偏最小二乘方法

合集下载

偏最小二乘方法

偏最小二乘方法
第六章 偏最小二乘方法
偏最小二乘方法(PLS-Partial Least Squares))是近年来发展 起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合 物结构-活性/性质相关性研究中是一种非常有用的手段。如美国 Tripos公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处 理部分主要是PLS。在PLS方法中用的是替潜变量,其数学基础 是主成分分析。替潜变量的个数一般少于原自变量的个数,所 以PLS特别适用于自变量的个数多于试样个数的情况。在此种 情况下,亦可运用主成分回归方法,但不能够运用一般的多元 回归分析,因为一般多元回归分析要求试样的个数必须多于自 变量的个数。
设矩阵X的阶为I*J,若T的阶与J相等,则主成分回归与 多元线性回归所得结果相同,并不能显示出主成分回归的优 越之处。选取的主成分数一般应该比J 小,而删去那些不重 要的主成分,因为这些主成分所包含的信息主要是噪声,由 此所得的回归方程稳定性较好。 另外,由X所定义的空间可以进一步来说明主成分回归 与多元线性回归的区别。多元线性回归应用了由X的列所定 义的全部空间,而主成分回归所占用的是一子空间。当X的J 列中,有一列可为其它J —1列的线性组合时,则X可用J -1列 的矩阵T来描述,而并不丢失信息。新的矩阵T定义了X的一 个子空间。
2 7 5 4 3 3 Y 9 12 3 6 8 2
运用式(6.3)则可得B矩阵:
0.48 0.71 0.55 B 0.42 0.41 0.24 0.08 0.28 0.05
所用数学模型有效性的量度可用Err:

两种偏最小二乘特征提取方法的比较

两种偏最小二乘特征提取方法的比较

两种偏最小二乘特征提取方法的比较偏最小二乘(Partial Least Squares, PLS)是一种常用的多元统计分析方法,在特征提取方面有两种常见的应用方法,分别是偏最小二乘回归(PLS Regression)和偏最小二乘判别分析(PLS-DA)。

本文将从这两种方法的原理、应用领域以及优缺点等方面进行比较,以便读者更好地理解它们的特点和适用场景。

一、偏最小二乘回归(PLS Regression)1.原理偏最小二乘回归是一种利用预测变量与被预测变量之间的关系来建立模型的方法。

它通过线性变换将原始变量转化为一组新的变量,即潜在变量,使得预测变量与被预测变量之间的相关性最大化。

PLS Regression既可以用于降维,提取主要特征,又可以用于建立预测模型。

2.应用领域PLS Regression广泛应用于化学、生物、食品等领域。

在化学领域,可以利用PLS Regression来建立光谱与化学成分之间的定量关系模型;在生物领域,可以利用PLS Regression来处理生物数据,如基因表达数据、蛋白质数据等。

3.优缺点优点:PLS Regression可以处理多重共线性和小样本问题,能够提取变量间的共同信息,对噪声和异常值具有较强的鲁棒性。

缺点:PLS Regression对参数的解释性较差,提取的潜在变量不易解释其物理或化学意义。

二、偏最小二乘判别分析(PLS-DA)偏最小二乘判别分析是一种将多变量数据进行降维和分类的方法。

它和偏最小二乘回归类似,也是通过线性变换将原始变量转化为一组潜在变量,但它的目的不是建立预测模型,而是根据已有类别信息对样本进行分类。

PLS-DA广泛应用于生物、医学、食品等领域。

在生物领域,可以利用PLS-DA对基因表达数据进行分类,发现与疾病相关的基因表达模式;在医学领域,可以利用PLS-DA对影像数据进行分析,帮助医生做出诊断和治疗决策。

缺点:PLS-DA的分类结果不易解释其物理或化学意义,对于大样本问题的分类效果可能不如其他分类方法。

偏最小二乘法

偏最小二乘法

偏最小二乘法 ( PLS)是光谱多元定量校正最常用的一种方法 , 已被广泛应用 于近红外 、 红外 、拉曼 、核磁和质谱等波谱定量模型的建立 , 几乎成为光谱分析中建立线性定量校正模型的通用方法 〔1, 2〕 。

近年来 , 随着 PLS 方法在光谱分析尤其是分子光谱如近红外 、 红外和拉曼中应用 的深入开展 , PLS 方法还被用来解决模式识别 、定量校正模型适用性判断以及异常样本检测等定性分析问题 。

由于 PLS 方法同时从光谱阵和浓度阵中提取载荷和得分 , 克服主成分分析 ( PCA)方法没有利用浓度阵的缺点 , 可有效降维 , 并消除光谱间可能存在的复共线关系 , 因此取得令人非常满意的定性分析结果 〔3 ~ 5〕 。

本文主要介绍PLS 方法在光谱定性分析方面的原理及应用 实例 。

偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。

该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。

如美国Tripos 公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS 。

在PLS 方法中用的是替潜变量,其数学基础是主成分分析。

替潜变量的个数一般少于原自变量的个数,所以PLS 特别适用于自变量的个数多于试样个数的情况。

在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。

§§ 6.3.1 基本原理6.3 偏最小二乘(PLS )为了叙述上的方便,我们首先引进“因子”的概念。

一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。

第十一章 偏最小二乘法

第十一章  偏最小二乘法
t1 X0w1
u1 Y0c1
注意这里t1和u1分别为n维向量,是n个 个案在两组变量的主成分的取值。
2.建立回归方程
分别求X0和Y021 22 w'1X Y0c1 0
则 记
X Y0c1 1w1 0 0 Y0 X0w1 1c1 0
可得
X Y0Y0 X0w1 w1 0
2 1
Y 0 X0 X 0Y0c1 c
' '
2 1 1
可见,w1是矩阵的 X0Y0Y0X0 特征向量,对应 12 。所以w1是对应于矩阵 X0Y0Y0X0 的特征值为 12 的单位特征向量。而另一方面, 最大特征值 ' ' 12 的 c1是对应于 Y 0 X0 X 0Y0 矩阵最大特征值 单位特征向量c1。
求X组变量的第一主成分t1,w1为第一主成分 的系数向量, w1是一个单位向量。 t1=X0w1 求Y组变量的第一主成分t1,c1为第一主成分 的系数向量, c1是一个单位向量。 u1=Y0c1 有Var(t1)=max Var(u1)=max (t1, u1)=max
因此综合起来,在偏最小二乘回归中, 我们要求与的协方差达到最大,既
一、 偏最小二乘回归的建模原理和方法 (一)建模原理
设有 q个因变量{ y1, y2,…, yq}和p个自变量 { x1, x2,…, xp}。为了讨论两组变量之间的关系, 观测了n个样本点。偏最小二乘回归开始与典型 相关分析相同,分别在X与Y中提取出主成分。 设 { t1, t2,…, tr}为{ x1, x2,…, xp}的主成分, { u1, u2,…, ur}为{ y1, y2,…, yq},其中r=min(p,q)。
max X0 w1 , Y0c1 w1 ,c1 w1w1 1 cc 1 11

偏最小二乘回归方法

偏最小二乘回归方法

偏最小二乘回归方法偏最小二乘回归(PLSR)方法是一种用于建立两个或多个变量之间的线性关系模型的统计技术。

这种方法是回归分析的变种,特别适用于处理高维数据集或变量之间具有高度相关性的情况。

PLSR方法的目标是找到一个最佳的投影空间,以将自变量和因变量之间的关系最大化。

PLSR方法首先将自变量和因变量进行线性组合,然后通过最小二乘法来拟合这些组合和实际观测值之间的关系。

通过迭代过程,PLSR方法会削减每个变量的权重,并选择最相关的变量组合来构建模型。

PLSR方法使用最小二乘回归来估计模型参数,并通过交叉验证来确定模型的最佳复杂度。

一般而言,PLSR方法需要满足以下几个步骤:1.数据预处理:包括数据中心化和标准化操作。

中心化是指将数据的平均值平移到原点,标准化是指将数据缩放到相同的尺度,以便比较它们的重要性。

2.建立模型:PLSR方法通过迭代过程来选择最相关的变量组合。

在每次迭代中,PLSR方法计算每个变量对自变量和因变量之间关系的贡献程度。

然后,根据这些贡献程度重新计算变量的权重,并选择最重要的变量组合。

3.确定复杂度:PLSR方法通常通过交叉验证来确定模型的最佳复杂度。

交叉验证可以将数据集划分为训练集和测试集,在训练集上建立模型,并在测试集上评估模型的性能。

根据测试集上的性能表现,选择最佳的复杂度参数。

PLSR方法的优点在于可以处理高维数据集,并能够处理变量之间的高度相关性。

它可以找到自变量与因变量之间的最佳组合,从而提高建模的准确性。

此外,PLSR方法还可以用于特征选择,帮助研究人员找到对结果变量具有重要影响的变量。

然而,PLSR方法也存在一些限制。

首先,PLSR方法假设自变量和因变量之间的关系是线性的,因此无法处理非线性模型。

其次,PLSR方法对异常值非常敏感,可能会导致模型的失真。

此外,PLSR方法也对样本大小敏感,需要足够的样本数量才能获得可靠的结果。

总的来说,偏最小二乘回归方法是一种用于建立变量之间线性关系模型的统计技术。

pls最小二乘法

pls最小二乘法

偏最小二乘法
偏最小二乘法(Partial Least Squares, PLS)是一种多元统计分析方法,通常用于处理具有多个自变量(特征)和一个或多个因变量(响应变量)的数据集。

PLS的主要目标是通过线性组合自变量来建立与因变量之间的关系,同时减少自变量之间的多重共线性。

PLS的核心思想是将自变量和因变量进行分解,然后找到它们之间的最大协方差方向。

这种方法可以降低数据维度,同时保留与因变量相关性最高的信息。

PLS可以应用于回归问题和分类问题。

PLS的应用领域包括化学分析、生物信息学、工程、金融和其他领域,特别是在处理高维数据和样本较少的情况下,PLS可以帮助提高模型性能和降低过拟合的风险。

PLS方法通常包括以下步骤:
1. 数据准备:收集自变量和因变量的数据。

2. 标准化:对数据进行标准化处理,以确保不同变量的尺度一致。

3. 模型拟合:建立PLS模型,找到自变量和因变量之间的最大协方差方向。

4. 模型评估:评估模型的性能,通常使用交叉验证等方法。

5. 预测:使用训练好的PLS模型进行新数据的预测。

PLS有不同的变种,包括PLS回归(用于连续因变量),PLS-DA(用于分类问题),以及其他扩展。

这种方法在实际数据分析和建模中具有广泛的应用,可以帮助解决多变量数据分析中的问题。

偏最小二乘回归方法(PLS)

偏最小二乘回归方法(PLS)

偏最小二乘回归方法1 偏最小二乘回归方法(PLS)背景介绍在经济管理、教育学、农业、社会科学、工程技术、医学和生物学中,多元线性回归分析是一种普遍应用的统计分析与预测技术。

多元线性回归中,一般采用最小二乘方法(Ordinary Least Squares :OLS)估计回归系数,以使残差平方和达到最小,但当自变量之间存在多重相关性时,最小二乘估计方法往往失效。

而这种变量之间多重相关性问题在多元线性回归分析中危害非常严重,但又普遍存在。

为消除这种影响,常采用主成分分析(principal Components Analysis :PCA)的方法,但采用主成分分析提取的主成分,虽然能较好地概括自变量系统中的信息,却带进了许多无用的噪声,从而对因变量缺乏解释能力。

最小偏二乘回归方法(Partial Least Squares Regression:PLS)就是应这种实际需要而产生和发展的一种有广泛适用性的多元统计分析方法。

它于1983年由S.Wold和C.Albano等人首次提出并成功地应用在化学领域。

近十年来,偏最小二乘回归方法在理论、方法和应用方面都得到了迅速的发展,己经广泛地应用在许多领域,如生物信息学、机器学习和文本分类等领域。

偏最小二乘回归方法主要的研究焦点是多因变量对多自变量的回归建模,它与普通多元回归方法在思路上的主要区别是它在回归建模过程中采用了信息综合与筛选技术。

它不再是直接考虑因变量集合与自变量集合的回归建模,而是在变量系统中提取若干对系统具有最佳解释能力的新综合变量(又称成分),然后对它们进行回归建模。

偏最小二乘回归可以将建模类型的预测分析方法与非模型式的数据内涵分析方法有机地结合起来,可以同时实现回归建模、数据结构简化(主成分分析)以及两组变量间的相关性分析(典型性关分析),即集多元线性回归分析、典型相关分析和主成分分析的基本功能为一体。

下面将简单地叙述偏最小二乘回归的基本原理。

偏最小二乘法算法

偏最小二乘法算法

偏最小二乘法1.1基本原理偏最小二乘法(PLS)是基于因子分析的多变量校正方法,其数学基础为主成分分析。

但它相对于主成分回归(PCR)更进了一步,两者的区别在于PLS法将浓度矩阵Y和相应的量测响应矩阵X同时进行主成分分解:X二 TP+EY=UQ+F式中T和U分别为X和Y的得分矩阵,而P和Q分别为X和Y的载荷矩阵,E和F分别为运用偏最小二乘法去拟合矩阵X和Y时所引进的误差。

偏最小二乘法和主成分回归很相似,其差别在于用于描述变量Y中因子的同时也用于描述变量X。

为了实现这一点,数学中是以矩阵Y的列去计算矩阵X的因子。

同时,矩阵Y的因子则由矩阵X 的列去预测。

分解得到的T和U矩阵分别是除去了人部分测量误差的响应和浓度的信息。

偏最小二乘法就是利用各列向量相互正交的特征响应矩阵T和特征浓度矩阵U进行回归:U=TB得到回归系数矩阵,又称矢联矩阵E:B=(TT )F U因此,偏最小二乘法的校正步骤包括对矩阵Y和矩阵X的主成分分解以及对矢联矩阵B的计算。

12主成分分析主成分分析的中心目的是将数据降维,以排除众多化学信息共存中相互重叠的信息。

他是将原变量进行转换,即把原变量的线性组合成几个新变量。

同时这些新变量要尽可能多的表征原变量的数据结构特征而不丢失信息。

新变量是一组正交的,即互不相矢的变量。

这种新变量又称为主成分。

如何寻找主成分,在数学上讲,求数据矩阵的主成分就是求解该矩阵的特征值和特征矢量问题。

卞面以多组分混合物的量测光谱来加以说明。

假设有n个样本包含p个组分,在m个波长下测定其光谱数据,根据比尔定律和加和定理有:如果混合物只有一种组分,则该光谱矢量与纯光谱矢量应该是方向一致,而人小不同。

换句话说,光谱A表示在由p个波长构成的p维变量空间的一组点(n个),而这一组点一定在一条通过坐标原点的直线上。

这条直线其实就是纯光谱b。

因此由ni个波长描述的原始数据可以用一条直线,即一个新坐标或新变量来表示。

如果一个混合物由2个组分组成,各组分的纯光谱用bl,b2 表示,则有:<=c i{b: + Ci2bl有上式看出,不管混合物如何变化,其光谱总可以用两个新坐标轴bl,b2来表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

75 152 102 91
X2
63 96
132 218
82 176
36 74
69 157 124 51
2 7 5
Y
4
3
3
9 12 3
6
8
2
由此得到的B矩阵为:
0.71 0.18 0.42
B2
0.42 0.24
0.19 0.20
0.20 0.03
0.12 0.03
0.01
对于此模型,Err=0.07。它比前者为小,这就意味着对于矩 阵Y,第二个数学模型比第个要更有效,这是一种假象。由 于X中引入最后一列,使得B2中上部3*3部分与前边所提B不 相等(B为真实模型)。由B2计算所得Y尽管误差要小,但其 数学模型所描述的自变量与因变量间的关系并不真实。其原 因主要为多元线性回归方法是采用整个X矩阵来建立数学模 型,而并不顾及在X中的信息与真实模型相关与否。很显然 ,若所得结果偏离了其实际数学模型,则对于未知试样的预 测也是错误的。
事实上,完全满足上述条件比较困难。当噪声较强,或干 扰较严重时,有可能导致所得数学模型失真,如下例:
75 152 102
X
63
132
82
96 218 176
69
157
124
2 7 5
Y
4
3
3
9 12 3
6
8
2
运用式(6.3)则可得B矩阵:
0.71 0.55 0.48 B 0.42 0.41 0.24
为了克服多元线性回归的不足,在数学方法上引进了主 成分回归方法(PCR)。
§ 6.2 主成分回归
主成分回归可分为两步: 测定主成分数,并由主成分分 析将X矩阵降维; 对于降维的X矩阵再进行线性回归分析。
主成分分析的概念在前一章已经作了介绍。所谓主成分, 它为一新的变量,而该新变量是原变量xij的线性组合。第一 个主成分所能解释原变量的方差量最大,第二个次之,第三 个再次之,等等。也就是小。运用主成分分析, 原变量矩阵X可以表达为得分(即主成分)矩阵T,而T由X在 本征矢量P上的投影所得。主成分与矩阵X的本征矢量一一对 应,即T = XP。
y1=Xb1+ e ; y2=Xb2+ e
若用矩阵标表示,则:
x11 x12 .. x1n
y11 y12
X
x
21
...
x22
...
x
2
n
... ... ...
Y ( y1
y2
)
y12 ...
y22
...
x
n1
xn2
...
x
nn
y1n
y2n
B (b1
b11
b2
)
为yi (i=1,2,…,n),它的列向量形式为y ,b与原来相同, 矢量xj’为矩阵X的行,则: y = Xb + e
若用图形表示,则为:
1
m1
1
y= X B+ e
n
nm n
在此情况下,n为试样数,m为自变量数。有如下三种情况:
(1) m>n,即变量数多于试样数,对于b来说,则有无穷多个解。
(2) m=n,变量数与试样数相等,若矩阵X满秩时,则矢量b有 唯一解。但是,在实际工作中,这种情况是极少能碰到的。 此时我们有:
b12 ...
b1m
由此得到
b21
b22
...
b2
m
e11 e21
E (e1
e2
)
e12
...
e
22
...
e1n
e
2
n
Y = XB + E
对于2-P 个因变量的图形表示为: 2-p n 2-p 2-p
Y=X B+E
m 最小二乘的解为:
n
mn
B(XX)1XY
(6.3)
多元线性回归应用很广泛,因为在许多情况下该种方法具有 良好的性能。但是,此种方法也有固有的缺点。假若体系的响 应(即因变量)呈现线性,无干扰,无溶液间的相互作用,低 噪声无共线性,则多元线性回归是一种非常好的方法。
第六章 偏最小二乘方法
偏最小二乘方法(PLS-Partial Least Squares))是近年来发展 起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合 物结构-活性/性质相关性研究中是一种非常有用的手段。如美国 Tripos公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处 理部分主要是PLS。在PLS方法中用的是替潜变量,其数学基础 是主成分分析。替潜变量的个数一般少于原自变量的个数,所 以PLS特别适用于自变量的个数多于试样个数的情况。在此种 情况下,亦可运用主成分回归方法,但不能够运用一般的多元 回归分析,因为一般多元回归分析要求试样的个数必须多于自 变量的个数。
设矩阵X的阶为I*J,若T的阶与J相等,则主成分回归与 多元线性回归所得结果相同,并不能显示出主成分回归的优 越之处。选取的主成分数一般应该比J 小,而删去那些不重 要的主成分,因为这些主成分所包含的信息主要是噪声,由 此所得的回归方程稳定性较好。
另外,由X所定义的空间可以进一步来说明主成分回归 与多元线性回归的区别。多元线性回归应用了由X的列所定 义的全部空间,而主成分回归所占用的是一子空间。当X的J 列中,有一列可为其它J —1列的线性组合时,则X可用J -1列 的矩阵T来描述,而并不丢失信息。新的矩阵T定义了X的一 个子空间。
0.08 0.28 0.05
所用数学模型有效性的量度可用Err:
KI
KI
Err
(yikyˆik)2
2 ik
k1 i1
k 1 i1
式中,yik 为矩阵Y中第i行第k列的矩阵元,为由矩阵B所得
的计算值,ik为前面所介绍的矩阵E的矩阵元。此例中,
Err = 0.49。
若由于噪音使得X增广一列(注意:对于试样浓度的测定, 它并不包含有用信息),即:
e = y –Xb =0
(3)m<n,变量数小于试样数,尽管我们得不到准确解b,但 是可以使残差矢量e尽可能小而得到解,
e = y – Xb 这就是我们所熟知的最小二乘法。其解为:
b(XX)1Xy
(6.2)
x(bb)1by
在上边的叙述中,因变量为1个,而事实上可以有多个因 变量。如有两个因变量y1和y2,我们可以简单地写成两个线性 方程:
§ 6.1 多元线性回归(MLR)
若自变量为m个,xj (j=1,2,…,m),因变量为y,在y与xj间, 我们可以建立一线性模型,即
y b 1 x 1 b 2 x 2 . .b .m x m e (6.1a)
m
y bj xj e
(6.1b)
j1
yxbe
(6.1c)
在式中,bj为回归系数。 在式(6.1)中仅有一个试样,若有n个试样,即
相关文档
最新文档