小波分析综述

合集下载

(完整word版)小波分析-经典

(完整word版)小波分析-经典

时间序列—小波分析时间序列(Time Series )是地学研究中经常遇到的问题。

在时间序列研究中,时域和频域是常用的两种基本形式。

其中,时域分析具有时间定位能力,但无法得到关于时间序列变化的更多信息;频域分析(如Fourier 变换)虽具有准确的频率定位功能,但仅适合平稳时间序列分析.然而,地学中许多现象(如河川径流、地震波、暴雨、洪水等)随时间的变化往往受到多种因素的综合影响,大都属于非平稳序列,它们不但具有趋势性、周期性等特征,还存在随机性、突变性以及“多时间尺度"结构,具有多层次演变规律.对于这类非平稳时间序列的研究,通常需要某一频段对应的时间信息,或某一时段的频域信息.显然,时域分析和频域分析对此均无能为力。

20世纪80年代初,由Morlet 提出的一种具有时—频多分辨功能的小波分析(Wavelet Analysis )为更好的研究时间序列问题提供了可能,它能清晰的揭示出隐藏在时间序列中的多种变化周期,充分反映系统在不同时间尺度中的变化趋势,并能对系统未来发展趋势进行定性估计.目前,小波分析理论已在信号处理、图像压缩、模式识别、数值分析和大气科学等众多的非线性科学领域内得到了广泛的应。

在时间序列研究中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的监测和周期成分的识别以及多时间尺度的分析等。

一、小波分析基本原理1. 小波函数小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。

因此,小波函数是小波分析的关键,它是指具有震荡性、能够迅速衰减到零的一类函数,即小波函数)R (L )t (2∈ψ且满足:⎰+∞∞-=0dt )t (ψ (1)式中,)t (ψ为基小波函数,它可通过尺度的伸缩和时间轴上的平移构成一簇函数系:)abt (a)t (2/1b ,a -=-ψψ 其中,0a R,b a,≠∈ (2) 式中,)t (b ,a ψ为子小波;a 为尺度因子,反映小波的周期长度;b 为平移因子,反应时间上的平移。

小波分析及其应用

小波分析及其应用

小波分析及其应用小波分析是一种将信号分解成不同频率的方法,它具有时频局域性等优点,广泛应用于信号处理、模式识别、图像处理、生物医学工程等领域。

本文将从小波分析的概念、算法及其应用等方面进行详细介绍。

小波分析最早由法国数学家莫尔。

尼斯特雷(Morlet)于20世纪80年代初提出。

它可以将原始信号分解成不同频率的小波基函数,通过对小波基函数进行不同尺度的平移和伸缩来适配信号的不同频率成分。

与传统的傅里叶变换相比,小波分析可以提供更精确的时频信息,适用于非平稳信号的分析。

小波分析的算法主要有两种:连续小波变换(CWT)和离散小波变换(DWT)。

连续小波变换是将信号与连续的小波基函数进行卷积得到小波系数,然后通过小波系数的时频表示来分析信号。

离散小波变换则是通过对信号进行多级滤波和下采样得到不同频率的小波系数,然后通过小波系数的分解和重构来还原信号。

小波分析的应用非常广泛。

在信号处理领域,小波分析可用于信号的去噪、特征提取和模式分析等。

例如,在语音信号处理中,小波分析可以提取出语音信号的共振峰位置和共振器参数,从而实现语音识别和语音合成。

在图像处理领域,小波分析可用于图像的边缘检测、纹理分析和压缩等。

例如,在图像压缩中,小波变换可以将图像的低频和高频信息分开编码,从而实现更高的图像压缩比。

在模式识别领域,小波分析可以用于图案识别和模式分类。

例如,在人脸识别中,小波分析可以对人脸图像的尺度和方向进行多尺度和多方向的分析,从而提取出不同特征,进而实现人脸的识别。

在生物医学工程领域,小波分析可用于心电信号的分析和疾病检测等。

例如,在心电信号的分析中,小波分析可以提取出心电信号的不同频率成分,从而实现对心脏疾病的检测和分析。

总之,小波分析是一种重要的信号分析方法,具有时频局域性和多分辨率分析的特点,广泛应用于信号处理、模式识别、图像处理和生物医学工程等领域。

通过对小波基函数进行不同尺度的平移和伸缩,可以实现对信号不同频率成分的分解和分析,并提取出信号的时频特征,从而实现对信号的处理和分析。

《小波分析》课件

《小波分析》课件

小波变换与其他数学方法的结合
小波变换与傅里叶分析的结合
小波变换作为傅里叶分析的扩展,能够提供更灵活的时频分析能力,适用于非平稳信号 的处理。
小波变换与数值分析的结合
小波变换在数值分析中可用于函数逼近、数值积分、微分方程求解等领域,提高计算效 率和精度。
小波变换在大数据分析中的应用
特征提取
小波变换能够提取大数据中隐藏的时间或频 率特征,用于分类、聚类和预测等任务。
正则性
小波基的正则性是指其在时频域的连续性和光滑 性,影响信号重构的精度和稳定性。
01
小波变换在信号处 理中的应用
信号的降噪处理
总结词
通过小波变换,可以将信号中的噪声成 分与有用信号分离,从而实现降噪处理 。
VS
详细描述
小波变换具有多尺度分析的特点,能够将 信号在不同尺度上进行分解,从而将噪声 与有用信号分离。在降噪处理中,可以选 择合适的小波基和阈值处理方法,对噪声 进行抑制,保留有用信号。
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
图像的压缩编码
01
通用性强
02
小波变换的通用性强,可以广泛 应用于各种类型的图像压缩,包 括灰度图像、彩色图像、静态图 像和动态图像等。
图像的边缘检测
精确检测
小波变换具有多尺度分析的特性,能 够检测到图像在不同尺度下的边缘信 息,实现更精确的边缘检测。
图像的边缘检测
抗噪能力强
小波变换能够有效地抑制噪声对边缘 检测的影响,提高边缘检测的准确性 和稳定性。
信号的压缩编码
总结词
小波变换可以将信号进行压缩编码,减小存储和传输所需的带宽和空间。
详细描述

小波分析简述

小波分析简述

第一篇:小波分析发展历史简述1910年,Haar提出了L2(R)中第一个小波规范正交基,即Haar正交基。

1936年,Littlewood和Paley对傅立叶级数建立了二进制频率分量分组理论,(即L-P理论:按二进制频率成分分组,其傅立叶变换的相位并不影响函数的大小和形状),这是多尺度分析思想的最早起源。

1952年~1962年,Calderon等人将L-P理论推广到高维,建立了奇异积分算子理论。

1965年,Calderon发现了著名的再生公式,给出了抛物型空间上H1的原子分解。

1974年,Coifman实现了对一维空间和高维空间的原子分解。

1976年,Peetre在用L-P理论对Besov空间进行统一描述的同时,给出了Besov空间的一组基。

1981年,Stromberg引入了Sobolev空间Hp的正交基,对Haar正交基进行了改造,证明了小波函数的存在性。

1981年,法国地球物理学家Morlet提出了小波的正式概念。

1985年,法国数学家Meyer提出了连续小波的容许性条件及其重构公式。

1984年~1988年,Meyer、Battle和Lemarie分别给出了具有快速衰减特性的小波基函数:Meyer小波、Battle-Lemarie样条小波。

1987年,Mallat将计算机视觉领域中的多尺度分析思想引入到小波分析中,提出了多分辨率分析的概念,统一了在此前的所有具体正交小波的构造,给出了构造正交小波基的一般方法,提出了快速小波变换(即Mallat算法)。

1988年,Daubechies基于多项式方式构造出具有有限支集的光滑正交小波基(即Daubechies基)。

Chui和中国学者王建忠基于样条函数构造出单正交小波函数,并提出了具有最优局部化性能的尺度函数和小波函数的一般性构造方法。

1988年,Daubechies在美国NSF/CBMS 主办的小波专题研讨会上进行了10次演讲,引起了广大数学家、物理学家、工程师以及企业家的重视,将小波理论发展与实际应用推向了一个高潮。

小波分析简介

小波分析简介
窗口 Fourier 变换简介。 对于时间局部化的“最优”窗,用任一 Gaussian 函数
g a (t )
“Garbor 变换”的定义为
1 2 a
e

t2 4a
(11)
(Gba f )( ) (e it f (t )) g a (t b)dt


(12)
4

由于



小波分析理论简介
刘玉民
(一) 傅立叶变换伟大的历史贡献及其局限性 1 Fourier 变换
1807 年,由当年随拿破仑远征埃及的法国数学、物理学家傅立叶(Jean Baptistle Joseph Fourier ,1786-1830),提出任意一个周期为 T (= 2 )的函数
f (t ) ,都可以用三角级数表示: f (t ) =

g a (t b)db



g a ( x)dx 1
(13)
所以 令


{


(e it f (t )) g a (t b)dt } db = f ( )
=e
it
(14) (15)
Gba, (t )
g a (t b)
利用 Parseval 恒等式,
(G f )( ) (e it f (t )) g a (t b)dt = f , Gba, =
2
a f (t ) = 0 + 2
N 1 2 k 1
(a
m
k
N 1 1 cos k t bk sin k t ) + a N cos N t = C k e i k t 2 2 k 0 2

信号处理中的小波分析方法

信号处理中的小波分析方法

信号处理中的小波分析方法信号处理是一门研究如何对信号进行采集、处理和分析的学科,而小波分析则是信号处理领域中一种重要的方法。

本文将介绍信号处理中的小波分析方法及其应用。

一、小波分析的基本原理小波分析是一种基于数学小波理论的信号处理方法。

它的基本思想是利用小波函数将非平稳信号分解为不同频率的多个小波成分,并用于信号的时域和频域分析。

小波分析与傅里叶分析不同的是,它不依赖于正弦余弦基函数,而是利用小波函数,如Daubechies小波、Morlet小波等,进行信号的变换和分析。

小波函数具有时域局部性和频域局部性的特点,可以更好地处理非平稳信号。

二、小波分析的应用1. 信号压缩与去噪小波分析在信号压缩与去噪方面有广泛的应用。

通过将信号分解为不同频率的小波成分,可以对信号进行压缩和去除噪声。

小波分析相比于传统的傅里叶分析方法,能够更准确地捕捉信号的瞬态特征,提高信号的压缩和去噪效果。

2. 图像处理小波分析在图像处理中也具有重要的应用。

通过对图像进行小波变换,可以实现图像去噪、图像压缩和边缘检测等功能。

小波变换能够更好地保持图像的边缘信息,避免出现模糊和失真情况。

3. 语音信号处理在语音信号处理中,小波分析可以用于语音信号的压缩、语音识别和语音变换等方面。

小波变换可以提取语音信号的特征参数,并用于语音识别和语音变换算法中。

4. 生物医学信号处理小波分析在生物医学信号处理中也有广泛的应用。

例如,在心电图分析中,小波变换可以提取心电信号的特征波形,用于疾病的诊断与监测。

在脑电图分析中,小波变换可以提取脑电信号的频谱特征,帮助研究人员研究大脑的功能活动。

三、小波分析方法的发展与挑战小波分析作为一种新兴的信号处理方法,近年来得到了广泛的研究和应用。

在发展过程中,小波分析方法也面临一些挑战。

首先,小波分析方法在计算上比较复杂,需要进行多次尺度和平移变换,计算量较大,对计算资源要求较高。

因此,在实际应用中需要寻求更高效的算法和技术。

小波分析小结(小编整理)

小波分析小结(小编整理)

小波分析小结(小编整理)第一篇:小波分析小结小波分析的形成小波分析是一门数学分支,是继Fourier变换之后新的时频域分析工具。

小波理论的形成经历了三个发展阶段:Fourier变换阶段:Fourier变换是将信号在整个时间轴上进行积分,它将信号的时域特征和频域特征联系起来,分别进行分析。

设信号f(t),其Fourier变换为:F(ω)=⎰f(t)e-iωtdt-∞∞F(ω)确定了f(t)在整个时间域上的频谱特性。

但Fourier变换不能对信号从时域和频域结合起来分析,它是一种全局变换,在时间域上没有任何分辨率。

例:f(t)=1,(-2<=t<=2),其Fourier变换对应图如下:短时Fourier变换阶段:短时Fourier变换即加窗Fourier变换,其思想是把信号分成许多小的时间间隔,用Fourier分析每个时间间隔,以确定该间隔存在的频率,达到时频局部化目的。

其表达式为:Gf(ω,τ)=〈f(t),g(t-τ)ejωt〉=⎰f(t)g(t-τ)e-jωtdtR式中,g(t)为时限函数,即窗口函数,e-jωt起频限作用,Gf(ω,τ)大致反映了f(t)在τ时、频率为ω的信号成分含量。

由上式,短时Fourier变换能实现一定程度上的时频局部化,但窗口函数确定时,窗口大小和形状固定,所得时频分辨率单一。

小波分析阶段:为了克服上述缺点,小波变换应运而生。

小波变换在研究信号的低频成分时其窗函数在时间窗长度上增加,即在频率宽上减小;在研究信号的高频成分时其窗函数在时间窗长度上减小,而在频率宽上增加。

对信号可以进行概貌和细节上的分析。

小波的定义:∝(ω),若满足设ψ(t)∈L2(R)(为能量有限的空间信号),其Fourier变换为ψ容许条件:|ψ(ω)|2⎰-∞|ω|dω<+∞∞∝∝(0)=∞ψ(t)dt=0,说明ψ(t)具有波动则称ψ(t)为母小波,由容许条件可得:ψ⎰-∞性,在有限区间外恒为0或快速趋近于0.t-12以Marr小波ψ(t)=(1-t)e2为例,如下图:2π2将母小波进行伸缩平移所得小波系列称为子小波,定义式如下:ψb,a(t)=1t-bψ(),a>0aa其中a为伸缩因子,b为平移因子。

小波分析及其应用综述

小波分析及其应用综述

《小波分析及其应用》期末大作业班级:计科1141姓名: 666学号: 1144101120 题目:二进小波指导教师:2017年6月目录绪论 (2)小波分析产生的背景 (4)一连续小波变换 (4)二二进小波的构造 (5)2.1二进小波滤波器的设计 (5)2.2提升二进小波的构造 (5)2.3样条二进小波的构造 (6)三离散二进小波变换的快速算法 (6)四二维二进小波变换及其快速算法 (7)4.1二维二进小波变换的构造 (7)五二维离散二进小波变换的快速算法 (8)5.1二维离散二进小波的快速算法 (8)5.2仿真实验 (10)六二进小波变换的模极大与多尺度边缘检测及图像多尺度边缘提取 (11)6.1重构信号的快速算法: (11)七模极大值语音去燥算法改进 (12)7.1实验仿真 (13)八二维平稳小波变换 (14)九离散快速算法 (15)学习总结 (17)参考文献 (18)附录 (19)绪论今天,人类社会己经进入数字化的信息时代,高效率、超大容量、实时地获取各种有用信息已成为现代社会的一个典型特征。

以计算机作为工具的Intemet网络、电视、电话则构成人们获取信息的重要组成部分。

尽管信息的表现形式可以多种多样,但图像、图形、语音信息构成其最基本的要件。

例如,统计资料表明,人类获取的信息量有70%以上来自于图像。

因此,与图像相关的信息处理研究已经成为数学、电子学、计算机科学、通信等多学科领域的跨学科热门研究课题。

图像边缘是一种重要的视觉信息,是图像最基本的特征之一。

边缘表示为图像信息的某种不连续性(如灰度突变、纹理及色彩的变化等)。

边缘检测主要用于图像处理、机器视觉和模式识别中,是至今未得到圆满解决的经典技术难题之一,它的解决对于进行高层次的特征描述、识别和理解有着重大影响。

随着人工智能、特别是计算机视觉的发展,模式识别不仅形成了一系列理论和应用技术,而且扮演着重要角色。

其应用领域很多,如遥感医学数据分析、自动视觉检验、指纹识别、签章识别、图文识别等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高级数字信号处理题目:小波分析的最新进展姓名:学号:年级:专业:电子与通信工程小波分析的最新进展摘要小波分析打破了傅立叶变换的局限性,在继承和发展傅立叶分析基础上产生的各种改进,具有广泛的应用。

经过几十年的发展,小波变换的理论越来越成熟,为了更好的完善这一强有力的分析工具,许多人依然在不断的研究。

本文主要介绍了小波变换的基本理论,讨论了小波变换在各种信息和图像处理方面的最新研究现状及应用,最后展望了小波分析理论进一步发展进行了概述。

关键词:小波变换图像处理信号处理Wavelet analysis of the latest developmentsAbstractThe wavelet analysis to break the limitations of the Fourier transform, a variety of the inheritance and development on the basis of Fourier analysis to generate improvements, with a wide range of applications. After decades of development, the theory of wavelet transform more mature, in order to better improve this powerful analytical tool that many people are still in continuous research. This paper introduces the basic theory of wavelet transform, wavelet transform discuss the latest research in a variety of status and application of information and image processing, and finally prospect of further development of the theory of wavelet analysis are outlined.Keywords: wavelet transform image processing Signal Processing目录1、引言 (5)2、小波分析理论 (5)3、小波分析在不同领域的新进展 (5)3.1小波分析在图像处理方面的进展 (6)3.1.1在图像融合方面 (6)3.1.2在图像去噪方面 (7)3.1.3在图像加密方面 (9)3.2、小波分析在重力学中的应用 (9)3.2.1重力仪测试 (9)3.2.2 地球引力场的小波系数展开 (10)3.2.3地球内部结构 (10)3.2.4卫星轨道分析 (11)3.2.5地震监测方面 (11)3.3小波分析在医学中的应用 (11)3.4小波分析在铁路方面的应用 (11)4、小波分析的发展趋势 (12)参考文献: (13)1、引言传统的信号理论,是建立在Fourier 分析基础上的,而Fourier 变换作为一种全局性的变化,其有一定的局限性。

在实际应用中人们开始对Fourier 变换进行各种改进,小波分析由此产生了。

小波分析是泛函数、Fourier 分析、调和分析、数值分析完美结合的一种新兴的数学分支;在应用领域,特别是在信号处理、图像处理、语音处理以及众多非线性科学领域,它被认为是继Fourier 分析之后的又一有效的时频分析方法。

小波变换与Fourier 变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier 变换不能解决的许多困难问题,打破了傅里叶分析的局限性,它是调和分析发展史上里程碑式的进展。

本文主要介绍小波分析理论的发展历程及其在应用领域的现状,最后展望了小波分析研究的发展趋势。

2、小波分析理论小波分析或小波变换是指用有限长或快速衰减的、称为母小波的振荡波形来表示信号。

该波形被缩放和平移以匹配输入的信号。

小波变换分成两个大类:连续小波变换和离散小波变换。

两者的主要区别在于,连续变换在所有可能的缩放和平移上操作,而离散变换采用所有缩放和平移值得特定子集。

小波即小区域的波,是一种特殊的长度有限、平均值为零的波形。

它有两个特点:一是“小”,即在时域具有紧支集或近似紧支集;二是正负交替的“波动性”,也即支流分量为零。

所谓小波(Wavelet),即存在于一个较小区域的波。

小波函数的数学定义是:设()t ψ为一平方可积函数,即()()R L t 2∈ψ,若 ∞=⎰ dw C R w )(ωψψ时,则称()t ψ为一个基本小波或小波母函数,并称上式是小波函数的可容许条件。

对于任意实数(a,b ),则:()()0;,,b ,21≠∈=--a R b a a t a t b a ψψ 由小波母函数()t ψ生成的依赖于参数(a,b )的连续小波函数,简称小波。

所有小波变换可以视为时域频域表示的形式,和调和分析相关。

所有实际有用的离散小波变换使用的离散小波变换使用包含有限脉冲响应滤波器段。

构成CWT 的小波受海森堡的测不准原理制约。

3、小波分析在不同领域的新进展小波分析的应用领域特别广泛,它可以应用到数学领域的许多学科:信号分析、图像处理、量子力学、理论物理、军事电子对抗与武器的智能化、计算及分类与识别、音乐与语言的人工合成、医学成像与诊断、地震勘探数据处理等等。

下面介绍几种应用:3.1小波分析在图像处理方面的进展3.1.1在图像融合方面图像融合是用于提高图像的信息内容的广泛讨论的主题。

图像融合算法的主要目标是信息从一个场景的多个图像相结合。

图像融合的结果是一个新的图像,其是用于人类和机器感知用于进一步的图像处理操作诸如分割,特征提取和物体识别更为可行。

以下探讨了利用图像融合和脱离降噪专业小波方法的可能性。

这些算法进行比较数字显微镜图像。

该方法采用仿射变换的图像配准后小波融合。

那么最小二乘支持向量机基于频段选择图像去噪可以合并,以减少工件。

压痕是最大限度的分辨率,减少伪影和模糊,在最后的超级图像。

为了加速整个操作,建议通过性能,以卸载所述图像处理算法,以一个硬件平台那里可以得到改善。

FPGA提供在实施实时图像处理应用的理想平台,因为该架构固有的并行性可以明确地被利用。

在FPGA上执行图像处理任务可高达2个数量级比在通用计算机上的等效应用更快。

融合方法,该方法能够将多个图像的互补定向信息组合成A单超级图像,提高了信息密度。

利用美德小波变换的是多频段德组成,最佳观赏可以在任何给定的频段选择。

融合结果表明,提高整体对比度。

有观察方法不需要系统的点扩散函数(PSF)的知识。

PSF中独立方法的上部手图像中未知的PSF的环境中使用时(鲁比奥-Guivernau等人,2012).PSF结果的图像中模糊的高度光学增强的成像,如显微镜,因此,是一个限制因素图像增强。

整体融合处理经过图像配准,并随后小波组成的预处理。

分解系数被进一步分析和适当的组合实现。

然后逆小波变换是用来获得最终大惊小怪的体积。

从数字显微镜获得的图像,不容易受到噪声。

更迫切的问题是模糊的效果。

模糊效应导致的注册方法不太有效。

这个问题可以通过引入更多的意见,以创造最大的重叠功能来克服(卢比奥-Guivernau等,2012)。

该图像通过裁剪算法,以降低尺寸。

这是为了减少图像体积的大小为降低实施成本。

仿射变换矩阵操作之后,以纠正旋转andtranslation。

从数字显微镜设置(赫伊斯肯和Stainier,2009年),得到θ值。

此值isthen微调做一个相似性度量的登记办法。

微调是必需的,因为由于不同的原因轻微变化在数字显微镜的角度值可导致在最后的图像伪影(Swoger等人,2007)。

平移值是从该相似性度量的系数(Vapnik等,1998)完全计算。

仿射变换矩阵为每个图像然后被格式化为具有共同的大小和分辨率。

然后掩模具有两个象素的水平产生(低的值,表示与数据和高值,其中数据是不存在区域)在需要时,以避免边界伪影,以丢弃ineach图象的填补值融合过程开始通过分解所述图像体积频带。

然后每个图像是由该组融合规则分析这些频段,以确定哪些一次可以组合,这一次必须从系数的最终体积去除。

然后逆变换用于取回图像。

用小波的方法改变为按设置以获得最高效率的影像。

正如在开始时的正常DWT具有作为非移位不变更大的限制。

其结果是,该图像是高度易感错过注册,因此权利要求非常全面的图像配准算法。

但作为启动数码显微镜图像来解释自然要模糊的成像深度的增加。

3.1.2在图像去噪方面图像去噪仍然是一个根本性的问题,在图像处理的领域。

小波变换,VARI-OU 的算法去噪的小波域进行了介绍。

小波得到一种性能优越的图像去噪由于其性质如多分辨率。

估计的图像是受加性高斯白噪声损坏的问题一直是人们对实际和理论原因的兴趣。

非线性方法特别是基于小波已经变得流行,由于它的优点超过线性方法。

在这里,我申请的非线性threshold-小波域荷兰国际集团的技术,如软硬阈值,小波收缩等的Visu收缩(非自适应),并肯定的是,贝叶斯和正常收缩(自适应),采用离散平稳小波变换(DSWT )针对不同的小波,不同层次,去噪图像,并确定最好的一个了出来。

DE-去噪算法的性能是使用的措施,例如信噪比(SNR)和均方误差(MSE)关于各种阈值技术的定量性测定。

在许多应用中,图像去噪是用于生产从嘈杂的观测值原始图像的良好预期。

修复后的图像应包含的噪声比,同时仍保持急剧转变(即边缘)观察少。

小波变换,由于其优异的局域化特性,已迅速成为不可缺少的信号和图像处理工具,适用于各种应用中,包括压缩和去噪的。

小波去噪试图删除存在于信号中的噪声,同时保留了信号的特性,考虑以下各项少它的频率内容。

小波阈值(最早由多诺霍)是利用小波的变换信号去噪的信号估计技术。

在我们的项目中,小波阈值技术被应用到图像。

它消除了噪声系数杀死那些微不足道相对于一些门槛,原来是简单而有效的,在很大程度上取决于一个阈值参数的选择和这个阈值决定了选择,在很大程度上降噪的功效。

图1显示了使用小波变换和阈值去噪技术的框图。

去噪图像的方法给出如下:去噪图像= W-1[T{W(原始图像+噪声)}]第1步:涂抹着小波变换嘈杂的形象得到分解图像。

第2步:应用非线性阈值来分解图像去除噪声。

第3步:应用逆小波变换门限时得到空间域去噪的图像。

(a)离散小波变换(DWT)图像x的DWT是通过一系列过滤器传递来计算。

相关文档
最新文档