300kA铝电解槽阴极破损机理研究

合集下载

浅谈电解槽槽壳破损原因分析及修复方式

浅谈电解槽槽壳破损原因分析及修复方式

浅谈电解槽槽壳破损原因分析及修复方式摘要:随着电解铝行业技术发展, 电解槽型越来越大、槽壳尺寸也随之增大, 致使大槽型电解槽壳的成本增加, 且维修难度加大、破损后造成损失也较大。

因此槽壳维护、后期电解槽大修对企业生产、经营至关重要。

关键词:大型铝电解槽;槽壳破损;修复方式1.槽壳结构目前大型电解槽主要结构——两个端头 (出铝端、烟道端) 、两个长侧 (进、出电端) 、一张底板及工字钢底梁, 组成直角船型的电解槽熔池。

在电解铝项目建设初期,槽底板、长侧在厂房内焊接制作,两个端头在外部(加工现场)制作好后, 在电解厂房组对成型。

2.破损原因及现象2.1 施工及焙烧过程(1) 内衬材料 (主要是侧部复合块、捣打料及内衬糊) 质量不合格。

(2) 施工过程质量未达标, 例如捣打料填塞不实、侧部复合块砌筑砖缝过大、内衬扎固不符合要求等。

(3) 在电解槽焙烧炉启动时, 焙烧温度、电压设置、焙烧时间及电解质高度等参数控制不当。

(4) 造成后果:高温电解质、铝水冲刷槽壳,造成电解槽漏炉。

2.2 原因分析(1) 生产过程维护管理不到位, 造成内衬材料局部破损, 形成槽壳局部过热发红、局部破损; 造成槽壳壁钢板长期受到高温影响,金属材料局部金相组织可能发生不可逆性状态改变,材料物理性能指标下降,导致金属材料脆断(裂)。

(2) 漏槽造成的后果:侧部、钢棒窗口或底部钢板被渗漏出来的高温铝液或电解质冲坏。

(3) 使用时间达到设计年限随着电解槽的运行槽龄不断增长, 液态电解质不断地向阴极碳块渗透, 由于熔盐渗透至熔体的凝固等温线时就生成凝固物, 或生成碳化铝促使碳块继续膨胀, 其过程是连续的、缓慢的,应力逐步向最弱的位置转移,导致槽壳变形和破损。

内衬受熔盐的侵蚀加重, 槽壳壁钢板也随之被腐蚀,在电解槽短侧最为常见,大概在电解槽沿板下方600mm—800mm左右。

(4)槽壳底板与斜侧壁之间焊缝开裂情况,可能是电解槽后续生产过程中内衬吸钠膨胀叠加在该处产生的应力集中导致。

300kA铝电解预焙槽侧部破损原因及对策

300kA铝电解预焙槽侧部破损原因及对策

300kA铝电解预焙槽侧部破损原因及对策
张洪涛;温铁军;石忠宁
【期刊名称】《世界有色金属》
【年(卷),期】2006(000)002
【摘要】近年来,我国铝电解工业发展迅猛.截至2005年5月.我国300kA铝电解槽产能已近460万t,成为我国发展最快的工业项目之一。

现阶段乃至今后若干年内,300kA以上电解槽将成为铝电解生产的主力槽型.我国已在生产和在建的该槽型已有3000多台,产能达到260多万t。

300kA及以上大型电解槽的侧部碳块均采用有良好导热性、大电阻率且耐腐蚀的新型Si3N4-SiC材料。

电解槽“结壳(炉帮)”是电解质温度等于或低于电解质结晶温度时侧砖内侧形成的结晶体,Si3N4-SiC材料的侧部碳块,其优良的散热、绝缘性能非常有利于炉帮的形成。

但在实际生产中由于各种原因,炉帮难以形成或容易早期破损。

河南豫港龙泉铝业有限公司是我国第一批采用300kA电解槽大规模生产的企业,
【总页数】2页(P31-32)
【作者】张洪涛;温铁军;石忠宁
【作者单位】无
【正文语种】中文
【中图分类】TG146
【相关文献】
1.大型预焙铝电解槽侧部破损原因分析及控制措施 [J], 欧阳全胜;王进良;张松江
2.大型铝电解槽侧部破损原因分析及对策 [J], 黄继勇;张虎;苏宝峰
3.300kA铝电解槽侧部修补实践 [J], 石英超;杨新峰;
4.铝电解槽内衬破损原因分析及对策 [J], 王海
5.200KA预焙铝电解槽侧部炉帮过空发红现象的分析及对策 [J], 王来存;金四明因版权原因,仅展示原文概要,查看原文内容请购买。

铝电解槽内衬破损原因分析及对策

铝电解槽内衬破损原因分析及对策

现象使熔盐与炭间界 面张力变小 , 从而使 湿润性变 好, 并使 电解质渗透入炭中。
增大电流密度能够促进电解质 向炭阴极渗透 。 当电流密度增大时, 炭阴极表面上 的电荷密度亦增
开或 有 冲蚀 坑 穴 等 变形 , 成 了 黄 色 的碳 化 铝 生 ( C ) 并 侵入 了电解 质和 铝 。 阴极 内衬 的变异一 ,, 般是从焙烧启动期开始 , 焙烧后期 由于水份和挥发 分自 下而上冒 , 由于炭缝体积的收缩 , 并 填充在炭块
12 阴极炭块受钠的侵蚀 .

般认为 , 的侵蚀作用在较低温度下尤其严 钠
重, 因为碳钠化合物在高温下部分分解 , 而在低温下 稳定。钠在真空中对炭的破坏作用随温度升高而减 弱, 故对 于电解槽槽底 的焙烧而言 , 焙烧温度宜达到 90 90o之后才开始启动 , 0 ~ 5 C 旨在削弱钠对槽底的
之间的“ 炭糊” 便与炭块分离 , 形成裂缝 。启动期 由 于大量热 的冲击 , 在阴极炭块 中产生巨大应力 , 造成 炭块的破坏。特别是焦粒焙烧时 , 由于局部温度的 不均匀性 , 导致阴极炭块表面温度差异特别大 , 焙烧 后期就产生了大量裂纹 , 启动期则加剧 了裂纹的扩
大。
大, 使电位升高 , 从而使熔盐与炭问界面张力变得更
小, 故电解质容易渗透人炭中。 14 阴极钢 棒 的变异 . 阴极钢棒是铝电解槽阴极中的一个重要组成部 分, 其功用是把电流从 阴极导出 , 通常用软钢制作 ,
有通长的和对开的 2种结构形式 。阴极钢棒的变异
有下列几种情形 :
1 渗碳 。阴极钢棒直接敷设在炭块中 , ) 又处在 较高的温度下 , 故碳容易向钢棒渗透。研究发现 , 钢 棒中的碳浓度 , 从原始低浓度增大到共析浓度 , 直径 为6m 5 m的棒经 10 d之后 , 00 碳渗透到钢棒的中心 部位 , 渗入的碳量在每米长度上约为 20 。 0 g 2 向上 隆起。在废 旧内衬 中发现 阴极钢 棒普 ) 遍向上隆起 , 引起钢棒 的变形 。在 70C以上的高 0o

大会交流曹雁冰300KA新型阴极铝电解槽的成功实践1-资料

大会交流曹雁冰300KA新型阴极铝电解槽的成功实践1-资料


公司简介
东方希望集团是我国大型民营企业集团,始创于1982年,总部设在上海浦东,现有员 工10000多人。2019年初,集团投资在包头建设大型铝电一体化项目。包头希铝是东 方希望集团的全资子公司,内蒙古自治区重点企业,全国光彩事业重点项目。
• 包头希铝位于包头国家稀土高新区,,铝厂一期工程于2019年10月投产,目前三期前10 万吨已投产,全部投产后将形成80万吨/年产能,配套建设了总装机容量1320MW的大 型自备火力发电厂。公司采用了国内和国际多项先进技术,主要经济技术指标居国内 同行业领先水平,是一个高起点、大容量、低污染的大型现代化工业企业。
2019/8/7
项目 工作电压 电流效率 交流电耗 铝水平
5月份技术条件的对比
普通槽
最好的槽
3.85v
3.71v
91%
91%
12997
12524
29-30cm
19-20cm
最差的槽 3.8v 90% 12971 25-26cm
2019/8/7
普通槽电压
2019/8/7
1078号槽电压
2019/8/7
• 我们对两种方法全部进行试验比较,其中灌电解质的2127凸台90%掉了, 而采取两段焙烧的1078比较好,所以先灌铝水两段焙烧法经多家铝厂使用 证明是成功的,突破了大型电解槽不能先灌铝水的思想禁锢,其中按冯老师 配方对极缝和周围糊进行覆盖起到很大作用。
2019/8/7
300kA新型阴极结构电解槽的焙烧
• 根据新型阴极结构电解槽碳块具有凸台结构的特点,燃油焙烧一步到位至900℃,然后灌入电解质 进行启动的方法,凸起破损掉块严重,后采用燃油-铝液二段焙烧技术,燃油焙烧装置由重庆大学 制作,采用二段焙烧技术后,掉块现象基本消失,燃油-铝液两段焙烧方法如下:

300KA级大型预焙铝电解槽的设计分析

300KA级大型预焙铝电解槽的设计分析

300KA级大型预焙铝电解槽的设计分析300KA级大型预焙铝电解槽的设计分析1前言近年来,随着铝用途的推广、使用量的增加,电解铝工业迅猛发展,奔着节能降耗及节约投资的目的,目前国内两大轻金属设计研究院(贵阳院和沈阳院)相继推出了280KA、300KA、320KA、350KA 等单系列、高产能的大型预焙铝电解槽。

综观国内各大铝厂,新上项目以300KA的槽型居多,该型槽通过近三年的运行,经生产单位与设计单位的共同探讨,300KA预焙电解槽的槽型趋于成熟。

下面对沈阳院的两种300KA预焙电解槽和贵阳院的一种320KA预焙电解槽的设计构造作一对比分析。

2三种槽型设计现状2.1河南豫港龙泉铝业有限公司第一个系列二十万吨300KA预焙电解槽是沈阳院推出的第一代300KA槽型。

其特点是双面二十组阳极,五点进电、四点下料,电解槽侧部采用75mm厚的氮化硅结合碳化硅新型侧部砖块;阴极钢棒与阴极母线的连接采用钢铝爆炸复合块焊接;阳极导杆截面为200×180,阳极炭块为550×660×1550,其设计参数如表一:表一河南豫港龙泉铝业有限公司一系列300KA预焙电解槽设计参数名称单位数值电流强度 KA 300 阳极尺寸mm 550×1330×1550 阳极断面cm2 20×155×132=409200 阳极电流密度 A/cm2 0.733 槽膛平面尺寸mm 3880×14500 大面加工距离 mm 300 小面加工距离mm 420 槽膛深 mm 500 阳极升降速度 mm/min 75 阳极升降行程mm 400 升降电机功率KW 7.5 打壳间隔时间s 72 每次下料量kg 2×1.82.2河南豫港龙泉铝业有限公司第二个系列二十万吨300KA预焙阳极电解槽是沈阳院的第一代300KA预焙槽的改进型,依据第一代槽的运行状况,本系列做了如下改进:首先,下料系统由原常规设计的四点下料变为六点下料;其次,电解槽长侧板外焊接加强散热片;第三,电解槽侧部氮化硅结合碳化硅砖块厚度由75mm加厚为90mm;第四,人造伸腿加高;第五,槽膛加深;第六,超浓相输送管电解槽上未端部位增设排气装置;第七,阴极钢棒与阴极母线的连接采用铜铝复合片压接。

浅谈铝电解槽的破损及维修

浅谈铝电解槽的破损及维修

浅谈铝电解槽的破损及维修【摘要】在电解铝生产实践过程中由于电解槽侧部散热不良、槽炉帮形成不好等一系列问题,使得电解槽侧部破损,从而降低电解槽的使用寿命。

本文对电解槽的破损原因进行了归纳分析,并提出了电解槽破损的检查与维修方法。

【关键词】铝电解槽;阴极内衬;破损;维护1、铝电解槽常见破损形式及原因通常所说的电解槽的破损是指其阴极内衬的破损,铝电解槽的阴极内衬使用期不到1年,称为早期破损。

槽内铝液中的铁含量连续增加,一般情况下,是槽底部阴极钢棒受铝液侵蚀熔化所致,往往是阴极炭块破损的征兆。

当铝液中的铁含量连续超过1%时,表示阴极炭块已发生严重破损。

电解槽阴极内衬破损可归纳为如下几种形式:1.1阴极炭块及保温绝热结构的变异阴极内衬的变异主要有:阴极炭块发生变形—膨胀、隆起、裂开或有冲蚀坑穴;炭块之间的炭糊接缝发生裂纹,其中侵渍着碳化铝、电解质和铝;炭块中的钢棒弯曲变形,一部分被铝熔解侵蚀,形成亮晶晶的铝铁合金;炭块下而的耐火砖层局部变质,向上隆起,呈凸棱镜状;侧部炭块受到侵蚀,其中渗透着铝和电解质,体积膨胀;槽壳变形,侧壁向外鼓出,四角上抬,底部呈船形。

阴极内衬的变异,一般是从焙烧启动期开始。

由于水分和挥发成分自下而上冒出,并由于炭缝体积收缩,填充在炭块之间的“炭糊”便与炭块分离,形成裂纹。

加入电解质开始电解之后,组织也开始酥松,给电解质和铝液的侵入创造了条件。

侵入炭块和炭缝中的铝液,继续向下渗透,直到炭块下而并淤积在那里。

NaF成分是阴极界而上的表而活性物质,它首先入侵,故在炭块下而发现柱状结晶的氟化钠。

侵入炭块下的电解质和钠还同耐火砖层发生化学作用,使其变质而体积胀大。

一旦铝侵入阴极钢棒区,则铁被熔解。

由于钠、电解质和铝先后侵入阴极内衬中,引起炭块和耐火层体积膨胀,于是炭块向上隆起。

在电解槽启动后6个月内,隆起高度不超过2cm,以后则逐渐增大,在36个月内达到10cm,以后趋于稳定。

当炭块隆起增大时,会引起电流偏流和电压降增大,铝的纯度降低,槽膛有效深度减小,造成电解槽操作困难,甚至停槽。

300kA系列电解槽阴极破损的现象_原因及对策

300kA系列电解槽阴极破损的现象_原因及对策

300kA系列电解槽阴极破损的现象、原因及对策张洪涛1,温铁军1,齐宁2,张万福2(1.河南豫港龙泉铝业公司,河南洛阳450041;2.沈阳铝镁设计研究院,辽宁沈阳110001)摘要:介绍了河南豫港龙泉铝业公司300kA预焙阳极电解槽大修刨炉时电解槽阴极的破损情况,简要分析了形成原因并有针对性的提出了解决的对策。

关键词:电解槽;破损;电流效率;结壳中图分类号:TF80 文献标识码:B 文章编号:10021752(2006)05004103Phenomena and causes of300kAreductioncell s damaged cathode lining and its countermeasuresZHANG Hong-tao1,WEN Tie-jun1,QI Ning2and ZHANG Wan-fu2(1.H enan Yugang L ongquan Aluminum Co.,L uoyang,H enan450041;2.Sheny angA luminum and M agnesium Engineer ing and Research Institute,Shenyang,L iaoning110001) Abstract:It presents the damaged conditi ons of300kA pre-baked anode reduction cel l s cathode lining in Henan Yugang Longquan Aluminum Co., and briefly analyzes the causes and puts forward the countermeasures.Key words:reduction cell;damage;current efficien cy;crust阴极破损是影响铝电解槽寿命最重要的原因之一,槽寿命的长短是衡量铝电解技术优劣的主要指标。

浅谈铝电解槽改造以及内衬破损原因

浅谈铝电解槽改造以及内衬破损原因

浅谈铝电解槽改造以及内衬破损原因【摘要】本文首先对现今铝电解槽的使用和改造情况进行了基本概述,随后就电解槽改造途径进行了相关探讨,最后对技改电解槽典型的内衬破损状况和原因给予了一定的分析。

【关键词】铝电解槽;改造途径;破损原因0.引言现代铝电解槽改造从哪些方面着手,早期破损槽中存在的设计、施工质量、焙烧启动等问题,可以给改造的过程指引一个方向,这一直是我们关注的重点。

所以要认真探索电解槽改造途径,进而有效实现延长槽寿命达到节能减排,增加效益的目的。

1.铝电解槽现状二十世纪八十年代,因为国家提出的“优先发展铝”方针,使我国的电解铝工业得到了迅猛的发展。

2000年,全国电解铝厂约130家,相当于世界其它所有国家的电解铝厂数量。

2007年,我国电解铝产量已达到1318万吨,居世界首位,同时,电解铝技术取得了很大的突破。

在大型预焙阳极电解槽的设计、制造和生产技术等领域有了自身的大型铝电解技术体系,目前300KA至400KA以上的铝电解槽技术已经成熟,达到国际先进水平,得到了普遍的应用。

大型铝电解槽投入生产,紧随而来的是而关于电解槽寿命问题,在160KA 电解槽时期,整体槽寿命就比国外电解槽寿命短,如今该难题尚且存在。

铝电解生产中,影响铝电解槽寿命的原因无非就是以下几点:即结构设计,槽内衬材料,筑炉和施工质量的问题,也有焙烧启动的方式、方法问题,更有电解槽早期管理和工艺要求问题。

上述各个环节以及在此过程中的优劣,都会对槽寿命造成重大影响。

多年前,我国电解铝厂从国外引进了铝电解槽焦粒焙烧干法启动技术,将落后的铝液焙烧技术取代了。

虽然焦粒焙烧并不是我国的知识产权技术,但是对于我国的电解铝厂而言应该算得上是技术上的进步。

此外,应用铝电解槽焙烧技术,槽寿命并无显著提高。

最早使用焦粒焙烧技术的是白银铝厂,而电解槽的寿命海上徘徊在1500天左右。

这样不难看出,就目前国内电解铝厂而言,单单用焦粒焙烧干法来启动的方式,想达到提高铝电解槽的寿命的要求是不太现实的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

收稿日期:2006 06 27基金项目:国家自然科学基金资助项目(50304033);辽宁省博士启动基金资助项目(20041010)作者简介:任必军(1968-),男,河南沁阳人,东北大学博士研究生;邱竹贤(1921-2006),男,江苏海门人,东北大学教授,博士生导师,中国工程院院士第28卷第6期2007年6月东北大学学报(自然科学版)Journal of Northeastern U niversity(Natural Science)Vol 28,No.6Jun.2007300kA 铝电解槽阴极破损机理研究任必军,石忠宁,刘世英,邱竹贤(东北大学材料与冶金学院,辽宁沈阳 110004)摘 要:研究了300kA 大型铝电解预焙槽的阴极破损机理,电解槽停止运行后通过干法剖炉,现场取样分析与观测,研究阴极炭块破损现象,阴极炭块发生断裂、漏眼,表面存在腐蚀坑 由钠渗透、阴极生成碳化铝、电毛细现象、铝和电解质等向阴极炭块缝隙渗透是造成阴极膨胀开裂的原因 分析了影响槽寿命的因素,认为提高阴极质量,加强电解槽启动初期管理,并通过采用石墨化阴极等新材料新技术,不但可降低炉底压降,形成完好的炉帮,而且有效地提高槽寿命 关 键 词:铝电解;阴极;炭块;破损机理中图分类号:T F 821 文献标识码:A 文章编号:1005 3026(2007)06 0843 04Deterioration Mechanism of Cathode in 300kA Prebaked Anode Aluminum Reduction CellsREN Bi j un ,SHI Zhong ning ,LI U Shi ying,QI U Zhu x ian(School of M ater ials &M etallurgy,Nor theastern U niversity,Shenyang 110004,China.Correspondent :REN Bi jun,E mail:r enbijun @)Abstract:The deterioration mechanism of a 300kA large scale prebaked aluminum reduction cell w as studied.After a shutdow n,the cell was dissected dryly for sampling analysis and observation,then the deterioration of carbonized cathode w as investigated,such as breakage,leaks and surface corrosion pits.It w as revealed that the causes of cathode 's expansion cracking are mainly the sodium penetration,Al 4C 3formed on cathode surface,electrocapillarity and electrolyte penetration into cathode gaps.Discusses the influencing factors on the serv ice life of the cells w ere carried out.T o leng then the service life of the reduction cell,the follow ing measures are reg arded as efficient and sugg ested to take:im proving the quality of carbonized cathode,strengthening the management of electrolysis cell from the very beg inning and introducing such new ly developed m aterials and technolog ies as the graphitized cathode.In this w ay the voltage drop on cell bottom can be decreased so as to maintain well the cell w all.Key words:aluminum electrolysis;cathode;carbon block;deterioration mechanism 目前铝电解工业的电解槽容量越来越大,2001年开始,电流为300kA 的大型铝电解槽陆续在河南、山东、山西等省份得到推广应用[1] 随着大容量电解槽技术的不断进步,其综合指标均表现不俗,不但产能高,而且一些电解槽电流效率达到94 5%以上,直流电耗13000kWh/t [2-3]但是,我国大型预焙槽的寿命较短,原因主要是新建厂经验不足,工期较紧、匆忙上阵,材料采购、筑炉与生产管理不到位等所致 电解槽开动一年半之内,因阴极内衬破损而停槽大修称为早期破损 文献[4]指出我国电解槽阴极内衬破损、电解质渗漏和渗透的类型可分为侧部漏铝、侧部漏电解质、钢棒孔漏铝、钢棒孔漏电解质、底部漏铝、底部漏电解质、槽壳侧部发红、槽壳底部发红、严重熔化钢棒、侧部炭块上抬等10种类型电解槽渗漏的主要原因是由于炭衬材质、施工质量及焙烧启动和早期生产温度不合理等,其中焙烧启动和生产时温度剧烈波动是早期破损的导火线 使用寿命较长(大于2500d)的电解槽,一般都是筑炉材料和筑炉质量好;焙烧启动冲击电压低;焙烧温度均匀;正常生产电解质温度波动较小;电解槽运行平稳 停槽后,剖炉分析发现阴极炭块底部渗透虽多,阴极内衬上抬较平缓,阴极内衬断裂较小1 剖炉试验1.1 阴极炭块表面和横断面破损情形对某铝厂4台电解槽进行干法剖炉研究,通过观察发现某槽的阴极表面破损较严重,有漏眼、裂缝、冲蚀坑和隆起区域 最长的横向裂纹由第四块阴极延伸到第十四块,裂纹宽度约为3~5mm 第八、九块阴极的纵向裂纹深度约为20cm 但是在第五、六块阴极位置间有一漏眼,其长约40cm,宽约13cm 这是该电解槽漏槽的主要原因 图1中阴极表面有较多腐蚀坑,其产生原因有两个: 沉降到炉底的氧化铝在流场作用下长期冲刷阴极表面造成;!铝和碳生成的Al 4C 3在铝液和熔盐中留下的[5]300kA 槽阴极隆起变形较小 但也可以看到由于材料质量问题导致阴极表面裂纹严重,如图1左上角贴图图1 干法刨炉后的铝电解槽阴极表面Fig.1 An ichnogr aphy of the cathode surfaceafter dry di ss ection从阴极剖炉断面可以看出,有黄色的碳化铝生成,如图2所示,由于电解槽破损程度不同,阴极底面不同程度存在电解质等渗透物质 从图2中可以看出,阴极钢棒变形较小 个别部位人造伸腿处有铝液渗透现象,但大部分没有渗透物质存在,从侧部碳化硅背面可看到有电解质渗透现象 炉底保温砖和防渗料下面有电解质和铝液渗透现象发生,这也解释了电解槽焙烧启动和正常生产过程中有时会出现炉底钢板温度达到200∀,甚至400∀以上等问题总结大修情况可以看出,除个别阴极质量以外,阴极炉底较好,隆起变形较小;人造伸腿处渗漏情况不是太严重 阴极间缝处渗漏和碳化铝生成较为普遍,因而阴极炭块质量与间糊质量及筑炉质量对槽寿命非常重要图2 电解槽炉底横断面形状Fig.2 Cross section of cell bottom1.2 破损阴极炭块局部分析长期生产过程中,经常会出现阴极钢棒膨胀,炭内衬中钠膨胀、热膨胀、槽底上抬、断裂、冲蚀、磨损、剥层,以及炭内衬下部各种渗透物的逐渐充填等现象本研究通过纵向切开电解槽炉底,跟踪渗透物(多为电解质)渗透的踪迹,并由上至下在不同部位取样分析电解质与周围物质接触后反应的产物 渗透物大多是电解质,以Na 3AlF 6,Al 2O 3形式存在,也包含极少量的铝自阴极炭块以毛细现象或在炭间缝渗漏 如果渗透物中包含铝液,则铝液遇到钢棒时,熔化钢棒后生成铝铁合金,图3为图2中漏眼下方被严重腐蚀的阴极钢棒,有的生成黑色不规则针状铝硅铁合金,XRD 分析表明存在AlSiFe,Al 13Fe 4,Fe 3Al 等相图3 被铝液和电解质腐蚀后的阴极钢棒Fig.3 Steel bar corr oded by li qui d alum ini umand electr olyte渗漏物质中各层均发现NaF 的富集,可见钠渗透无处不在,对电解槽损坏很大 渗透物质和耐火砖反应腐蚀,生成NaF 、霞石、 Al 2O 3、 Al 2O 3和Al 4C 3等,即通常所说的灰白层和玻璃状化合物,文献[6]对其作了相关研究 图4所示为图2中漏眼下方的保温砖被渗透物腐蚀后的变化情况844东北大学学报(自然科学版) 第28卷图4 被电解质腐蚀的保温层Fig.4 Insulation layer corroded by electrol yte对图4中不同部位取样进行X 射线衍射分析,其相应物相组成如下:A:Na 3AlF 6+Na 6Al 6Si 10O 32,B:Na 7Al 7Si 9O 32+NaF+NaAlSiO 4,C:Na 7Al 7Si 9O 32+NaF+NaAlSiO 4,D:Na 3AlF 6+Na 6Al 6Si 10O 32+CaF 2+NaF,E:Na 3AlF 6+Na 6Al 6Si 10O 32+NaF+CaF 2+NaAlSiO 4,F:Na 3AlF 6+Na 6Al 6Si 10O 32+NaF+SiO 2,G:Na 3AlF 6+Na 6Al 6Si 10O 32+NaF +SiO 2+Na 6KAl 7Si 9O 322 结果与讨论2.1 电解槽阴极破损机理分析图5是工业铝电解槽阴极系统中的电化学反应示意图,其反应包括析出铝和钠,以及生成碳化铝 下面分别阐述几种阴极破损的方式(1)碳化铝腐蚀正常生产过程中,在阴极表面生成碳化铝:4Al(l)+3C(s)Al 4C 3(s)在950∀时, G T =-149kJ/mol 有冰晶石熔体存在时对上述反应起到催化作用:12Na(g)+3C(s)+4Na 3AlF 6(l)Al 4C 3(s)+24NaF(l)碳化铝覆盖于炭阴极上,使阴极电压增大 XRD 分析发现废旧阴极中含有NaF,Al 4C 3,Na 3AlF 6,Al 2O 3和Na 2O 11Al 2O 3底部破损偶然发生在以下情形,即生成碳化铝而形成冲蚀坑 在金属中碳化物有一个缓慢的溶解过程伴随着冲蚀坑穴的形成,铝与阴极钢棒越来越接近,加速了碳化铝的生成和进一步的溶解生成的碳化物发生在电解槽底部的沉淀中,或在侧部没有凝固电解质保护的地方,任何溶解的碳化铝都将被阳极表面产生的CO 2所氧化图5 炭阴极中的电化学反应Fig.5 Electrochemical reacti on nearcarboni z ed cathode(2)钠渗透槽底破损的主要原因是由于吸收钠和电解质产生的各种反应而致,底部内衬破损的主要信号是炭块的破裂或氟化物粗大晶体的长大,产生破裂的力主要是电解槽启动初期渗透结晶膨胀、钠和电解质反应,发生钠吸收:3Na(g)+Na 3AlF 6(l)6NaF(s)+Al(l),4Na 3AlF 6(l)+12Na(g )+3O 2(g)2Al 2O 3(s)+24NaF(l)钠与渗透的电解质发生反应,较高分子比的电解质渗透在充满孔洞后或毛细管被结晶堵死后停止:22Na 3AlF 6(l)+68Na(g)+17O 2(g)Na 2O 11Al 2O 3(s)+132NaF(l)Na 与C 生成钠-碳嵌入化合物而发生体积变大,也直接导致膨胀断裂:32C(s)+Na(g)C 32Na(s),4Na(g)+3O 2(g)+2C(g)2Na 2CO 3(s)(3)空气渗入使内衬氧化破损由于钢窗口密封不严,空气进入内衬;直接在阴极内衬下产生钠-碳-空气的反应,导致内衬破损:2Na(g )+2C(s)+N 2(g)2NaCN(l),2Na 3AlF 6(l)+N 2(g )+6Na(g)12NaF(l)+2AlN(s),2Na(g )+1/2O 2(g)+11Al 2O 3(s)Na 2O 11Al 2O 3(s)(4)电解质渗漏,下部耐火砖受熔体侵蚀8Na 3AlF 6(l)+3(3Al 2O 3 2SiO 2)(s)6SiF 4#+24NaF(s)+13Al 2O 3(l),8Na(g)+5(3Al 2O 3 2SiO 2)(s)8NaAlSiO 4(s)+2Si(s)+11Al 2O 3(s) (5)电解质渗漏使钢棒熔化(如图3) Al(l)+3Fe(s)AlFe 3(s),845第6期 任必军等:300kA 铝电解槽阴极破损机理研究3Na(g)+Na 3AlF 6(l)+3Fe(s)AlFe 3(s)+6NaF(s),4Al(l)+3SiO 2(s)2Al 2O 3(s)+3Si(l),Al(l)+Si(l)+Fe(s)AlSiFe(s)电解质和钠与阴极钢棒接触时,Na 3AlF 6(l)+3NaF(l)+3Fe(s)AlFe 3(s)+6NaF(l)2.2 阴极炭块特性与阳极寿命关系从无烟煤炭块到半石墨质炭块、半石墨化炭块、石墨化炭块,其煅烧温度由1200∀不断提高到2300∀ 而随着煅烧温度的提高,阴极炭块的孔隙度、热膨胀系数、电导率等性能均得到提高,由热膨胀引起阴极断裂的几率减小[7-8]文献[9]以大量图例,证实阴极选择的原则,阴极的寿命决定了槽内衬的可靠性,获得一个好的阴极寿命,槽内衬必须能有效地阻碍氟化盐液体渗透造成的剥蚀以及钠膨胀的侵蚀 图6说明不同的阴极焙烧温度对阴极膨胀差距很大 图6证明全石墨化阴极较半石墨质阴极可以有效地抵御钠膨胀,随着槽龄增长变化不大 同时可以看到,不同质量的阴极炭块理化指标相差较大,也可以解释很多铝厂一些电解槽阴极早期破损的原因,虽然理化指标达到了标准,但是槽寿命多者1000d,少者仅几百天,甚至几个小时,主要原因就是因为开口度较大,由于钠膨胀造成阴极炭块裂缝,铝液及电解质大量渗透、堆积,从而造成阴极上抬、隆起,直至断裂图6 某厂半石墨质和全石墨化阴极电阻随槽龄变化情况[9]Fig.6 Cathodic resistance vs.cell age,comparingsem i graphitic with graphi tized cathodes铝用阴极炭块的发展趋势就是增大石墨化程度,提高抗钠侵蚀性、抗热震性、热导率等,为降低炉底压降、提高槽寿命、强化电流等经济运行打好基础3 结 论(1)铝电解槽启动初期,由于阴极炭块存在孔隙,加上电毛细渗透力的作用,钠离子向炭阴极中渗透,引起阴极炭块体积膨胀 同时,在阴极少量金属钠伴随铝同时还原析出,金属钠与碳生成钠-碳嵌入化合物C 32Na 而发生体积变大,也直接导致膨胀断裂(2)阴极上的金属铝和碳反应生成碳化铝,碳化铝在铝液和电解中均能发生溶解,留下腐蚀坑(3)未能及时溶解的氧化铝沉淀到阴极表面,形成炉底沉淀,该沉淀在磁流场的作用下长期不断冲刷阴极表面,在表面留下冲蚀坑(4)铝和电解质等向阴极炭间缝、边缝处渗透,腐蚀阴极底部的耐火材料、保温材料和钢棒也是造成阴极破损的原因之一 参考文献:[1]邱竹贤 预焙槽炼铝[M ] 北京:冶金工业出版社,2005:465-590(Qiu Zhu xian.Prebaked anode cell for aluminum electrolysis [M ].Beijing:M etall urgy In dustry Press,2005:465-590.)[2]Patel P,H yland M ,Hiltmann F.Influence of internal cathode structure on behavior during electrolysis.Part 3:wear bebavior i n graphitic materials [C ]∃Light M etals.W arrendale:M i n erals,M etals &M ateri als Soc,2006:633-638.[3]W elch B J,Hyl and M M ,James B J.Future materi als requirements for the high en ergy intensi ty production of alum i num[J].JOM ,2001,52:13-18.[4]任必军 我国大型预焙槽槽寿命达到2500天以上的研究[J ] 轻金属,2002(8):32-35(Ren Bi jun.Study on pot life of large scale prebaked alum i num cell reach 2500days[J].L ight M etals ,2002(8):32-35.)[5]Rafiei P,H i ltmann F.Electrolyte degradation w ithin cathode material s[C]∃Light M etal s.Warrendale:M inerals,M etals &M ateri als Soc,2001:747-753.[6]Zhao Q,Xie Y L,Gao B L,et al .Chemical reaction model of cathode fail ure in large prebaked anode aluminum reduction cells[J].Trans Nonf errous M et S oc ,2002,12(6):1195-1198.[7]Perruchoud R C,M eier M W,Fischer W K.Survey on w orldw ide prebaked anode quality [C ]∃Light M etals.Warrendale:M inerals,M etals &M aterials S oc,2004:573-578.[8]!yeetal H A.Reduction in sodium induced stresses in hall heroult cells[J].A lu minum ,1996,72:89-93.[9]Patel P,H yland M ,Hiltmann F.Influence of internal cathode structure on behavior during electrol ysis.Part 2:porosity and w ear mechan i sms i n graphitized cathode material[C ]∃Light M etals.Warrendale:M inerals,M etals &M aterials Soc,2006:757-762.846东北大学学报(自然科学版) 第28卷。

相关文档
最新文档