决.习题3-11. 写出线性方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x 的系数矩阵与增广矩阵, 并用消元法求解.2. 设线性方程组的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛------1681355422351312, 写出该线性方程组, 并用消元法求解.3. 求下列矩阵的行等价标准形.(1)102120313043-⎛⎫ ⎪ ⎪ ⎪-⎝⎭; (2) 023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭; (3) 11343335412232033421--⎛⎫ ⎪-- ⎪ ⎪-- ⎪ ⎪---⎝⎭; (4) 23137120243283023743--⎛⎫ ⎪-- ⎪ ⎪- ⎪ ⎪-⎝⎭. 4. 求t 的值, 使得矩阵⎪⎪⎪⎭⎫ ⎝⎛-----t 22122351311321的行等价标准形恰有两个非零行.第二节 矩阵的秩一 矩阵的秩的定义定义 3.8 设矩阵n m ij a A ⨯=)(, 从A 中任意选取k 行,k 列(},min{n m k ≤), 位于这些行与列的交叉点上的2k 个元素按照原来的相对位置构成的k 阶行列式称为A 的一个k 阶子式. 例如, 位于矩阵⎪⎪⎪⎭⎫ ⎝⎛---=312097102431A 的第一,三行, 第二,四列的二阶子式为133223-=-. 一个n m ⨯矩阵有kn k m C C 个k 阶子式. 矩阵的每个元素都是它的一个一阶子式. 而n 阶方阵的行列式是它的唯一的n 阶子式.定义3.9 如果矩阵n m ij a A ⨯=)(中有一个r 阶子式不等于零, 而所有1+r 阶子式都等于零, 则称矩阵A 的秩等于r . 记作r A =)rank(.如果矩阵的所有1+r 阶子式都等于零, 根据行列式按照一行展开, 可以证明所有更高阶的子式也都等于零. 因此, 矩阵的秩等于它的不等于零的子式的最高阶数.约定 对于零矩阵O , 约定0)rank(=O .由矩阵的秩的定义, 可以得到下面简单事实:(1) 设A 是非零矩阵, 则1)rank(≥A ;(2) 设A 是n m ⨯矩阵, 则},min{)rank(n m A ≤;(3) n 阶方阵A 可逆的充分必要条件为n A =)rank(. 于是, 可逆阵又称为满秩阵.例3.3 设⎪⎪⎪⎭⎫ ⎝⎛=064212100321A , 求它的秩.解 左上角的二阶子式不等于零. 而所有四个三阶子式都等于零. 于是, 2)rank(=A . 例3.4 求对角阵),,,diag(21n a a a A =的秩.解 由不等于0的主对角元素所在的行与列确定的子式不等于0. 而阶数高于这个子式的子式必然有零行. 因此对角阵的秩等于其不等于0的主对角线元素的个数.例3.5 设矩阵A 的秩等于0>r , 从A 删除一行得到矩阵B , 问B 的秩可能取哪些值? 如果给A 添加一行呢?解 因为矩阵B 的子式也是矩阵A 的子式, 所以B 的秩不大于A 的秩.已知r A =)r a n k (, 不妨设A 的r 阶子式D 不等于0. 如果D 也是B 的子式, 则r B =)rank(. 否则, 根据行列式按照一行展开, 在D 的未被删除的1-r 行中, 至少有一个1-r 阶子式不等于0. 于是1)rank(-≥r B .仿照上面的证明, 添加一行所得矩阵的秩等于r , 或者1+r .性质3.2 设A 是矩阵, k 是数, 则(1) 转置: )rank()rank(A A =';(2) 数乘: 如果0≠k , 则)rank()rank(A kA =.证 只证(2).考虑矩阵A 的一个s 阶子式s D , 根据矩阵的性质2.6, 矩阵kA 的相应的子式等于s s D k .已知0≠k , 因此0=s s D k 的充分必要条件为0=s D .设r A =)rank(, 则A 有一个r 阶子式不等于0, 而所有1+r 阶子式都等于0. 根据前面的分析, 矩阵kA 具有相同的性质. 因此, r kA =)rank(.二 行初等变换用定义计算矩阵的秩时, 需要计算许多个行列式. 计算量非常大.定理3.4 设矩阵A 与B 行等价, 则rank()rank()A B =.证 设一次行初等变换将矩阵A 变成矩阵B ,且r A =)r a n k (, 则A 的所有1+r 阶子式都等于0. 下面对于三种行初等变换证明矩阵B 的所有1+r 阶子式也都等于0.(1) 矩阵A 的一行乘以非零常数k . 此时B 的一个1+r 阶子式或者就是A 的相同位置的1+r 阶子式, 或者是A 的相同位置的1+r 阶子式的一行乘以非零常数k . 于是, B 的所有1+r 阶子式都等于0.(2) 交换矩阵A 的两行. 考虑B 的一个1+r 阶子式D , 则A 有一个1+r 阶子式与D 的差别至多是行的顺序不同. 于是, B 的所有1+r 阶子式都等于0.(3) 将A 的第j 行的k 倍加到第i 行. 如果B 的一个1+r 阶子式不包含A 的第i 行, 它就是A 的相同位置的1+r 子式. 如果B 的一个1+r 阶子式D 包含A 的第i 行, 用行列式的性质, 这个子式可以分解为21kD D +, 其中1D 就是A 的相同位置的1+r 子式. 如果D 不包含A 的第j 行, 则2D 可以由A 的某个1+r 阶子式经交换行得到. 如果D 包含A 的第j 行, 则2D 有两个相同的行. 于是, B 的所有1+r 阶子式都等于0.总之, )rank()rank(A r B =≤.另一方面, 由矩阵的行等价的对称性, 也可以用行初等变换将矩阵B 变成矩阵A . 从而还有)rank()rank(B A ≤. 于是, 无论做哪种行初等变换, 都有rank()rank()A B =.最后, 由矩阵的行等价的传递性, 进行多次行初等变换也不改变矩阵的秩.推论 3.1 矩阵的秩等于它的行阶梯形阵中非零行的个数, 也就是行等价标准形中非零行的个数.证 设矩阵A 的行等价标准形R 中恰有r 个非零行, 则所有1+r 阶子式都等于0. 另一方面, 它的非零行的首元素所在的列的前r 行构成r 阶单位阵. 于是r R =)rank(. 根据定理 3.4, 有r A =)rank(.例3.6 求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A 的秩. 解 用行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A −→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----81440472047201511−→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000000047201511. 矩阵A 的行阶梯形阵有两个非零行, 因此, 2)rank(=A .例3.7 设分块矩阵⎪⎪⎭⎫ ⎝⎛=C O O B A , 求证: )rank()rank()rank(C B A +=. 证 设矩阵C B ,的行等价标准形分别为R 和S , 分别对B 和C 所在的行做行初等变换, 得⎪⎪⎭⎫ ⎝⎛=C O O B A ⎪⎪⎭⎫ ⎝⎛−→−S O O R r , 其中R 和S 分别是B 和C 的行等价标准形. 将R 所在的行中的零行移动到矩阵的最下方, 而不改变非零行的上下顺序, 可得到一个行最简阵. 而且, 这就是A 的行等价标准形. 于是, A 的行等价标准形中非零行的个数恰等于B 与C 的行等价标准形中非零行的个数之和.用这个方法可以证明: 准对角阵的秩等于各对角块的秩的和.习题3-21. 设矩阵⎪⎪⎭⎫ ⎝⎛=75211111A ,按照从小到大的顺序排列它的所有二阶子式. 2. 设n m ⨯矩阵A 的秩等于r , 任取A 的s 行构成矩阵B , 求证: m s r B -+≥)rank(. *3. 设A 是n m ⨯矩阵,求证:1)rank(=A 的充分必要条件为: 存在1⨯m 非零矩阵B 与n ⨯1非零矩阵C ,使得BC A =.4. 用行初等变换求下列矩阵的秩.(1) 123235471⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2) 321322131345561---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3) 1010011000011000011001011⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (4) 132541413514243273613-⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭. 5. 求t 的值, 使得方阵⎪⎪⎪⎭⎫ ⎝⎛-=t A 23312231的秩等于2.第三节 齐次线性方程组的基础解系齐次线性方程组的矩阵表示为0=Ax . 此时方程组与其系数矩阵A 互相唯一确定.齐次线性方程组0=Ax 总有零解. 于是, 解齐次线性方程组的基本问题是:(1) 对给定的齐次线性方程组,判定是否有非零解;(2) 如果有非零解, 求出所有的解(通解). 性质 3.3 如果列矩阵1ξ与2ξ是齐次线性方程组0=Ax 的两个特解, 则对于任意的数k h ,, 列矩阵21ξξk h +也是方程组的解.证 将21ξξk h +代入方程组, 得)(21ξξk h A +00021=+=+=ξξkA hA . 由定理3.2与定理3.3可得解齐次线性方程组的基本路线. 下面通过例题予以说明.例1求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=-+++=-----=+++0434503223006225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的系数矩阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=14345321231111162210A . 然后做行初等变换, 由矩阵A 产生行阶梯形阵. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------14345321236221011111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----−→−00000010006221011111r . 继续做行初等变换, 得到矩阵A 的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000010006021050101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--−→−00000010006021050101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===++=--000062054532531x x x x x x x .将行等价标准形的非零行中的首元素对应的未知数留在方程组的左边, 将其余未知数移到方程组的右边, 得到⎪⎪⎩⎪⎪⎨⎧==--=+=0006254532531x x x x x x x . 任意取定右边未知数(自由未知数)的值, 则左边未知数(约束未知数)的值也随之确定, 由此产生方程组的一个解.实际上,由此可以得到方程组的全部解. 设),,,,(54321'd d d d d 是方程组的任意的特解, 上面求解时3x 与5x 可以任意取值, 自然包含取值33d x =与55d x =. 由于),,,,(54321'd d d d d 是方程组的解, 必须满足方程组.因此5315d d d +=,53262d d d --=,04=d . 于是, 这个特解可以由上面的方法产生.令h x =3,k x =5, 得到齐次线性方程组的通解k h x 51+=,k h x 622--=,h x =3, 04=x , k x =5, 其中k h ,是任意常数.在通解中令1=h ,0=k , 得到齐次线性方程组的一个特解1(1,2,1,0,0)ξ'=-. 反之, 令0=h ,1=k , 得到另一个特解2(5,6,0,0,1)ξ'=-. 从而得到齐次线性方程组的通解的矩阵表示: 12x h k ξξ=+, 其中k h ,是任意常数. 为了得到方程组的通解, 只须求得特解1ξ与2ξ, 因此, 称12,ξξ为齐次线性方程组的基础解系.注意 将一个自由未知数取1, 其他自由未知数取0, 得到齐次线性方程组的一个特解. 这些特解的集合就是基础解系. 因此, 如果有s 个自由未知数, 则方程组的基础解系包含s 个特解.定理 3.5 设A 是n m ⨯矩阵, 则齐次线性方程组0=Ax 的基础解系中所包含的特解的个数等于)rank(A n -.证 根据推论 3.1, 系数矩阵A 的秩等于行等价标准形R 中非零行的个数, 也就是约束未知数的个数. 于是, 未知数的个数n 与系数矩阵的秩)rank(A 的差等于自由未知数的个数, 也就是基础解系中所包含的特解的个数.推论 3.2 齐次线性方程组只有零解的充分必要条件为: 系数矩阵的秩等于它的列数.证 根据定理 3.5, 此时没有自由未知数, 于是只有一个零解.推论3.3 设A 是n 阶方阵,求证:齐次线性方程组0=Ax 只有零解的充分必要条件为: 行列式0||≠A .证 根据推论3.2, 齐次线性方程组0=Ax 只有零解的充分必要条件为n A =)rank(. 由矩阵的秩的定义, n A =)rank(的充分必要条件为0||≠A .例 3.9 设A 是n 阶方阵, 且n r A <=)rank(, 求证: 存在n 阶方阵B , 满足O AB =, 且r n B -=)rank(.证 考虑齐次线性方程组0=Ax , 根据定理3.5, 它的r n -个特解12,,,n r ξξξ-组成基础解系. 即有0i A ξ=, r n i -=,,2,1 .构造分块n 阶方阵12(,,,,0,,0)n rB ξξξ-=, 即B 的前r n -列是基础解系中的特解构成的列矩阵, 后面的r 个列的元素都是0. 由基础解系的构造, 在B 的前r n -列中, 与自由未知数对应的行可以构成一个单位阵, 因此r n B -=)rank(.另一方面, 由分块矩阵的运算规则, 有12(,,,,0,,0)n r AB A ξξξ-=12(,,,,0,,0)n r A A A O ξξξ-==.习题3-31. 求下列齐次线性方程组的通解.(1)⎪⎩⎪⎨⎧=+=++=+-03200231321321x x x x x x x x ; (2)⎪⎩⎪⎨⎧=-+-+=+--+=-+-+024242052420632543215432154321x x x x x x x x x x x x x x x ; (3)⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++033450622032305432154325432154321x x x x x x x x x x x x x x x x x x x ; (4)⎪⎪⎩⎪⎪⎨⎧=+-+-=-+--=-+-+=+-+-02252022303220254321543215432154321x x x x x x x x x x x x x x x x x x x x .2. 设齐次线性方程组的系数矩阵的列数大于行数, 求证: 该方程组有非零解.3. 当a 满足什么条件时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x ax x x x ax 只有零解?4. 求a 的值, 使得齐次线性方程组⎪⎩⎪⎨⎧=+-=++=++004202321321321x x x x x x x x ax 有非零解. 并求其基础解系.5. 设0>n , 求证: n 次多项式至多有n 个两两不同的零点.第四节 非齐次线性方程组的通解解非齐次线性方程组b Ax =的基本问题是:(1) 对于给定的方程组, 判断是否有解;(2) 如果有解, 求出全部解(通解).定义 3.10 将非齐次线性方程组b Ax =中各方程的右边变成0, 得到的齐次线性方程组0=Ax 称为方程组b Ax =的导出组.性质3.4 设列矩阵1η与2η是线性方程组b Ax =的两个特解, 则它们的差21ηηξ-=是它的导出组0=Ax 的解.证 将21ηηξ-=代入导出组的左边, 得)(21ηηξ-=A A 021=-=-=b b A A ηη.推论 3.4 如果非齐次线性方程组有解, 则它的通解是它的一个特解与它的导出组的通解的和.证 首先, 设列矩阵η是方程组b Ax =的特解, 列矩阵ξ是其导出组0=Ax 的特解, 则有b b A A A =+=+=+0)(ηξηξ,即列矩阵ηξ+是方程组b Ax =的解.其次, 设列矩阵ζ是方程组b Ax =的任意的特解, 根据性质3.4, 列矩阵ηζξ-=是导出组0=Ax 的解. 移项, 得ξηζ+=, 即方程组b Ax =的任意的特解ζ可以表示为它的取定的特解η与导出组0=Ax 的解ξ的和.综合两方面, 即得本推论.注意 求非齐次线性方程组的通解, 只须求出它的一个特解, 以及它的导出组的通解. 而后面的问题已经解决.在齐次线性方程组的解题路线中, 用增广矩阵代替系数矩阵, 得非齐次线性方程组的解题路线. 现举例说明.例 3.10 求非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334533237246225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的增广矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 然后做行初等变换, 由增广矩阵产生行阶梯形阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311232462210711111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------−→−0000000000002462210711111r . 继续做行初等变换, 得到增广矩阵的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000000024622101751101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−00000000000024622101751101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===+++-=---00002462217554325431x x x x x x x x . 将自由未知数移到右边, 得⎪⎪⎩⎪⎪⎨⎧==+---=-++=00002462217554325431x x x x x x x x . 将自由未知数取值0, 计算约束未知数的值, 即得非齐次方程组的一个特解)0,0,0,24,17('-=η.根据推论 3.3, 还需要求它的导出组的基础解系. 注意到: 如果删除增广矩阵的最后一列, 就是系数矩阵. 在做行初等变换之后, 如果删除增广矩阵的行等价标准形的最后一列, 也就是系数矩阵的行等价标准形. 于是, 如果将非齐次方程组的同解方程组的常数项变成0, 就是它的导出组的同解方程组. 用前面的方法, 得基础解系)0,0,1,2,1(1'-=ξ, )0,1,0,2,1(2'-=ξ,)1,0,0,6,5(2'-=ξ.于是, 非齐次线性方程组的通解的矩阵表示为332211ξξξηk k k x +++=, 其中321,,k k k 是任意常数.例 3.11 解非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334523237246225432154321543215432x x x x x x x x x x x x x x x x x x x .解 这个方程组的增广矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 通过行初等变换, 得到行阶梯形阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0000001000002462210711111. 在这里, 有一个非零行的首元素在最后一列. 当从行阶梯形阵出发, 得同解方程组时, 该行对应矛盾方程: 10=. 因此, 同解方程组无解. 于是, 原线性方程组无解. 反之, 如果不出现这种情况, 则用前面的方法可以求出通解.于是, 非齐次线性方程组有解的充分必要条件为: 它的增广矩阵的行阶梯形阵的非零行的首元素不出现在最后一列(常数项). 下面的定理用矩阵的秩表述这个结论.定理 3.6 非齐次线性方程组有解的充分必要条件为: 它的系数矩阵的秩等于它的增广矩阵的秩.证 在增广矩阵的行阶梯形阵中, 首元素不出项在最后一列的充分必要条件为: 增广矩阵的行阶梯形阵的非零行的个数等于系数矩阵的行阶梯形阵的非零行的个数. 由推论 3.1, 即系数矩阵与增广矩阵有相同的秩.推论 3.5 非齐次线性方程组有唯一解的充分必要条件为: 它的系数矩阵的秩等于其列数, 且等于增广矩阵的秩.证 综合定理3.6和推论3.2即可.例 3.12 当b a ,取何值时, 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x bx x a x x x x x x x x 有唯一解, 无解, 有无穷多解? 对后者求通解.解 对增广矩阵做行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----112323101221001111a b a⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−→−1321023101221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-−→−01000101001221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+----−→−01000101001221011101a b a r 根据定理3.6, 当1,1-≠=b a 时无解.当1,1-==b a 时, 非齐次线性方程组的特解为)0,0,1,1('-=η, 导出组的基础解系为)0,1,2,1(1'-=ξ, )1,0,2,1(2'-=ξ,通解为2211ξξηk k x ++=, 其中21,k k 是任意常数.当1≠a 时有唯一解)0,1,32,2(11'+--+--=b b a a b a η. 例3.13 设A 是n 阶方阵, 且0||≠A . 将A 分块),(C B A =, 其中C 是A 的最后一列, 求证: 线性方程组C Bx =无解.证 线性方程组的增广矩阵就是A , 由0||≠A , 增广矩阵的秩等于n . 而线性方程组的系数矩阵B 只有1-n 列, 它的秩不大于1-n . 根据定理3.6, 线性方程组C Bx =无解.推论 3.6 设A 是n 阶方阵, 则线性方程组b Ax =有唯一解的充分必要条件为: 行列式0||≠A .证 充分性. 设0||≠A , 则方阵A 的秩等于其列数n . 又方程组的增广矩阵),(b A 只有n 行, 于是, 由例3.5, 有≤=)rank(A n n b A ≤),rank(.根据推论3.5, 方程组有唯一解.必要性. 设方程组b Ax =有唯一解, 根据推论 3.5, 方阵A 的秩等于其列数n . 于是, 行列式0||≠A .条件0||≠A 保证方阵A 可逆. 用A 的逆阵左乘b Ax =, 得b A x 1-=. 这个公式是用逆阵表示线性方程组的唯一解. 从这个公式出发, 可以得到另一个公式. 根据定理2.1, 有 b A x 1-=b A A *||1=, 其中方阵*A 是A 的伴随阵. 计算这个矩阵等式的第j 行的元素, 得)(||12211n nj j j j b A b A b A A x +++= , n j ,,2,1 =. 根据定理 1.3, 等式右边的括号可以看作: 用常数矩阵b 代替系数行列式||A 的第j 列所得的行列式, 按照第j 列的展开式. 将这个行列式记作j D , 又将||A 改写作D , 则上式为D D x jj =, n j ,,2,1 =.这个公式是用行列式的商表示线性方程组的唯一解,称为克拉默法则.习题3-41. 设列矩阵i η(m i ,,,2,1 =)是非齐次线性方程组Ax b =的特解, 数i k (m i ,,,2,1 =)满足121=+++m k k k , 求证: 列矩阵1122m mk k k ηηη+++也是方程组Ax b =的特解.2. 求下列非齐次线性方程组的通解. (1)⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+--=-+337713434234313214321431x x x x x x x x x x x x x ; (2) ⎪⎩⎪⎨⎧-=-+-=+-=-+-22344324314324321x x x x x x x x x x ; (3) ⎪⎪⎩⎪⎪⎨⎧=++-=+-=--=++0644352523222321321321321x x x x x x x x x x x x ; (4) ⎪⎪⎩⎪⎪⎨⎧=+++=++++=++++----nx x x x x x x x x x x x n n n n n n 122113113221 , 其中1>n .3. 求证: 线性方程组⎪⎩⎪⎨⎧=++-=+++=-++2543222432143214321x x x x x x x x x x x x 无解. 4. 求b的值, 使得线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-b x x x x x x x x x x x x 432143214321114724212有解, 并求其通解.5. 当d c b a ,,,满足什么条件时, 线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+d x x cx x b x x a x x 42314321有解? 并求其通解.6. 当b a ,取何值时, 线性方程组⎪⎩⎪⎨⎧=++=++=++b ax x x x x x x x x 32132132132263132有唯一解, 无解, 有无穷多解? 对后者求其通解.*7. 设A 是n 阶方阵, b 是1⨯n 矩阵, 且分块方阵满足)rank(0rank A b b A =⎪⎪⎭⎫ ⎝⎛', 求证: 非齐次线性方程组b Ax =有解.第五节 初等方阵与初等变换一 初等方阵定义3.11 对单位阵E 做行初等变换所得方阵称为初等方阵.三种行初等变换产生三种初等方阵:(1) 交换E 的第i 行与第j 行所得方阵记作ij P ;(2) 用非零常数k 乘以E 的第i 行所得方阵记作)(k D i ;(3) 将E 的第j 行的k 倍加到第i 行所得方阵记作)(k T ij .三种初等方阵是可逆阵, 且它们的逆阵也是初等方阵. 实际上, 有ij ij P P =-1, ⎪⎭⎫ ⎝⎛=-k D k D i i 1)(1, )()(1k T k T ij ij -=-.定理 3.7 对矩阵A 做一种行初等变换, 相当于左乘一个相应的初等方阵.注意 定理3.7在矩阵的相等与矩阵的行等价之间建立了联系, 从而可以用矩阵的运算性质研究矩阵的行等价. 下面将看到, 有时这是非常方便的.推论 3.7 任意矩阵A 可以表示成R E E E A s 21=, 其中i E 是初等方阵, R 是A 的行等价标准形.证 对A 做行初等变换, 可得其行等价标准形R . 这个过程相当于用一系列初等方阵i E 左乘矩阵A . 即有R A E E E s =12 . 由于初等方阵可逆, 用它们的逆阵逐个左乘此式, 得R E E E A s 11211---= . 因为初等方阵的逆阵还是初等方阵, 换符号即得推论中的表示.推论3.8 方阵A 可逆的充分必要条件为: 它可以表示成初等方阵的乘积.例3.14 设B A ,都是n m ⨯矩阵, 求证: A 与B 行等价的充分必要条件为存在m 阶可逆阵P , 使得B PA =.二 矩阵方程矩阵方程B AX =, 其中A 是n 阶可逆阵, B 是m n ⨯矩阵, 而X 是m n ⨯未知矩阵.已知A 是可逆阵, 用其逆阵左乘方程, 得矩阵方程的解B A X 1-=. 对于可逆阵A , 存在初等方阵i E , 使得E A E E E s =12 . 用同样的初等方阵左乘矩阵方程B AX =, 得EX AX E E E s =12 B E E E X s 12 ==这个等式说明, 对可逆阵A 与矩阵B 做相同的行初等变换, 当将A 变成单位阵时, 矩阵B 变成矩阵方程B AX =的解B A X 1-=.例3.15设方阵⎪⎪⎪⎭⎫⎝⎛--=111012112A ,⎪⎪⎪⎭⎫ ⎝⎛--=521234311B , 解矩阵方程B AX =.解 做分块矩阵: 左边部分是A ,右边部分是B . 做行初等变换, 得()=B A |⎪⎪⎪⎭⎫⎝⎛----521111234012311112⎪⎪⎪⎭⎫⎝⎛----−→−311112234012521111r⎪⎪⎪⎭⎫ ⎝⎛-------−→−143100872230521111r⎪⎪⎪⎭⎫ ⎝⎛---−→−1431003/1053/80103/813/2001r .于是,⎪⎪⎪⎭⎫ ⎝⎛---==-1433/1053/83/813/21B A X . 如果矩阵方程B AX =中的方阵A 可逆, 方阵B 是单位阵E , 则用这个方法得到的矩阵方程的解E A X 1-=1-=A 就是A 的逆阵. 由此得到计算逆阵的简单方法.例3.16 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=523012101A 的逆阵. 解 用初等变换法.()=E A |⎪⎪⎪⎭⎫ ⎝⎛--100523010012001101⎪⎪⎪⎭⎫ ⎝⎛---−→−127200012210001101r⎪⎪⎪⎭⎫ ⎝⎛----−→−2/112/71001150102/112/5001r于是 ⎪⎪⎪⎭⎫ ⎝⎛----=-2/112/71152/112/51A . 如果X 与B 是列矩阵, 用这里的方法可以得到线性方程组B AX =的解B A X 1-=. 而且这种解法正是前面的消元法.性质 3.5 两个矩阵的乘积的秩不大于每个因子的秩.证 设A 是p m ⨯矩阵, B 是n p ⨯矩阵, r A =)rank(. 先证明r AB ≤)rank(.根据推论 3.7, 有R A E E E s =12 , 其中A 的行等价标准形R 恰有r 个非零行. 用矩阵B 右乘此式, 得RB AB E E E s =)(12 . 根据矩阵乘法定义, 矩阵RB 至多有r 个非零行. 根据定理3.4, 有)rank()rank()rank(A r RB AB =≤=.转置可证明另一部分.例3.17 设A 是可逆阵,则)rank()rank(B AB =.证1 记矩阵AB C =. 由性质 3.5, 有)rank()rank(B C ≤. 用逆阵1-A 左乘AB C =, 得C A B 1-=, 从而有)rank()rank(C B ≤.上面的证明主要体现了逆阵的一种应用, 并不是最简捷的证明.证2 已知A 是可逆阵,根据推论3.8, 有B E E E AB s 12 =. 再根据定理 3.4, 有)rank()rank(B AB =.三 初等变换与矩阵的行初等变换类似, 可以定义矩阵的列初等变换.定义3.12 设A 是矩阵, 称下面三种变换为对矩阵A 的列初等变换.(1) 交换A 的两列;(2) 用非零常数k 乘以A 的一列;(3) 将A 的一列的k 倍加到另一列上去,与行初等变换类似, 可以定义矩阵的列等价与列等价标准形.性质 3.6 列初等变换与列等价具有下述性质.(1) 列初等变换不改变矩阵的秩;(2) 对一个矩阵做列初等变换, 相当于用相应的初等方阵右乘这个矩阵;(3) 矩阵的列等价是等价关系;(4) 矩阵B 与A 列等价的充分必要条件为: 存在可逆阵Q , 使得B AQ =.与用行初等变换解矩阵方程B AX =类似, 可以用列初等变换解矩阵方程B XA =.例3.18设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A , ⎪⎭⎫ ⎝⎛-=234311B , 解矩阵方程B XA =.解 做分块矩阵, 上边是A , 下边是B . 然后做列初等变换. 当将A 变成单位阵时, B变成矩阵方程的解1-=BA X . 如果用→表示列等价, 则有⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---234311111012112⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→423131*********⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→253321301011001⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→3/253/8122100010001. 于是⎪⎭⎫ ⎝⎛---=3/253/8122X . 例 3.19 设分块矩阵),(B A , 求证: )rank()rank(),rank(B A B A +≤.证 设矩阵B A ,的列等价标准形分别为S R ,,则R 与S 分别有)ra nk(A 与)rank(B 个非零列. 从而分块矩阵),(S R 有)rank()rank(B A +个非零列. 另一方面, 如果在矩阵),(B A 中分别对两个子块做列初等变换, 则可以得到分块矩阵),(S R . 于是, 有)rank()rank(),rank(),rank(B A S R B A +≤=.。
线性代数习题1.6克拉默法则

b1 a1, j1 a1n bn an, j1 ann
线性代数
首页
上一页 下一页
返回
结束
§1.6 克拉默法则
x1 x2 x3 1
例1.
求解
x1 2 x2 x3 x4 8 2 x1 x2 3x4 3
3x1 3x2 5x3 6 x4 5
ex
:
k为
何
值,
kx1
x2
4 x3
0
, 有非零解.
4 x1 x2 x3 0
2k 3 解 : D k 1 4 0
4 1 1
k 2, k 11
线性代数
首页
上一页 下一页
返回
结束
§1.6 克拉默法则
内容小结
1.用克拉默法则解方程组的两个条件 (1)方程个数等于未知量个数; (2)系数行列式不等于零.
线性代数
首页
上一页 下一页
(1)
返回
结束
§1.6 克拉默法则
则方程组有唯一解,其解为:
x1
D1 , D
x2
D2 , D
x3
D2 D
,
, xn
Dn D
.
其中Dj 是把系数行列式 D 中第 j 列的元素用方程 组右端的常数项代替后所得到的 n阶行列式,即
a11 a1, j1 Dj
1.若常数项b1,b2 , ,bm不全为零,
则称此方程组为非齐次线性方程组;
2.若常数项b1, b2, ,bm 全为零,
此时称方程组为齐次线性方程组.
线性代数
线性代数导论

线性代数导论线性代数是数学中的一个重要分支,研究向量空间及其线性变换的理论基础。
它在许多领域中都有广泛的应用,如工程、物理、计算机科学等。
本文将介绍线性代数的基本概念和重要性,并探讨其在现实世界中的应用。
一、向量与线性方程组向量是线性代数的核心概念之一。
它是具有大小和方向的量,并可以用一个n维实数列来表示。
向量可以进行加法和数乘运算,从而形成一个向量空间。
线性方程组则是由多个线性方程组成的方程组,其中未知量的系数为常数。
解线性方程组的过程就是求解未知量的取值,从而使得方程组成立。
二、矩阵与行列式矩阵是线性代数中另一个重要的概念。
它是一个按照规则排列的数表,可以用来表示线性方程组的系数矩阵。
矩阵的运算包括加法、数乘和乘法,而行列式则是一个矩阵的一个标量值,它具有一些特殊的性质,如行列式的值为零表示矩阵不可逆等。
三、特征值与特征向量特征值与特征向量是矩阵的另一个重要概念。
特征值是一个标量,而特征向量是与之对应的非零向量。
特征值和特征向量可以帮助我们理解矩阵的性质,如矩阵的对角化和对称性等。
四、线性变换与矩阵表示线性变换是指一个向量空间到另一个向量空间的映射,它保持向量空间的线性性质。
线性变换可以用一个矩阵来表示,这个矩阵称为线性变换的矩阵表示。
矩阵表示可以使得线性变换的运算更加方便,从而简化了许多计算过程。
五、应用领域线性代数在各个领域中都有广泛的应用。
在工程领域中,它可以用来解决电路分析、结构力学等问题。
在物理领域中,它可以用来分析物体的运动和力学性质。
在计算机科学领域中,它是计算机图形学和人工智能等领域的基础。
除此之外,线性代数还被应用在经济学、生物学和社会科学等领域。
六、总结线性代数是一门基础而重要的数学学科,它为我们解决现实世界中的许多问题提供了强大的工具。
通过理解线性代数的基本概念和方法,我们可以更好地理解和应用数学知识,推动科学技术的发展。
因此,掌握线性代数的基本知识对于每一个学习者来说都是至关重要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组
即存在不全为零的 k1, k2 , , kn,使得
k1 A1 k2 A2 kn An 0 . ( x~1 k1 )A1 ( x~2 k2 )A2 ( x~n kn )An b .
可见 x~1 k1, x~2 k2 , , x~n kn 也是 A X = b 的解,
12
§4.1 线性方程组的基本概念
第 三、等价的线性方程组
四 章
定义
若两个线性方程组同解,则称它们等价。 P111 定义4.1
线 定理 若存在可逆矩阵 P ,使 PA = B ,则线性方程组
性 方
P111 定理
A X = b 与 B X = P b 等价(同解)。
程 4.1
组 证明 由 A X b , P A X P b , B X P b;
即得 A X = b 有解。
8
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
2. 线性方程组解的惟一性 P112 定理4.2 (2) 线
性 定理 设 r ( A) r ( A b) r , 则 r n A X = b 有惟一解。
方 程
四 章
1. 线性方程组的一般形式
2. 线性方程组的矩阵形式
线 性
3. 线性方程组的向量形式
P111
方 程
对于线性方程组 A X b , 令
组
A ( A1 , A2 , , An ) ,
x1
则得到向量形式为
( A1 ,
A2 ,
,
An
)
x2
b,
即 x1 A1 x2 A2 xn An b .
P123
4
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
四 章
1. 线性方程组的一般形式
2. 线性方程组的矩阵形式 P111 线
性
方
程
组
简记为 A X b ,
其中 A 称为系数矩阵, A~ ( A b) 称为增广矩阵。
5
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
第 四
第四章 线性方程组
章
线 §4.1 线性方程组的基本概念
性 方
§4.2 高斯(Gauss)消元法
程 组
§4.3 齐次线性方程组解的结构
§4.4 非齐次线性方程组解的结构
1
§4.1 线性方程组的基本概念
第 四
§4.1 线性方程组的基本概念
章
一、线性方程组的几种表示形式
线
性 二、线性方程组解的存在性与惟一性
方 程
三、等价的线性方程组
组
2
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
四
章
在第一章中,讨论了方程的个数与未知量的个数相等的
线 方程组,而实际问题中,方程组的方程个数与未知量的个数
性 方
不一定相等。
程
下面将讨论一般线性方程组。
组
需要探讨的问题
(1) 方程组是否有解? (2) 如果有解,是否惟一? (3) 如何求解?
证明
由 r ( A) r ( A b) 知 A X = b 有解,
组
即存在 x~1, x~2 , , x~n ,使得
x~1 A1 x~2 A2 x~n An b .
(1) 若 r n , 则 A1, A2 , , An 线性无关, 故 b 只能由 A1, A2 , , An 的惟一地线性表示, 即 A X = b 的解是惟一的。
故 A X = b 的解不惟一。
10
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
2. 线性方程组解的惟一性 线
性 综合 (线性方程组解的判定) 方
程
对于线性方程组 A X = b, 有
组
(1) 当 r( A) r( A~) n 时,方程组有无穷多解;
若 A X = b 有解,
组
则 b 可由 A1 , A2 , , An 线性表示,
故向量组 A1 , A2 , , An 与 A1 , A2 , , An , b 等价,
即得 r ( A) r ( A b).
7§4.1 ຫໍສະໝຸດ 性方程组的基本概念第 二、线性方程组解的存在性与惟一性
四 章
xn
将右端项表示成系数阵的列向量的线性组合
6
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
P112 定理4.2 (1)
线 定理 线性方程组 A X = b 有解的充要条件是 r ( A) r ( A b).
性 证明 必要性
方
程
1. 线性方程组解的存在性
线 定理 线性方程组 A X = b 有解的充要条件是 r ( A) r ( A b).
性 证明 充分性
方
程
若 r ( A) r ( A b),
组
则 A1 , A2 , , An 的极大线性无关组也是
A1 , A2 , , An , b 的极大线性无关组,
故 b 可由 A1 , A2 , , An 的线性表示,
由 B X P b; P1B X b , A X b .
故线性方程组 A X = b 与 B X = P b 等价。
13
§4.1 线性方程组的基本概念
第 三、等价的线性方程组
四 章 定理的重要意义
线
若 ( A b) 行初等变换 P ( A b) (P A Pb) (B Pb) ,
(2) 当 r( A) r( A~) n 时,方程组有唯一解;
(3) 当 r( A) r( A~) 时,方程组有无解。
其中 A~ ( A b).
11
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章 3. 关于齐次线性方程组的一些结论 补
线
对于齐次线性方程组 Amn X 0 , 有如下结论:
性 方
(1) 一定有(零)解。 因为 r ( A) r ( A 0).
程
组
(2) 只有零解 r( A) n; 有非零解 r( A) n .
特别,若 m < n ,即方程的个数小于未知量的个数, 则必有非零解。
(3) 若 m = n ,即 A 为方阵,则 只有零解 | A| 0; 有非零解 | A| 0 .
3
§4.1 线性方程组的基本概念
第 一、线性方程组的几种表示形式
四 章
1. 线性方程组的一般形式
线
性
方
程
组
其中 x1, x2 , , xn 为未知量,
ai j 是第 i 个方程第 j 个未知量 xj 的系数,
b1, b2 , , bm 为常数项。
定义 若常数项不全为 0,称为非齐次线性方程组; P109 否则称为齐次线性方程组 (或者导出组)。
性
方
则线性方程组 A X = b 与 B X = P b 同解(即解不变)。
程
组
称此为线性方程组同解变形 。
它是后面(高斯)消元法的基础。
思考 可否进行列初等变换?
14
§4.1 线性方程组的基本概念
第 四 章
线 性 方 程 组
轻松一下吧 ……
15
9
§4.1 线性方程组的基本概念
第 二、线性方程组解的存在性与惟一性
四 章
1. 线性方程组解的存在性
2. 线性方程组解的惟一性 线
性 定理 设 r ( A) r ( A b) r , 则 r n A X = b 有惟一解。
方 程
证明
(2) 若 r n, 则 r n ,
A1 , A2 , , An 线性相关,