PVC_PA共混改性研究进展

合集下载

ASA_PVC共混改性技术在PVC彩色共挤型材加工中应用研究.

ASA_PVC共混改性技术在PVC彩色共挤型材加工中应用研究.

ASA/PVC 共混改性技术在PVC 彩色共挤型材加工中应用研究吴郁宁波浙东塑料建筑材料有限公司宁波 315101摘要:本文概述了ASA/PVC 共混改性彩色共挤型材的制备工艺,分析讨论了不同配比共混体系对共挤加工性能、材料力学性能以及材料耐候性能的影响。

关键词:ASA/PVC 共混改性耐候性1 概述PVC塑料门窗具有优异的节能隔声效果,目前在国内已普及应用。

由于PVC分子结构中存在较不稳定的α-Cl,因此纯PVC加工的材料耐候性差,在户外容易受太阳光中紫外光线破坏而引起发黄发红等变色现象;金红石型TiO 2具有优异的光折射效果,通过添加一定比例的金红石型TiO 2,可以起到折射屏蔽紫外线效果,从而确保材料不变色,因此市场上所见的PVC门窗型材通常以白色为主。

近年来随着社会发展,人们对门窗材料表面彩色化需求越来越大。

目前彩色PVC型材一般是通过在干混料中直接添加颜料进行着色,但因配色原因,材料配比中不能添加足量的TiO 2(一种白色颜料,以致产品在户外耐候性较差、型材色彩选择性非常小。

一种采用具有优异耐候性能的高分子材料作为共挤层材料,将其与PVC主体材料共挤形成复合材料的共挤加工技术,可使型材表面色彩丰富多样,颜色牢固不易褪色。

ASA聚合物是丙烯氰(A-苯乙烯(S-丙烯酸酯(A无定型三元共聚物,其分子结构如下,其分子结构中无双键等不稳定基团,分子结构稳定,具有优异的耐候性能,同时该材料具有很好的力学性能,国外已广泛应用于汽车配件领域。

ASA其溶解度参数δ为9.6-9.8,与PVC的溶解度参数9.5-9.7非常接近,理论分析二者相容性很好,可以混合形成塑料合金,以改善PVC材料力学性能。

试验通过ASA与PVC根据不同比例进行共混造粒,主机采用锥形双螺杆挤出机,辅机采用专用单螺杆挤出机,通过共挤形成彩色共挤复合型材;分析讨论了不同共混配比对共挤加工性能、制品表面硬度、力学性能以及耐候性能的影响。

2 试验部分2.1试验主要原料SG-5型 PVC 树脂上海氯碱化工有限公司 Larans ASA 树脂德国BASF 化学公司 T-109 稳定剂阿托菲纳化学公司 D320抗冲改性剂阿托菲纳化学公司颜料德国BASF 化学公司2.2试验仪器及设备FM-500/1750进口混料机组德国THYSSEN设备制造公司 SJZ55/100锥形双螺杆造粒机组上海经纬挤出机械制造有限公司 CON63锥形双螺杆挤出生产线奥地利THEYSHON设备制造公司 CO-32 THEYSHON共挤机奥地利THEYSHON设备制造公司 LUXOR 80自动上料干燥机德国摩丹干燥设备公司HS80NP共挤型材模具奥地利TOPF模具制造公司WSD-Ⅲ型色度仪北京康光仪器有限公司低温落锤试验机河北承德金键检测仪器公司XJJ-5简支梁冲击试验机河北承德金键检测仪器公司 XHRD-150塑料洛氏硬度计山东莱州市试验机总厂QUV紫外线加速耐候试验机江苏中铭仪器有限公司2.3 试样制备1试验以浅灰色(RAL 7035为参照颜色,按照配方比例(见表1,使用FM-500/1750 德国THYSSEN进口混料机组进行混料,形成适合挤出加工的四种干混料。

共混改性提高PVC耐热性的研究进展

共混改性提高PVC耐热性的研究进展

共混改性提高PVC耐热性的研究进展发布时间:2022-03-31T08:22:16.213Z 来源:《科学与技术》2021年25期作者:杨小川[导读] 聚氯乙烯简称PVC,没有固定熔点,在85℃以下呈现玻璃态,在80℃~85℃之间进入软化状态,受温度影响使用范围缩小,为提高PVC使用温度,技术人员开始致力于耐热性改良工作,开发耐热性好的PVC树脂。

杨小川广东达华生态科技有限公司广东揭阳522000摘要:聚氯乙烯简称PVC,没有固定熔点,在85℃以下呈现玻璃态,在80℃~85℃之间进入软化状态,受温度影响使用范围缩小,为提高PVC使用温度,技术人员开始致力于耐热性改良工作,开发耐热性好的PVC树脂。

提升聚氯乙烯耐热性能共混改性组分有很多,其中包括以N-取代马来酰亚胺类为代表的高分耐热改性剂,以氯化PVC为主的具备高耐热性的改良PVC,除此之外,还包括无机填料。

由于PVC 复合材料中混入不同类型耐热改性剂所呈现效果存在较大差异,本文将结合相关研究文献对共混改性提高PVC耐热性复合材料研究进行相关文献综述,为材料开发工作提供信息参考。

关键词:共混改性;PVC耐热性;复合材料为顺应社会市场需求,我国不断加大科学技术投资力度,各科研领域均取得了优异成绩。

我国现阶段塑料改良行业发展重心依旧以塑料工程化为主,研究高性能工程塑料,典型热塑性材料为聚氯乙烯,具有开发成本低、经济丰富等特性,在化工和建筑领域应用广泛。

从使用性角度看,PVC存在热稳定性差的缺陷,连续使用温度仅在65℃左右,这就导致产品需要着重关注使用温度和受力情况。

为解决此问题,常使用共混改性方式提升耐热温度。

所谓共混改性是指将玻璃化转变温度较高的树脂与PVC粉料充分结合,这种制作工艺简单、具有较高可操作性。

一、利用共混高分子耐热改性剂改善PVC耐热性利用该方法改变PVC树脂耐热性,需要保证高分子耐热改性剂与PVC之间具有较好的相容性,改性剂需要具备较高的玻璃化转变温度和较低的熔融温度以及熔体粘度,增强材料可塑性。

聚烯烃的改性技术进展

聚烯烃的改性技术进展

聚烯烃的改性技术进展【摘要】聚烯烃材料具有原料来源丰富、价格低廉、加工成型方便、综合性能好等许多优点,已经成为目前市面上产量最大、应用最广的一类高分子材料。

然而聚烯烃材料本身所存在的耐热性能差、加工尺寸精度差、易老化等缺陷严重影响了应用领域的拓展,为了改善这些不足,对聚烯烃材料进行改性备受关注。

对聚烯烃进行改性的常用方法可分为填充改性、共混改性、形态控制改性、界面相容化改性几大类。

【关键词】导热塑料;国内外;研究进展1 填充改性技术的研究进展填充改性具有效果明显、工艺简单、成本低等优点,是工业上最常用的塑料改性方法。

能当作填充改性填料的物质必须满足一些基本条件[1]:耐热性好,加工过程不分解而损害材料使用性能;分散性好,加入后不过多损害加工性能;不与基体材料发生不良化学反应;在成型后的制品中不会发生表面析出;价格便宜,来源丰富等。

填充改性按填充物种类可分为无机填充和有机填充两类。

无机填充改性指在材料中添加无机填料。

常被用做无机填料改性聚烯烃材料的主要有:氧化物类;氢氧化物类;碳酸盐类;硫酸盐类;碳素;硅酸盐。

有机填充改性是在材料中添加有机填料物质。

常被用作有机填料填充聚烯烃的主要有:天然纤维素纤维类、有机合成纤维类以及有机阻燃剂类等。

其中用天然有机木粉填充聚烯烃材料制备的木塑复合材料是目前许多国家致力于工业化的一个热点,这类复合材料综合了植物纤维和聚烯烃塑料二者的优点,能有效地缓解过度开发而引发的资源贫乏、木材短缺等问题,是一种资源节约型、环境友好型的复合材料[2]。

除此之外,目前一些国内外学者也致力于开发一些有机-无机杂化填充的聚烯烃复合材料,以在成本和性能等方面求得平衡。

如Mohanty [3]等人通过熔融挤出制备了一种剑麻纤维和玻璃纤维杂化增强的PP复合材料,最终得到一种成本低廉、综合性能很好的有机-无机纤维杂化增强PP材料。

2 共混改性技术的研究进展共混改性是在树脂基体中混入一种或多种其他高分子物质,因此共混物也被称为聚合物合金。

聚氯乙烯复合材料共混改性的研究

聚氯乙烯复合材料共混改性的研究

聚氯乙烯复合材料共混改性的研究
氯乙烯单体发生聚合反应生成热塑性高聚物聚氯乙烯。

作为用途广泛的通用型塑料,聚氯乙烯因为其优良的阻燃耐磨等优点,决定了它可以应用于各行各业,而来源的广泛性和低价的特点更是决定了它可以进行批量生产。

所以,时至今日,我们会发现PVC制品被应用到了国民经济生活的方方面面。

但不可忽视的是,随着社会分工的精细化程度加大,对PVC材料的要求也逐渐提高:人们需要特定性能的PVC复合材料来满足他们的需求,更需要强度和韧性都相对不足的PVC复合材料在力学性能上的表现得到进一步提高。

因为操作简单,且改性效果明显等特点,所以共混作为对聚合物改性的一种物理方法,受到了人们的青睐。

PVC复合材料韧性较差,并且在较低温度时就会发生分解反应,限制了PVC制品在工程领域的应用。

玻璃纤维与PVC基体经过共混加工后,很大程度上可以增强PVC复合材料的力学性能。

在PVC中加入改性剂,不同的改性剂根据添加量的不同,对PVC复合材料的韧性也产生了不同的影响。

在本文中,通过对玻纤增强PVC、改性剂CPE增韧PVC以及改性剂ACR增韧PVC进行实验研究,对比分析不同助剂对PVC复合材料的不同力学性能影响,试图最终找到最佳配方,能提高PVC复合材料的同时,也能增加PVC复合材料的韧性。

聚乙烯改性研究进展

聚乙烯改性研究进展

聚乙烯改性研究进展刘生鹏;张苗;胡昊泽;林婷;危淼【摘要】聚乙烯以优良的力学性能、加工性能、耐化学性等成为最主要的聚烯烃塑料品种,大量用于生产薄膜、包装和管材等.但聚乙烯的非极性和低刚性限制了其在某些领域的应用.综述了聚乙烯的化学改性、物理改性和改性新技术的新进展.化学改性包括接枝改性、共聚改性、交联改性、氯化及氯磺化改性和等离子体改性;物理改性包括增强改性、共混改性、填充改性;并介绍了各种改性对聚乙烯性能的影响.【期刊名称】《武汉工程大学学报》【年(卷),期】2010(032)003【总页数】6页(P31-36)【关键词】聚乙烯;化学改性;物理改性;进展【作者】刘生鹏;张苗;胡昊泽;林婷;危淼【作者单位】武汉工程大学绿色化工过程省部共建教育部重点实验室,湖北武汉430074;武汉工程大学绿色化工过程省部共建教育部重点实验室,湖北武汉430074;武汉大学化学与分子科学学院,湖北武汉430072;武汉工程大学绿色化工过程省部共建教育部重点实验室,湖北武汉430074;武汉工程大学绿色化工过程省部共建教育部重点实验室,湖北武汉430074【正文语种】中文【中图分类】TB3240 引言聚乙烯(PE)质优、价廉、易得,且用途十分广泛,主要用来制造薄膜、容器、管道、单丝、电线电缆、日用品等,并可作为电视、雷达等的高频绝缘材料.随着石油化工的发展,聚乙烯生产得到迅速发展,产量约占塑料总产量的1/4.但聚乙烯属非极性聚合物,与无机物、极性高分子相容性弱,因此其功能性较差.采用改性可提高PE的耐热老化性、高速加工性、冲击强度、粘结性、生物相容性等性质.1 化学改性化学改性的方法主要有接枝改性、共聚改性、交联改性、氯化及氯磺化改性和等离子体改性处理等方法.其原理是通过化学反应在PE分子链上引入其它链节和功能基团,由此提高材料的力学性能、耐侯性能、抗老化性能和粘结性能等.1.1 接枝改性接枝改性是指将具有各种功能的极性单体接枝到 PE主链上的一种改性方法.接枝改性后的PE不但保持了其原有特性,同时又增加了其新的功能.常用的接枝单体有丙烯酸(AA)、马来酸酐(MA)、马来酸盐、烯基双酚A醚和活性硅油等[1].接枝改性的方法主要有溶液法[2]、固相法[3]、熔融法[4]、辐射接枝法[5]、光接枝法[6]等.程为庄等[2]以过氧化苯甲酰为引发剂,二甲苯为溶剂,进行了丙烯酸与低密度聚乙烯(LDPE)的溶液接枝聚合.聚乙烯接枝了丙烯酸后与铝的粘结强度显著增大,当接枝率为7.2%时,剥离强度由未接枝时的193 N/m提高到984 N/m.唐进伟等[3]利用固相法在线性低密度聚乙烯(LLDPE)上接枝MA,得到了接枝率为1%~2.4%,凝胶含量小于4%的 LLDPE-g-MA.于逢源等[4]采用多组分单体熔融接枝法,以甲基丙烯酸缩水甘油酯和苯乙烯作为接枝单体,对LDPE进行熔融接枝改性,获得了接枝率为3%的改性低密度聚乙烯.鲁建民等[5]研究了粉末态高密度聚乙烯的辐射效应、与多种单体的固态辐射接枝行为及其表征,并将其应用于聚乙烯粉末涂料,其附着力和柔韧性得到显著改善. Elkholdi等[6]采用光接枝的方法将AA接枝到聚乙烯上,改性后的PE薄膜具有良好的粘结性.1.2 共聚改性共聚改性是指通过共聚反应将其它大分子链或官能团引入到PE分子链中,从而改变PE的基本性能.通过共聚反应,可以改变大分子链的柔顺性或使原来的基团带有反应性官能团,可以起到反应性增容剂的作用[7].Ghosh等[8]采用接枝共聚的方法将少量的丙烯酸单体共聚物接枝到PE上,与原始的PE相比,改性后的PE具有较高的熔体粘度和较低的熔体流动指数.1.3 交联改性交联改性是指在聚合物大分子链间形成了化学共价键以取代原来的范德华力.由此极大地改善了诸如热变形、耐磨性、粘性形变、耐化学药品性及耐环境应力开裂性等一系列物理化学性能[9].聚乙烯的交联改性方法包括过氧化物交联(化学交联)、高能辐射交联[10]、硅烷接枝交联、紫外光交联[11].1.3.1 过氧化物交联过氧化物交联适用性强、交联制品的性能好,在工业中得到广泛的应用[12].刘新民等[13]研究了过氧化物交联PE的工艺与力学性能.过氧化物交联PE的力学性能有一定的提高,随着过氧化二异丙苯含量的增加,交联PE的凝胶含量提高;交联PE的拉伸强度随PE的凝胶含量增加而提高,断裂伸长率下降.同时,炭黑对复合材料有一定的补强作用,氧化锌的加入有助于交联反应和拉伸强度的提高.1.3.2 辐射交联应用辐射新技术,将聚合物置于辐射场中,在高能射线(γ射线、电子束以及中子束等)的作用下,可以在固态聚合物中形成多种活性粒子,引发一系列的化学反应,在聚合物内部形成交联的三维网络结构,使聚合物的诸多性能得到改善[14].王亚珍等[15]采用辐射交联制备的LDPE/EVA混合体系泡沫片材具有表观光滑、柔软、手感好、表观密度较小的特点,复合材料具有优异的力学性能,较高的拉伸强度、断裂伸长率和撕裂强度.1.3.3 硅烷接枝交联硅烷接枝交联聚乙烯主要包括接枝和交联两个过程.在接枝过程中,乙烯基硅烷接枝于聚乙烯大分子链上生成接枝聚合物,在交联过程中,接枝聚合物先水解成硅醇,—OH与邻近的Si—O—H基团缩合形成Si—O—H键,从而使聚乙烯的大分子之间产生交联.张建耀等[16]研究了高密度聚乙烯(HDPE)、LLDPE及其共混物的乙烯基三乙氧基硅烷(VTEOS)接枝交联产物的分子结构、熔融行为.研究发现VTEOS接枝交联PE 能力为:LLDPE>HDPE/LLDPE共混物>HDPE;接枝交联使HDPE、LLDPE及其共混物的结晶度和熔点降低,晶粒变得不均匀.1.3.4 紫外光交联紫外光交联是近年来才开始实现工业应用的新交联方法,通过加入聚乙烯基料中的光引发剂和光交联剂吸收紫外光后发生一系列的光物理和光化学反应而产生的大分子自由基进行迅速复合生成三维网状的交联结构.Wu等[17]用紫外光辐射的方法将C—O、C—OH和C=O等含氧基团引入LLDPE的分子链上.结果表明:辐射后LLDPE的分子量变小,和LLDPE相比,其熔体流动指数、拉伸强度和断裂伸长率都有所降低,但仍保持良好的韧性,且亲水性增强.1.4 氯化及氯磺化改性氯化聚乙烯是聚乙烯分子中的仲碳原子被氯原子取代后生成的一种高分子氯化物,具有较好的耐候性、耐臭氧性、耐化学药品性、耐寒性、阻燃性和优良的电绝缘性. 氯磺化聚乙烯是聚乙烯经过氯化和氯磺化反应而制得的具有高饱和结构的特种弹性材料,属于高性能橡胶品种.其结构饱和,无发色基团存在,涂膜的抗氧性、耐候性和保色性能优异,且耐酸碱和化学药品的腐蚀,已广泛应用于石油、化工等行业[18].1.5 等离子体改性处理等离子体是由部分电离的导电气体组成,其中包括电子、正离子、负离子,基态的原子或分子、激发态的原子或分子、游离基等类型的活性粒子[19].在聚乙烯等高分子材料表面改性中主要利用低温等离子体中的活性粒子轰击材料表面,使材料表面分子的化学键被打开,并与等离子体中的氧、氮等活性自由基结合,在高分子材料表面形成含有氧、氮等极性基团,由于表面增加了大量的极性基团从而能明显地提高材料表面的粘接性、印刷性、染色性等[20-21].Ataeefard等[22]用Ar、O2、N2、CO2气态等离子体处理LDPE表面,结果表明在低气压时O2、Ar、N2、CO2气态等离子体可改善LDPE薄膜的润湿性,其接触角的减小主要与放电量和曝光时间有关;LDPE的表面形貌与等离子体放电量、曝光时间和采用不同类型的气体有关,用Ar、N2气态等离子体处理LDPE效果更佳.2 物理改性物理改性是在PE基体中加入另一组分(无机组分、有机组分或聚合物等)的一种改性方法.常用的方法有增强改性、共混改性、填充改性.2.1 增强改性增强改性是指填充后对聚合物有增强效果的改性.加入的增强剂有玻璃纤维、碳纤维、石棉纤维、合成纤维、棉麻纤维、晶须等.自增强改性也属于增强改性的一种.2.1.1 自增强改性所谓自增强就是使用特殊的加工成型方法,使得材料内部组织形成伸直链晶体,材料内部大分子晶体沿应力方向有序排列,材料的宏观强度得到大幅度提高,同时分子链有序排列将使结晶度提高,从而使材料的强度进一步提高,由于所形成的增强相与基体相的分子结构相同,因而不存在外增强材料中普遍存在的界面问题[23].张慧萍等[24]采用超高分子量聚乙烯(UHMPE)纤维分别增强高密度聚乙烯(HDPE)和LDPE基体,研究发现UHMPE纤维与LDPE基体在加热加压成型的条件下,可以形成良好的界面,最大限度发挥基体和纤维的强度,而以HDPE为基材时力学性能相对较差.2.1.2 纤维增强改性纤维增强聚合物基复合材料由于具有比强度高、比刚度高等优点而得到广泛应用,而界面问题是纤维增强聚合物基复合材料研究中的主要问题. 张宁等[25]采用经 KH-550偶联剂处理的长玻璃纤维(LGF)与PE复合制备了PE/LGF复合材料.研究发现LGF的为30%(质量)、长度约为35 mm时,复合材料的拉伸强度和冲击强度分别为52.5 MPa和52 kJ/m;LGF在PE基体中呈现三维交叉结构,这种结构和 KH-550的加入改善了复合材料的力学性能.2.1.3 晶须改性经典的载荷传递机理认为,聚合物/晶须复合材料受到外力时,应力可以通过界面层由基体传递给晶须,晶须承受部分应力,使基体所受应力得以分散.晶须增韧聚合物来源于两方面的贡献,其一是晶须导致基体局部应力状态改变,其二是晶须对基体结晶行为产生影响[26].潘宝风等[27]的研究表明硅钙镁晶须的加入能够大幅度提高HDPE材料的拉伸力学性能,包括短期力学性能及耐长期蠕变性能.晶须对HDPE材料的增强作用主要归因于它们之间的良好界面粘结,同时刚性的晶须则能够承担较大的外界应力使复合材料的模量得到提高.2.1.4 纳米粒子增强改性少量无机刚性粒子填充PE可同时起到增韧与增强的作用.郜华萍等[28] 将表面处理过的纳米SiO2粒子填充m-LLDPE/LDPE发现复合材料力学性能达到最佳值的纳米粒子填充量为2%,与纯m-LLDPE/LDPE相比,拉伸强度、断裂伸长率分别提升了l3.7 MPa和174.9%.力学性能的显著提高归因于SiO2纳米粒子均匀分散于基材中,与基材形成牢固的界面结合.Qian等[29]研究了HDPE/纳米SiO2的非等温结晶行为,发现复合材料的结晶速率高于纯HDPE,结晶活化能由纯HDPE的166.3 kJ/mol,提高到206.2、251.1和266.0 kJ/mol(填充质量分数分别为1%、3%和5%).2.2 共混改性共混改性主要目的是改善PE的韧性、冲击强度、粘结性、高速加工性等各种缺陷,使其具有较好的综合性能.共混改性主要是向PE基体中加入另一种聚合物,如塑料类、弹性体类等聚合物,以及不同种类的PE之间进行共混.2.2.1 PE系列的共混改性单一组分的PE往往很难满足加工要求,而通过共混改性技术可以获得性能优良的PE材料.林群球等[30]通过LDPE与LLDPE共混,解决了LDPE因大量添加阻燃剂和抗静电剂等主助剂造成力学性能急剧降低的问题.汤亚明[31]对LLDPE与HDPE的共混改性进行了研究,结果表明共混后可以提高产品的抗冲击强度和综合性能.2.2.2 PE与弹性体的共混改性弹性体具有低的表面张力、较强的极性、突出的增韧作用,因此与PE共混后,既能保持PE的原有性能,同时也可以制备出具有综合优良性能的PE.王新鹏等[32]采用熔融共混法制备了LDPE/聚烯烃弹性体(POE)共混物,研究发现POE的含量显著影响着LDPE的结晶行为.随着POE用量的增加,LDPE的结晶度稍有减小,结晶的完善性和均一性变差,晶粒变小,LDPE在结晶过程中出现了二次结晶;随着LDPE含量的增加,POE的结晶度逐渐减小.当POE含量为30%时,共混体系的拉伸强度达到最大值,为21.5 MPa.2.2.3 PE与塑料的共混改性聚乙烯具有良好的韧性,但制品的强度和模量较低,与工程塑料等共混可提高复合体系的综合力学性能.但PE和这类高聚物的界面问题也是影响其共混物性能的主要原因,因此通常需要加入界面相容剂以提高共混物的力学性能[33].周松等[34]研究了PP对HDPE性能的影响,随着PP用量增加,复合体系的熔体流动速率提高,冲击强度下降.三元乙丙共聚物可作为相容剂,改善HDPE-PP间的相容性,研究发现HDPE/PP/EPDM(77/23/8)共混体系的综合性能最优,拉伸强度和冲击强度都得到提高.杜强国等[35]研究发现少量LLDPE的加入对PBT有一定程度的增韧作用,此时分散相的粒径很小,随着LLDPE量的增加,分散相粒径的尺寸显著增大,缺口冲击强度急剧下降.LLDPE-g-MA能明显改善了LLDPE与PBT的界面粘结,共混物冲击强度随着LLDPE接枝率的提高而提高.杜芹等[36]利用微层共挤方法制备了具有层状交替结构的HDPE/PA6共混物,共混物中引入少量HDPE-g-MA时,化学反应在界面进行,与海岛结构的共混物界面面积相比,层状共混物的界面接触面积小,界面化学反应相对较弱,但层状共混物的屈服强度和断裂伸长率有大幅度提高,层状结构对HDPE和PA6的结晶行为影响很小.王娜等[37]用熔融共混法制备出HDPE/聚苯乙烯(PS)/有机蒙脱土(OMMT)复合材料.随着OMMT的增加,复合材料的拉伸强度和弹性模量增加;当HDPE/PS为20∶80(质量比)、OMMT为3%(质量分数) 时,复合材料的拉伸强度比未加OMMT时提高了80%,弹性模量提高了20%.2.3 填充改性填充改性是在PE基质中加入无机填料或有机填料,一方面可以降低成本达到增重的目的,另一方面可提高PE的功能性,如电性能、阻燃性能等.但同时对复合材料的力学性能和加工性能带来一定程度的影响.无论是无机填料还是有机填料,填料与PE基体的相容性和界面粘结强度是PE填充改性必须面临的问题,而PE 是非极性化合物,与填料相容性差,因此,必须对填料进行表面处理.填料的表面处理一般采用物理或化学方法进行处理,在填料表面包覆一层类似于表面活性剂的过渡层,起“分子桥”的作用,使填料与基体树脂间形成一个良好的粘结界面[38].常用的填料表面处理技术有:表面活性剂或偶联剂处理[39]、低温等离子体技术[40]、聚合填充法 [41]和原位乳液聚合[42]等PE中填充木粉、淀粉、废纸粉、滑石粉、碳酸钙等一类填料,不仅可以改善PE的性能,同时也具有十分重要的健康环保意义[43-46];而PE的功能性填充改性是指在改善PE性能的同时赋予其光、电、阻燃等方面的效果[47].3 PE改性技术的新进展3.1 单活性中心催化剂开发的PE均聚物埃克森化学公司与道化学公司采用单活性催化剂制备的PE均聚物已进入工业化阶段.这些新型PE具有优异的透明度、强度、柔软性和低温热封性等,分子量及组成分布很窄.埃克森拟将其用于医疗等方面,而道化学公司则以树脂改性用途等为重点进行应用开发,但加工性是其目前的难点[48].3.2 双峰PE具有双峰分子质量分布的聚乙烯被称为双峰聚乙烯,它的优点是既含有很短的聚合物分子链,起到分子间的润滑作用,能够改善加工性能,又含有很长的聚合物分子链,保证材料的机械作用,因此双峰聚乙烯产品具有优良的物理力学性能和加工性能[49].从世界聚乙烯工业的发展趋势来看,双峰聚乙烯产品将向传统聚乙烯产品提出挑战,国外各大石化公司已在此方面有了较快发展,而国内仅是对此技术进行了初步的研究.开发新型金属催化剂和催化剂载体以及催化剂配体,是今后双峰聚乙烯研究开发的重点[50].3.3 茂金属聚乙烯茂金属聚乙烯(mPE)是近年来迅速发展的一类新型高分子树脂,其分子量分布窄,分子链结构和组成分布均一,具有优异的力学性能和光学性能,已被广泛应用于包装、电气绝缘制品等[51-52].González等[53]研究茂金属线性低密度聚乙烯(m-LLDPE)对沥青/LLDPE共混物稳定性和流变性能的影响.m-LLDPE替代LLDPE改性沥青可以有效避免高温放置时的象乳液一般发生相分离,同时显著改善沥青的粘弹性.Qin等[54]研究了PP/m-LLDPE共混物的熔融/结晶行为和等温结晶动力学,结果表明PP与m-LLDPE是部分相容的,两者的相互作用主要存在于m-LLDPE链与PP分子中的PE链段,m-LLDPE的引入降低了PP的结晶温度,但有助于PP形成良好的球晶.4 结语21世纪新材料发展非常迅速,优胜劣汰的竞争将更为激烈.PE以其价格低廉、品质优良、适于改性的特点,成为人们的首选.各种改性技术的引入,使通用PE的应用范围越来越广泛,使低档塑料高性能化应用成为现实.尽管在各种改性PE中可能还存在不完善和缺陷,但是,可以预料经济而有效的PE改性开发研究仍将得到大力发展.参考文献:[1]殷锦捷, 王亚鹏. 聚乙烯改性的研究进展[J]. 上海塑料, 2006(3): 13-16.[2]程为庄, 彭蓉, 杜强国. 聚乙烯与丙烯酸的溶液接枝聚合[J]. 功能高分子学报, 1997, 10(1): 67-71.[3]唐进伟, 童身毅. 线型低密度聚乙烯固相接枝马来酸酐研究[J]. 化工科技, 2007, 15(3): 5-8.[4]于逢源, 肖汉文, 徐冰, 等. 低密度聚乙烯的接枝改性[J]. 应用化学, 2005, 22(7): 796-799.[5]鲁建民, 张湛, 刘亚康, 等. 粉末态高密聚乙烯的辐射接枝[J]. 化工学报, 2006, 53(6): 640-643.[6]Costamagna V, Strumia M, Lopez-Gonzalez M, et al. Gas transport in surface-modified low-density polyethylene films with acrylic acid as a grafting agent [J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(19): 2828-2840.[7]李孝三, 王德禧. 聚烯烃的化学结构改性[J]. 中国塑料, 1990, 4(4): 17-25.[8]Ghosh P, Chattopadhyay B, Sen A K. Modification of low density polyethylene (LDPE) by graft copolymerization with some acrylic monomers [J]. Polymer, 1998, 39(1): 193-201[9]钱军民, 李旭祥. 国内聚乙烯接枝和交联改性的研究进展[J]. 合成材脂及塑料, 2001, 18(3): 41-44.[10]Zhang Wei, Zhang Yi He, Ji Jun Hui, et al. Antimicrobial properties of copper plasma-modified polyethylene [J]. Polymer, 2006, 47(21): 7441-7445.[11]胡发亭, 郭奕崇. 聚乙烯交联改性研究进展[J]. 现代塑料加工应用, 2002, 14(2): 61-64.[12]史伟, 王伟明. 过氧化物交联聚乙烯管材的生产工艺[J]. 工程塑料应用, 2004, 32(7): 26-28.[13]刘新民, 许春霞, 葛涛, 等. 过氧化物交联聚乙烯的力学性能研究[J]. 现代塑料加工应用, 2003, 15(6): 14-16.[14]李星, 刘东辉, 杨明, 等. 辐射交联聚乙烯薄膜的研究[J]. 现代塑料加工应用, 2002, 14(2): 5-8.[15]王亚珍, 张辉, 李曙光, 等. 辐射交联 LDPE/EVA 混合体系泡沫片材性能的研究[J]. 塑料, 2004, 33 (1): 20-32.[16]张建耀, 刘少成. 硅烷接枝交联HDPE、LLDPE及其共混物的结构研究[J].弹性体, 2007, 17(4): 39-43.[17]Wu Shi Shan, Chen Zheng Nian, Ma Qing Qing, et al. Studies on linear low-density polyethylene functionalized by ultraviolet irradiation and its compatibilization [J]. Polymer Bulletin, 2006, 57(4): 595-602.[18]孙聚华, 邹向阳, 金永峰, 等. 氯磺化聚乙烯的合成[J]. 弹性体, 2008, 18(2): 34-37.[19]Zhang Wei, Chu PK, Ji Jun Hui, et al. Antibacterial properties of plasma-modified and triclosan or bronopol coated polyethylene [J]. Polymer, 2006, 47(3): 931-936.[20]Deshmukh R R, Shetty A R. Surface characterization of polyethylene films modified by gaseous plasma [J]. Journal of Applied Polymer Science, 2007, 104(1): 449-457.[21]Guddeti R R, Knight R, Grossmann E D. Plasma depolymerization of polyethylene using induction-coupled plasma technology [J]. Plasma Chemistry and Plasma Processing, 2000, 20(1): 37-64.[22]Ataeefard M, Moradian S, Mirabedini M, et al. Surface properties of low density polyethylene upon low temperature plasma treatment with various gases [J]. Plasma Chem Plasma Process, 2008, 28(3): 377-390.[23]张斌, 朱武, 周科朝, 等. 工艺参数对自增强HDPE棒材的力学性能和微观结构的影响[J]. 功能材料, 2008, 39(1): 173-176.[24]张慧萍, 庄兴民, 晏雄, 等. 聚乙烯自增强复合材料的制备及力学性能[J]. 高分子材料科学与工程, 2004, 20(1): 121-124.[25]张宁, 李忠恒, 陶字, 等. 长纤维增强聚乙烯复合材料的研究[J]. 工程塑料应用, 2007, 35(1): 21-25.[26]陈尔凡, 陈东. 晶须增强增韧聚合物基复合材料机理研究进展[J]. 高分子材料科学与工程, 2006, 22(2): 20-24.[27]潘宝风, 刘军, 宋斌, 等. SMC晶须增强高密度聚乙烯复合材料的拉伸性能[J]. 高分子材料科学与工程, 2008, 24(4): 101-104.[28]郜华萍, 谭惠民. SiO2纳米粒子增强改性聚乙烯力学性能的研究[J]. 昆明理工大学学报, 2005, 30(3): 35-37.[29]Qian Jia Sheng, He Ping Sheng. Non-isothermal crystallization of HDPE/nano-SiO2 composite [J]. Journal of Materials Science, 2003, 38(11): 2299-2304.[30]林群球, 刘浩, 卢红. LDPE/LLDPE共混改性矿用管的研制[J]. 塑料科技, 2001, 4: 20-21.[31]汤亚明. LLDPE与HDPE共混改性的研究[J]. 塑料包装, 1999, 9(3): 5-8.[32]王新鹏, 张军. LDPE/POE共混物的结晶行为和力学性能[J]. 合成树脂及塑料, 2009, 26(1): 10-14.[33]Sinthavathavorn W, Nithitanakul M, Grady B P, et al. Melt rheology of low-density polyethylene/polyamide6 using ionomer as a compatibilizer [J]. Polymer Bulletin, 2008, 61(3): 331-340.[34]周松, 艾刚建, 张再昌, 等. HDPE/PP/EPDM共混物的性能研究[J]. 塑料助剂, 2008, 2: 39-42.[35]杜强国, 王荣海, 李跃龙, 等. PBT/LLDPE共混改性的初步研究[J]. 合成树脂及塑料, 1991, 2: 37-40.[36]杜芹, 郭少云, 李姜, 等. 高密度聚乙烯/尼龙6共混物的形态结构对其性能的影响[J]. 高分子材料科学与工程, 2008, 24(6): 88-91.[37]高娜,白杉,邵亚薇,等. 蒙脱土增容HDPE/PS共混体系[J]. 合成树脂及塑料,2008, 25(6): 17-20.[38]伍学诚, 解孝林. 高耐磨超高分子量聚乙烯改性研究进展[J]. 塑胶工业, 2004, 1: 47-49.[39]蔡长庚. 填料的表面处理及其应用[J]. 铜箔与基材, 2000, 5: 18-20.[40]王跃华, 陈敏, 李长敏, 等. 低温等离子体技术在无机粉体表面改性中的研究进展[J]. 材料导报, 2008, 22(4): 34-37.[41]任照玉, 于元章, 周淑平. 聚合填充法制备聚乙烯原位复合材料[J]. 齐鲁石油化工, 2000, 28(4): 265-267.[42]Liu Sheng Peng, Ying Ji Ru, Zhou Xing Ping, et al. Core-shell magnesium hydroxide/polystyrene hybrid nanoparticles prepared by ultrasonic wave-assisted in-situ copolymerization [J]. Materials Letters, 2009, 63(11): 911-913.[43]Zheng Xiu Ting, Wu Da Ming, Meng Qing Yun, et al. Mechanical properties of low-density polyethylene/nano-magnesium hydroxide composites prepared by an in situ bubble stretching method [J]. Journal of Polymer Research, 2008, 15(1): 59-65.[44]Dang Z, Fan L, Shen Y, et al. Study of thermal and dielectric behavior of low-density polyethylene composites reinforced with zinc oxide whisker [J]. Journal of Thermal Analysis and Calorimetry, 2003, 71(2): 635-641. [45]Han G, Lei Y, Wu Q, et al. Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay [J]. Journal of Polymers and the Environment, 2008, 16(2): 123-130.[46]Wang Shu Jun, Yu Jiu Gao, Yu Jing Lin. Preparation and characterization of compatible and degradable thermoplasticstarch/polyethylene film [J]. Journal of Polymers and the Environment, 2006, 14(1): 65-70.[47]Costache M C, Heidecker M J, Manias E, et al. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene [J]. Polymer, 2007,48(22): 6532-6545.[48]王霞, 陈少卿, 成霞, 等. 纳米ZnO对聚乙烯抗紫外光老化的影响[J]. 电工技术学报, 2008, 23(10): 6-10.[49]崔月, 李勇智. 双峰聚乙烯技术研究进展[J]. 广东化工, 2007,34(8): 42-44.[50]李玉芳. 双峰聚乙烯的生产技术及市场前景[J]. 塑料制造, 2006, 12: 59-65.[51]杨军忠, 崔跃飞, 景振华, 等. 茂金属聚乙烯交联反应挤出流动模型分析[J]. 化工进展, 2008, 27(8): 1222-1226.[52]袁波,李兰军, 何波兵, 等. 茂金属聚乙烯交联研究进展及应用[J]. 塑料工业, 2007(35): 74-76.[53]González O, Muoz M E, Santamaría A. Bitumen/polyethylene blends: using m-LLDPEs to improve stability and viscoelastic propertie s[J]. Rheologica Acta, 2006, 45(5): 603-610.[54]Qin Jiang Lei, Guo Shao Qiang, Li Zhi Ting. Melting behavior and isothermal crystallization kinetics of PP/m-LLDPE blends [J]. Journal of Polymer Research, 2008, 15: 413-420.。

ASA_PVC共混改性技术在PVC彩色共挤型材加工中应用研究.

ASA_PVC共混改性技术在PVC彩色共挤型材加工中应用研究.

ASA/PVC 共混改性技术在PVC 彩色共挤型材加工中应用研究吴郁宁波浙东塑料建筑材料有限公司宁波 315101摘要:本文概述了ASA/PVC 共混改性彩色共挤型材的制备工艺,分析讨论了不同配比共混体系对共挤加工性能、材料力学性能以及材料耐候性能的影响。

关键词:ASA/PVC 共混改性耐候性1 概述PVC塑料门窗具有优异的节能隔声效果,目前在国内已普及应用。

由于PVC分子结构中存在较不稳定的α-Cl,因此纯PVC加工的材料耐候性差,在户外容易受太阳光中紫外光线破坏而引起发黄发红等变色现象;金红石型TiO 2具有优异的光折射效果,通过添加一定比例的金红石型TiO 2,可以起到折射屏蔽紫外线效果,从而确保材料不变色,因此市场上所见的PVC门窗型材通常以白色为主。

近年来随着社会发展,人们对门窗材料表面彩色化需求越来越大。

目前彩色PVC型材一般是通过在干混料中直接添加颜料进行着色,但因配色原因,材料配比中不能添加足量的TiO 2(一种白色颜料,以致产品在户外耐候性较差、型材色彩选择性非常小。

一种采用具有优异耐候性能的高分子材料作为共挤层材料,将其与PVC主体材料共挤形成复合材料的共挤加工技术,可使型材表面色彩丰富多样,颜色牢固不易褪色。

ASA聚合物是丙烯氰(A-苯乙烯(S-丙烯酸酯(A无定型三元共聚物,其分子结构如下,其分子结构中无双键等不稳定基团,分子结构稳定,具有优异的耐候性能,同时该材料具有很好的力学性能,国外已广泛应用于汽车配件领域。

ASA其溶解度参数δ为9.6-9.8,与PVC的溶解度参数9.5-9.7非常接近,理论分析二者相容性很好,可以混合形成塑料合金,以改善PVC材料力学性能。

试验通过ASA与PVC根据不同比例进行共混造粒,主机采用锥形双螺杆挤出机,辅机采用专用单螺杆挤出机,通过共挤形成彩色共挤复合型材;分析讨论了不同共混配比对共挤加工性能、制品表面硬度、力学性能以及耐候性能的影响。

2 试验部分2.1试验主要原料SG-5型 PVC 树脂上海氯碱化工有限公司 Larans ASA 树脂德国BASF 化学公司 T-109 稳定剂阿托菲纳化学公司 D320抗冲改性剂阿托菲纳化学公司颜料德国BASF 化学公司2.2试验仪器及设备FM-500/1750进口混料机组德国THYSSEN设备制造公司 SJZ55/100锥形双螺杆造粒机组上海经纬挤出机械制造有限公司 CON63锥形双螺杆挤出生产线奥地利THEYSHON设备制造公司 CO-32 THEYSHON共挤机奥地利THEYSHON设备制造公司 LUXOR 80自动上料干燥机德国摩丹干燥设备公司HS80NP共挤型材模具奥地利TOPF模具制造公司WSD-Ⅲ型色度仪北京康光仪器有限公司低温落锤试验机河北承德金键检测仪器公司XJJ-5简支梁冲击试验机河北承德金键检测仪器公司 XHRD-150塑料洛氏硬度计山东莱州市试验机总厂QUV紫外线加速耐候试验机江苏中铭仪器有限公司2.3 试样制备1试验以浅灰色(RAL 7035为参照颜色,按照配方比例(见表1,使用FM-500/1750 德国THYSSEN进口混料机组进行混料,形成适合挤出加工的四种干混料。

聚氯乙烯增韧改性的研究进展(1)

聚氯乙烯增韧改性的研究进展(1)

聚氯乙烯增韧改性的研究进展司小燕,郑水蓉,王 熙 收稿日期:2007-02-01(西北工业大学理学院应用化学系,陕西西安,710072)摘要:在大量文献的基础上简述了国内外聚氯乙烯(P VC)增韧改性的研究状况,从弹性体、刚性粒子、纤维状填料等共混增韧改性,到纳米技术的出现,对P VC的增韧改性赋予了P VC材料良好的性能,扩大了P VC的应用领域。

但目前纳米粒子与P VC之间在纳米尺度上的相容性较差,因此加强理论研究上的深度,使这一新材料真正发挥其潜能,是今后重要的任务。

关键词:聚氯乙烯;弹性体;刚性粒子;纤维状填料;纳米粒子;改性中图分类号:T Q32513The Research Progress of Toughen i n g M od i f i ca ti on of PVCSI Xiao2yan,ZHENG Shui2r ong,WANG Xi(Depart m ent of App lied Che m istry,Faculty of Science,NorthwestenPolytecnical University,Xiπan710072,Sanxi,China) Abstract:This paper intr oduces the p resent situati on of t oughening modificati on of P VC based on s ome articles in recent years,and the modificati ons by means of elast omer,rigid particles,fibre filling are discussed,with the e mphasis on the modificati on by nano2meter particles,they endow P VC material i m portant perf or mance,and en2 large its app licati on field.But the compatibility bet w een nano2meter particles and P VC is not very good in nano2 meter scale.Therefore the t oughening modificati on mechanis m is studied more thor ough,the ne w material can ex2 ert its potential.It is a very signify assignment. Key words:P VC;elast o mer;rigid particles;fibre filling;nano2meter particles;t oughness;t oughness mechanis m 聚氯乙烯(P VC)是最早工业化、产量位居第二的通用塑料,具有耐油、耐酸碱、电气性能优良、透光性好、加工成型容易、价格低廉、原材料来源广泛等优点,广泛地应用于管材、棒材、薄膜、绝缘材料、防腐材料、建筑材料等。

PVC/PA共混改性研究进展

PVC/PA共混改性研究进展

K e r : PVC ; p y m i y wo ds ol a de;bl n ng m o c to e di di a i n; r s a c o r s i f e e r h pr g e s Ab t a t Pr g e s si e e r h n t e i g m o fc to C ih di f r n i s of s r c : o r se n r s a c o he blnd n di a i n ofPV i w t f e e t k nd p l a i ( A )we es o y m de P r um m a i e rz d. Fo n to tm s:N a i a y tc ol y R & D r r m ( 0 63 01 u da i n ie ton lke e hn og p og a 58 0 )
P o rs n r sa c n t eb e dn d fc t n o VC/ A r g e si ee r h o h ln i gmo iia i fP o P
LIFe i~,yU i 。 J e ,T己 we , i~,LU S e g 乱 ’ hn J
的 熔 融 温 度 降 至 1 7 o , 低 于 P 6的 2 5 ℃ , 8 远 C A 1 证
和 P 的耐磨 性 、 A 自润滑 性 、 化 学腐 蚀 性 、 耐 耐油 性 ,
同 时 可 提 高 P C 的 柔 顺 性 。 在 聚 合 物 共 混 材 料 的 V 研 究 与开 发快 速 发 展 的今 天 , V P 制 品依 然 甚 P C/ A 少 , 类 文 献 报 道 也 十 分 少 见 。 这 主 要 源 于 P C/ 各 V
第3 9卷 第 1期
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L I Fei 1, 2 , Y U J ie 2 , T U w e i 1, 2 , L U S he ngj un1, 2 ( 1. School of Materials Science and Metallurgical Engineering, Guizhou University, Guiyang 550003, China;
[ 关键词] 聚氯乙烯; 聚酰胺; 共混改性; 研究进展 [ 摘 要] 综述了不同种类聚酰胺( PA) 与聚氯乙烯( PV C) 共混 改性的研究进展。 [ 中图分类号] TQ325. 3 [ 文献标志码] B [ 文章编号] 1009- 7937( 2011) 01- 0001- 04
Progress in research on the blending modification of PVC/ PA
聚氯乙烯( PVC) 作为第二 大通用塑料具 有阻 燃、绝缘、廉价等优点和缺口冲击强度低、加工性能
差、耐热性能差等缺陷, 聚酰胺( PA) 作为第一大工 程塑料具有优异的力学性能和较好的机械加工性, PVC/PA 的共混改性结合了 PVC 的耐燃性、绝缘性 和 PA 的耐磨性、自润滑性、耐化学腐蚀性、耐油性, 同时可提高 PVC 的柔顺性。在聚合物共混材料的 研究与开发快速发展的今天, PVC/PA 制品依然甚 少, 各类文献报道也十分少见。这主要源于 PVC/ PA 共混的两大障碍: PVC 与 PA 相容性差; 两 者加工温度相差很大, 在绝大多数 PA 熔融的条件 下进行加工极易造成 PVC 的热降解[ 1] 。如何解决 PVC 与 PA 相容性差、加工温度相差很大的问题, 使 之更好地工业化, 是研究的难点和热点。
1 PVC/ PA6 共混
PA6 为半透明或不 透明的乳白色 结晶形聚 合
物, 具有优良的耐磨性和自润 滑性、较 高的机械强 度、良好的耐热性和电绝缘性能, 还具有自熄性和优 良的耐油性, 但吸水率较高, 尺寸稳定性较差[ 2] 。
Lij ie Dong 等[ 3] 采用溶液法使苯乙烯- 马来酸 酐共聚物( SMA) 对 PA6 进行接枝, 并运用红外光谱 和核磁共振13 C 分析证实了 SMA 对 PA6 的接枝作 用, 差示扫描量热仪显示接枝后的产物 SMA- PA6 的熔融温度降至 187 , 远低于 PA6 的 215 , 证 实了 SMA 对 PA6 的接枝有效地降低了 PA6 的结 晶度。在 SMA 增容 PA6/PVC 的共 混物中, 当 m ( SMA) m( PA6) = 5 1 且 SMA/PA6 在共混物中 的质量分数为 16% 时, 其冲击强度达到 68 kJ/ m2 , 拉伸强度达到 70 MPa, 断裂伸长率达到 130% , 可 实现对 PVC 增强、增韧的效果。
氯化钙和 PA6 在熔融挤出过程中会发 生络合 配位反应, 在合适的配比下可以制备 uPA6[ 7] 。罗筑 等[ 8] 以醋酸乙烯酯- 马来酸酐接枝共聚物( EVAg- MAH) 为相容剂, 将 PVC 与 uPA6 共混 制备了 PVC/ uPA6 共混物, 并对其形态结构与力学性能进行 了研究。通过扫描电子显微镜观察发现: 随着 uPA6 含量的增加, uPA6 粒子在 PVC 基体中的分散粒径逐 渐增大; 当 uPA6 质量分数为 10% 时, 共混物中分散 相的分散粒径为 1 m, 分散相尺寸达到最小。力学 测试结果表明: 当 uPA6 质量分Байду номын сангаас为 10% 时, 共混物 的缺口冲击强度和拉伸强度较 PVC 分别提高了约 50% 和 30% , 达到了 6. 29 kJ/ m2 和 60 MPa。
于杰等[ 9] 采用了 SMA- g - MAH、SEBS- g MAH、EVA- g - MAH 3 种相容剂对 PVC/uPA6 共 混物进行增容, 并用扫描电子显微镜对其进行了分 析。结果表明: 未添加相容剂的 PVC/uPA6( 100/20) 共混 物 的相 容 性 不 好; 添加 SEBS - g - MAH 和 EVA - g- MAH 两种相容剂后, PVC/ uPA6 共混物的 相容性得 到了 一 定程 度的 改善; 添加 SMA- g MAH 相容剂后, uPA6 很均匀地分散在 PVC 基体中。
王彩红等[ 4] 采用熔融共混的方法 制备了 PVC 与不同 接 枝 率 SMA 接 枝 改 性 PA6 ( PA6 - g -
* [ 收 稿日期] 2010- 08- 30 [ 基 金项目] 国家自然科学基金项目( 编号: 50863001) [ 联 系 人] 鲁圣军( 1971 ) , 男, 博士, 硕士生导师, E- mail: yujiegz@ 126. com [ 作 者简介] 李 飞( 1984 ) , 男, 硕士研究生, 研 究方向为聚合物加工及改性。
张军等[ 13] 以三元共聚尼龙( PA) 、PVC、丁腈橡 胶( NBR) 为主体材料, 制备了 PA/PVC/ NBR 三元 共混弹性体, 并讨论了填料品种、用量、共混温度、加 料顺序等因素对 PA/ PVC/ NBR 三元共混弹性体的 影响。结果表 明: 6 种填料对 PA/PVC/NBR 三元 共混弹性体的补强效果依次为快压出炭黑> 半补强 炭黑> 白炭黑> 活性重质 CaCO3 > 陶土> 滑石粉; 在 PA/ PVC/NBR( 10/30/60) 三 元共混 物中, 快压 出炭黑用量在 20 份以上时, 即出现明 显的补强效 果, 且用量在 10~ 50 份时, 随着其用量的增加, 共混 物的拉伸强度、撕裂强度均呈上升趋势, 耐油、耐溶 剂性能明显改 善, 但体 系的断 裂伸长 率下降; PA/ PVC/NBR 三 元 共 混 弹性 体 适 宜 的 共 混 温 度 为 120~ 140 , 超过 150 时, 其共混性能下降。
聚合物的超细粉碎可以改变其结构与形态, 进而 改变聚合物的加工性能。PA6 经过超细粉碎后可以 制成低熔点 PA6( uPA6) [3] 。鲁圣军等[ 5- 6] 采用苯乙 烯- 马来酸酐无规共聚物( R- SMA) 为增塑剂制备 了 uPA6 与 PVC 的共混物, 通过扫描电子显微镜观察 得出: R- SMA 的加入降低了 PVC 和 uPA6 间的相界 面张力, 减小了 uPA6 在 PVC 基体中的分散尺寸; 当 uPA6 质量分数为 18% 、SMA 质量分数为 5% 时, 共 混物的拉伸断面呈现典型的韧性断裂特征, 冲击强 度达到了 92 kJ/ m2 , 拉 伸强 度由 40 MPa 提 高 到 87. 7 MPa; 综合性能明显优于纯 PVC。
第 39 卷 第 1 期 2011 年 1 月
综述
聚氯乙烯 Poly viny l Chloride
Vo l. 39, No. 1 Jan. , 2011
PVC /PA 共混改性研究进展
李 飞1, 2* , 于 杰2 , 涂 伟1, 2 , 鲁圣军1, 2 ( 1. 贵州大学材料科学与冶金工程学院, 贵州 贵阳 550003; 2. 国家复合改性聚合物材料工程技术研究中心, 贵州 贵阳 550014)
严家发等[ 10] 研究了 PA6 低聚物的添加量对改 性 PVC 材料的流变性能的影响。通过对不同 PA6 低聚物含量的共混物在 165 的 lg w - lg w 曲线
2
和 l g - lg w 曲线( w 为剪切应力, w 为剪切速 率, 为表观黏度) 的拟合分析, 发现改性 PVC 材 料为假塑性流 体; 通过 红外光谱的分 析, 推断 PA6 低聚物与 PVC 分子形成了离子型交联键。
2. National Engineering Research Center f or Compounding and Modif i cation of Poly meric Material s, Guiy ang 550014, China)
Key words: PVC; pol yamide; blending modif icati on; research progress Abstract: Progresses in research on the bl ending modif ication of PVC with di f f erent kinds of poly amide( PA) were summarized. Foundation items: National key technology R & D program ( 50863001)
2 PVC/ (PA6/ PA66/ PA1010)三元共聚尼龙
PA6/PA66/ PA1010 三元共聚尼龙为白色或微 黄色团状颗粒, 一般具有耐磨性、耐油性、耐化学药 品性、耐碱性、强韧性、弹性回复性、结晶性能低和熔
点低等特点, 可以通过改变共聚物组分的配比, 得到 从高软化点、坚硬、不易溶解到低软化点、柔软、易水 解的一系列具有特殊性能的尼龙共聚物。
1
综述
聚氯乙烯
2011 年
SMA) 的共混物, 并对其进行了研究。通过 扫描电 子显微镜观察发现: 在 PA6- g- SMA 接枝率超过 5. 12% 以后, 其在 PVC 基体中能以更小的相畴均匀 地分布, 相界面很模糊, 达到了很好的相容性, 并且 接枝率越高, 增容效果越好。在 PA6- g - SMA 添 加量为 15% ( 质量分数, 下同) 时, 其拉伸断 面出现 典型的韧性断裂; 且当 PA6- g- SMA 的接枝率为 5. 12% 、添 加 量 为 15% 时, 其 冲 击 强 度 为 64. 7 kJ/m2 , 为 基 体 树 脂 的 161. 7% ; 拉 伸 强 度 为 55 MPa, 为基体树脂的 148. 6% 。
3 PVC/ 其他尼龙
PA11 为白色、半透明结晶形聚合物, 相对密度 小、熔点低、吸水性低、尺寸稳定性好、耐油、耐低温、
第1期
李 飞等: PVC/ P A 共混改性研究进展
相关文档
最新文档