曝气池容积计算方法分析

合集下载

曝气池的有效容积计算公式

曝气池的有效容积计算公式

曝气池的有效容积计算公式曝气池是污水处理过程中的一个重要环节,而要确定曝气池的有效容积,那就得依靠相应的计算公式。

咱们先来说说这个公式到底是咋回事儿。

曝气池的有效容积计算公式通常可以表示为:V = Q × (Sa - Se) / (Ls × X) 。

这里面的每个字母和数字都有它特定的含义哈。

Q 代表污水的日平均流量,Sa 表示进水的BOD5 浓度,Se 呢则是出水的 BOD5 浓度,Ls 是污泥负荷,X 是混合液悬浮固体浓度(MLSS)。

给您举个例子哈,就说有个小型的污水处理厂,每天处理的污水量大概是 1000 立方米,进水的 BOD5 浓度是 200mg/L,经过处理后要求出水的 BOD5 浓度降到 20mg/L,污泥负荷选定为0.3kgBOD5/(kgMLSS·d),混合液悬浮固体浓度设定为 3000mg/L。

那咱们就可以来算算这个曝气池的有效容积啦。

首先,Q = 1000 立方米/天,Sa = 200mg/L = 0.2kg/m³,Se = 20mg/L = 0.02kg/m³,Ls = 0.3kgBOD5/(kgMLSS·d),X = 3000mg/L = 3kg/m³。

把这些数值代入公式:V = 1000 × (0.2 - 0.02) / (0.3 × 3) ≈ 200(立方米)。

您瞧,通过这样简单的计算,就能大概知道这个小型污水处理厂的曝气池需要多大的有效容积了。

在实际的工程应用中,可不能简单地套这个公式就算完事儿了。

还得考虑好多其他的因素呢。

比如说,污水的水质变化、温度对反应的影响、曝气设备的性能等等。

我之前去一个污水处理厂参观的时候,就看到工人们在为计算曝气池的有效容积头疼。

他们收集了一堆的数据,然后对着公式反复计算,还不停地讨论和修改参数。

我凑过去看了看,发现他们因为一个进水浓度的数据有争议,争得面红耳赤。

经验!五种生化池曝气量经验公式计算对比

经验!五种生化池曝气量经验公式计算对比

经验!五种生化池曝气量经验公式计算对比环保工程师污水曝气量的计算公式复杂,在工程运用中,污师们总结了一些经验公式来快速简便的计算耗氧量,把复杂的工作简单化了,不过经验公式仅限于交流和对比的,设计方案中是禁止利用经验公式来计算曝气量的!例如:参数:水量:46 t / h,COD:1200mg/L无BOD数据,按BOD=0.5*COD=600mg/L计01 按气水比计算:接触氧化池15:1,则空气量为:15×46=690m³/h活性污泥池10:1,则空气量为:10×46=460m³/h调节池5:1,则空气量为:5×46=230m³/h合计空气量为:690 460 230=1380 m3/h=23 m³/min02 按去除1公斤BOD需1.5公斤O2计算每小时BOD去除量为0.6kg/m³×1100m3/d÷24=27.5kgBOD/h 需氧气:27.5×1.5=41.25kgO2空气中氧的重量为:0.233kg O2/kg空气则需空气量为:41.25 kgO2÷0.233 O2/kg空气=177.04 kg空气空气的密度为1.293 kg/m3则空气体积为:177.04kg÷1.293 kg/m3=136.92 m3微孔曝气头的氧利用率为20%,则实际需空气量为:136.92 m3÷0.2=684.6m3=11.41m3/min03 按单位池面积曝气强度计算曝气强度一般为10-20 m3/ m2h ,取中间值,曝气强度为15 m³/m²h接触氧化池和活性污泥池面积共为:125.4 m2则空气量为:125.4×15=1881 m3/h=31.35m³/min调节池曝气强度为3m³/ m²h,面积为120 m²则空气量为3×120=360m³/h=6m³/min总共需要37.35 m³/min04 按曝气头数量计算根据停留时间算出池容,再计计算出共需曝气头350只,需气量为3 m³/h只则共需空气350×3=1050m³/h=17.5m³/min再加上调节池的需气量6 m³/min,共需空气:23.5 m³/min05 按经验值计算仅供参考,大设计院一般用气水,我们设计用经验值大约1公斤COD需要1公斤氧气,1kg氨氮需要4.57kg氧气。

曝气池的体积、剩余污泥量和需氧量计算

曝气池的体积、剩余污泥量和需氧量计算

曝气池的体积、剩余污泥量和需氧量计算曝气池的体积、剩余污泥量和需氧量计算某污水处理厂处理规模为21600m3/d,经预处理沉淀后BOD5为200mg/L,希望经过生物处理后和出水BOD5小于20mg/L。

该地区大气压为1.013×105Pa,要求设计曝气池的体积、剩余污泥量和需氧量。

相关参数可按下列条件选取:(1)曝气池污水温度为20℃;(2)曝气池中混合液挥发性悬浮固体(MLVSS)与混合液悬浮固体(MLSS)之比为0.8;(3)回流污泥中混合悬浮固体浓度取10000mg/L;(4)曝气池中的MLSS取3000mg/L;(5)污泥泥龄取10d;(6)二沉池出水中含有12mg/L总悬浮固体(TSS),其中VSS 占65%;(7)污水中含有足够的生化反应所需的氮、磷和其他微量元素。

解:(1)估算出水中溶解性BOD5浓度:出水中BOD5由两部分组成,一是没有被生物降解的溶解性BOD5,二是没有沉淀下来随出水漂走的悬浮固体。

悬浮固体所占BOD5计算:①悬浮固体中可生物降解部分为0.65×12mg/L=7.8mg/L②可生物降解悬浮固体最终BOD L=7.8×1.42mg/L=11mg/L③可生物降解悬浮固体的BOD L换算为BOD5=0.68×11mg/L=7.5mg/L④确定经生物处理后要求的溶解性有机污染物,即S e:7.5mg/L+S e≤20mg/L,S e≤12.5mg/L(2)计算曝气池容积:①按污泥负荷计算:取污泥负荷0.25kgBOD5/(kgMLSS·d),按平均流量计算:V=Q(S0-S e)/N s X=21600·(200-12.5)/0.25·3000m3=5400m3②按污泥泥龄计算:取Y=0.6kgMLVSS/kgBOD5,K d=0.08d-1V=QYθc(S0-S e)/X v(1+K dθc)=21600·0.6·10·(200-12.5)/3000·0.8·(1+0.08·10)m3=5625m3经过计算,可以取曝气池容积5700m3。

生化池(好氧池)曝气量设计计算及方案

生化池(好氧池)曝气量设计计算及方案

理论需氧量计算(实际传氧速率,Actual Oxygen Rate,简称AOR)O=a'QLr+b 'VN'+4.57 QΔNH3-Na'—氧化每公斤BOD需氧量(kgO2/kgBOD),一般取值0.42~0.530.48 b'—污泥自身氧需氧率(1/d,亦即kgO2/kgMLVSSd),一般取值0.188~0.110.14 Lr—去除的BOD浓度,kg/m30.17 Q—进水设计流量,m3/d2000 V—曝气池容积,m3500 N‘—混合液挥发性悬浮物(MLVSS)浓度,kg/m3,=fN,f—0.7~0.8 2.25 O—理论需氧量,kgO2/d320.7实际状态需氧量(标准传氧速率,Standard Oxygen Rate,简称SOR)O'=OCs/[α(βCsm-Co)*power (1.024,(T -20))]Ea—氧利用率0.2Ot—曝气池逸出气体中含氧,%,Ot==21*(1-Ea)/(79+21*(1-Ea))17.537Csw—清水表面处饱和溶解氧(mg/L),温度为T℃,实际计算压力Pa8.4Cs—标准条件下清水中饱和溶解氧,等于9.17mg/L9.17H—曝气池有效水压,MPa0.55Pb—曝气装置处绝对压力,kg/cm2,Pb=H-0.03+1.033 1.553Csm—按曝气装置在水下深度处至池面的平均溶解氧值,Csm=Csw(Ot/42+Pb/2.068)9.815T—混合液温度,℃,一般为5~30℃102518α—混合液中Kla值之比,即Kla污/Kla清,一般为0.8~0.850.8β—混合液的饱和溶解氧值与清水的饱和溶解氧之比,一般 为0.9~0.970.9O‘—实际状态需氧量,kgO2/d682478564实际供气量,Gs=O'/0.3Ea,m3/d11364.7217962.68339400.67718风机风量,m3/min867风机功率,N=2.05GsP/75n(kW),P—风压,kg/cm2,n—风机效率,一般为0.7~0.8545生化池(好氧池)曝气量设计计算及方案风机数量,台222单台风机风量,m3/min433气水比 5.68 3.98 4.70。

SBR反应池容积计算方法

SBR反应池容积计算方法

SBR反应池容积计算方法及评价SBR反应池池容计算系指传统的序批式活性污泥反应池,而不包括其他SBR 改进型的诸多反应池(如ICEAS、CASS、MSBR等)池容的计算。

现针对存在的问题提出一套以总污泥量为主要参数的综合设计方法,供设计者参考。

1 现行设计方法1.1 负荷法该法与连续式曝气池容的设计相仿。

已知SBR反应池的容积负荷或污泥负荷、进水量及进水中BOD5浓度,即可由下式迅速求得SBR池容:容积负荷法V=nQ0C/Nv (1)Vmin=[SVI·MLSS/106]·V污泥负荷法 Vmin=nQ0C·SVI/Ns (2)V=Vmin+Q1.2 曝气时间内负荷法鉴于SBR法属间歇曝气,一个周期内有效曝气时间为ta,则一日内总曝气时间为nta,以此建立如下计算式:容积负荷法V=nQ0Ctc/Nv·ta(3)污泥负荷法 V=24QC0/nta·MLSS·NS(4)1.3 动力学设计法由于SBR的运行操作方式不同,其有效容积的计算也不尽相同。

根据动力学原理演算(过程略),SBR反应池容计算公式可分为下列三种情况:限制曝气 V=NQ(C0-Ce)tf/[MLSS·Ns·ta] (5)非限制曝气V=nQ(C0-Ce)tf/[MLSS·Ns(ta+tf)](6)半限制曝气V=nQ(C0-Ce)tf/[LSS·Ns(ta+tf-t0)] (7)但在实际应用中发现上述方法存有以下问题:① 对负荷参数的选用依据不足,提供选用参数的范围过大[例如文献推荐Nv=0.1~1.3kgBOD5/(m3·d)等],而未考虑水温、进水水质、污泥龄、活性污泥量以及SBR池几何尺寸等要素对负荷及池容的影响;② 负荷法将连续式曝气池容计算方法移用于具有二沉池功能的SBR池容计算,存有理论上的差异,使所得结果偏小;③ 在计算公式中均出现了SVI、MLSS、Nv、Ns等敏感的变化参数,难于全部同时根据经验假定,忽略了底物的明显影响,并将导致各参数间不一致甚至矛盾的现象;④ 曝气时间内负荷法与动力学设计法中试图引入有效曝气时间ta对SBR 池容所产生的影响,但因其由动力学原理演算而得,假定的边界条件不完全适应于实际各个阶段的反应过程,将有机碳的去除仅限制在好氧阶段的曝气作用,而忽略了其他非曝气阶段对有机碳去除的影响,使得在同一负荷条件下所得SBR 池容惊人地偏大。

污泥容积指数SV

污泥容积指数SV

污泥容积指数SV
污泥容积指数(SVI)的英文是Sludge Volume Index,是指曝气池出口处混合液经过30min静置沉淀后,每克干污泥所形成的沉淀污泥所占的容积。

单位以ml/g计。

计算公式如下:
SVI=1L混合液经30min静置沉淀后以ml计的污泥容积/1L混合液以g计的干污泥量
SVI与SV值的关系:
SVI=10XSV/ MLSS。

SVI值排除了污泥浓度对污泥沉降体积的影响,因而比SV值能更准确地评价和反映活性污泥的凝聚、沉淀性能。

一般来说,SVI过低说明污泥颗粒细小,无机物含量高,缺乏活性;SVI过高说明污泥沉降性较差,将要发生或已经发生污泥膨胀。

城市污水处理厂的SVI值一般介于70~100之间。

SVI值与污泥负荷有关,污泥负荷过高或过低,活性污泥的代谢性能都会变差,SVI值也会变很高,存在出现污泥膨胀的可能。

曝气池计算

曝气池计算

3.1.7、曝气池设计计算本设计采用传统推流式曝气池。

3.1.7.1、污水处理程度的计算取原污水BOD 5值(S 0)为250mg/L ,经初次沉淀池及缺氧池、厌氧段处理,按降低25%*10考虑,则进入曝气池的污水,其BOD 5值(S α)为: S α=250(1-25%)=187.5mg/L计算去除率,对此,首先按式BOD5=5⨯(1.42bX αC e )=7.1X αC e 计算处理水中的非溶解性BOD 5值,上式中C e ——处理水中悬浮固体浓度,取用综合排放一级标准20mg/L; b-----微生物自身氧化率,一般介于0.05-0.1之间,取0.09; X α---活性微生物在处理水中所占比例,取值0.4 得BOD 5=7.1⨯0.09⨯0.4⨯20=5.1mg/L. 处理水中溶解性BOD 5值为:20-5.1=14.9mg/L 去除率η=92.05.1879.14187.5=-3.1.7.2、曝气池的计算与各部位尺寸的确定曝气池按BOD 污泥负荷率确定拟定采用的BOD-污泥负荷率为0.25BOD 5/(kgMLSS ·kg)但为稳妥计,需加以校核,校核公式:Ns=ηk2SefK 2值取0.0200,Se=14.9mg/L,η=0.92,f=.75.0MLSSMLVSS=代入各值,=Ns 242.00.920.7514.90.0200=⨯⨯BOD 5/(kgMLSS ·kg)计算结果确证,Ns 取0.25是适宜的。

(2)确定混合液污泥浓度(X )根据已确定的Ns 值,查图*11得相应的SVI 值为120-140,取值140根据式 X=r R1RSV I 106+• X----曝气池混合液污泥浓度 R----污泥回流比取r=1.2,R=100%,代入得:X=r R 1R SV I 106+•=4286112.11140106=+⨯•mg/L 取4300mg/L 。

曝气池容积计算方法分析

曝气池容积计算方法分析

曝气池容积计算方法分析曝气池是活性污泥处理系统中的核心构筑物,其容积的大小不仅关系到整个处理系统的净化效果,同时还关系到建造费用的问题。

因此,有必要对曝气池容积的计算方法进行分析,从而得到较佳的设计取值。

长期以来,曝气池容积的计算,采用较普遍的是按BOD—污泥负荷率法,但近来也有人建议采用污泥龄法。

那么,二者之间有何异同,是否有某种内在的联系、可否将二者有机地结合起来呢?本文就此进行如下的分析讨论。

1 BOD—污泥负荷率(Ns)曝气池容积计算法1.1 BOD—污泥负荷率(Ns)的物理概念曝气池内单位重量(千克)的活性污泥,在单位时间内能够接受并将其降解到某一规定额数的BOD5重量值,被称为BOD—污泥负荷率(Ns)。

即[1][2]:⑴式中 Ns——BOD—污泥负荷率,kg BOD5/kgMLSS·dQ——污水设计流量,m3/dSa——原污水的BOD5值,mg/lX——曝气池内混合液悬浮固体浓度(MLSS),mg/lV——曝气池容积,m31.2 曝气池物料平衡方程式如图1为完全混合活性污泥系统的物料平衡图[1][4]。

在稳定条件下,对于系统中的有机物进行物料平衡,则有:⑵整理得:⑶由莫诺(Monod)方程式的推论知[1][4] :⑷代入式⑶,并整理得:⑸或⑹又⑺代入式⑹得:⑻或⑼式中 X V——曝气池混合液挥发性悬浮固体浓度(MLVSS),mg/lS e——处理水出水有机物浓度,mg/l——有机物降解速度,K2——有机物降解常数。

1.3 曝气池容积计算由式⑴有:⑽将式⑼代入式⑽得:⑾式⑽即为按BOD—污泥负荷率法计算曝气池容积得计算公式,式⑾为经变换后得计算公式。

2 污泥龄(θc)曝气池容积计算法2.1 污泥龄(θc)的物理概念曝气池内活性污泥总量与每日排放污泥量之比,称为污泥龄(θc)。

也即劳伦斯—麦卡蒂(Lawrence—McCayty)的“生物固体平均停留时间” [1]。

即:⑿式中θc——污泥龄,dΔXv——曝气池内每日增加的挥发性污泥量(Vss),kmg/l其它——同前2.2 生物增长基本方程式在曝气池内,活性污泥微生物的增殖是微生物的合成和内源代谢共同活动的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曝气池容积计算方法分析曝气池是活性污泥处理系统中的核心构筑物,其容积的大小不仅关系到整个处理系统的净化效果,同时还关系到建造费用的问题。

因此,有必要对曝气池容积的计算方法进行分析,从而得到较佳的设计取值。

长期以来,曝气池容积的计算,采用较普遍的是按BOD—污泥负荷率法,但近来也有人建议采用污泥龄法。

那么,二者之间有何异同,是否有某种内在的联系、可否将二者有机地结合起来呢?本文就此进行如下的分析讨论。

1 BOD—污泥负荷率(Ns)曝气池容积计算法1.1 BOD—污泥负荷率(Ns)的物理概念曝气池内单位重量(千克)的活性污泥,在单位时间内能够接受并将其降解到某一规定额数的BOD5重量值,被称为BOD—污泥负荷率(Ns)。

即[1][2]:⑴式中 Ns——BOD—污泥负荷率,kg BOD5/kgMLSS·dQ——污水设计流量,m3/dSa——原污水的BOD5值,mg/lX——曝气池内混合液悬浮固体浓度(MLSS),mg/lV——曝气池容积,m31.2 曝气池物料平衡方程式如图1为完全混合活性污泥系统的物料平衡图[1][4]。

在稳定条件下,对于系统中的有机物进行物料平衡,则有:⑵整理得:⑶由莫诺(Monod)方程式的推论知[1][4] :⑷代入式⑶,并整理得:⑸或⑹又⑺代入式⑹得:⑻或⑼式中 X V——曝气池混合液挥发性悬浮固体浓度(MLVSS),mg/lS e——处理水出水有机物浓度,mg/l——有机物降解速度,K2——有机物降解常数。

1.3 曝气池容积计算由式⑴有:⑽将式⑼代入式⑽得:⑾式⑽即为按BOD—污泥负荷率法计算曝气池容积得计算公式,式⑾为经变换后得计算公式。

2 污泥龄(θc)曝气池容积计算法2.1 污泥龄(θc)的物理概念曝气池内活性污泥总量与每日排放污泥量之比,称为污泥龄(θc)。

也即劳伦斯—麦卡蒂(Lawrence—McCayty)的“生物固体平均停留时间” [1]。

即:⑿式中θc——污泥龄,dΔXv——曝气池内每日增加的挥发性污泥量(Vss),kmg/l其它——同前2.2 生物增长基本方程式在曝气池内,活性污泥微生物的增殖是微生物的合成和内源代谢共同活动的结果。

即:⒀或⒁此式⒁经整理即可得劳伦斯—麦卡蒂(Lawrence—McCayty)方程式的推论—曝气池内活性污泥浓度与污泥龄之间的关系式[1]⒂该式即为资料[1][2]推荐的按污泥龄计算曝气池容积公式:⒃将式⑸与式⑿代入式⒁得:⒄式中Y——微生物产率系数,kgVss/kgBOD5Kd——微生物衰减系数,d-1其它——同前。

2.3 曝气池容积计算由式⑿有⒅将式⒄、式⒀、代入式⒅,并整理得:⒆式⒃或式⒅即为污泥龄法计算曝气池容积计算公式。

式⒆为经变换后的计算公式。

3 两种计算方法的讨论3.1 两种计算方法的相同之处虽然两种计算方法的原始概念不同,但经过分析可知,两种计算方法的计算公式式⑾与式⒆是完全相同的。

也就是说,在遵循莫诺(monod)反应动力学方程式的推论下,两种计算方法并无本质上的任何区别,完全可以用同一公式来表达:式⒆。

3.2 两种计算方法的不同之处尽管两种计算方法在理论是统一的式⒆,但在实际设计过程中,采用的均是其原始概念下的公式式⑽和式⒃或式⒅。

从表面上看显然是有区别的,而且在应用中,由于引入的概念不同,也是各有侧重。

对于负荷率法,考虑的主要是处理水质、种类及要求(η、Se)与污泥的凝聚沉淀性能(SVI)。

而污泥龄法考虑的则主要是处理水质下的微生物世代时间的长短。

同时,人们一般认为污泥负荷率作为活性污泥处理系统的设计与管理的指标是合理的,而污泥龄作为活性污泥处理系统运行管理最重要的指标则要较污泥负荷率更为稳妥[3]。

由此说,污泥负荷侧重于设计,而污泥龄则侧重于运行管理。

4 结论虽然引入的概念不同,考虑的角度不同、侧重不同,但作为设计计算公式来说,二者在本质上是完全统一的。

因此,在设计计算过程中,应将二者有机结合,综合考虑。

在原始概念计算公式的条件下,相互校核,共同优化,从而使曝气池的设计与运行管理更趋合理。

曝气扩散机理曝气扩散是污水处理工艺中的核心技术,本文就曝气扩散机理在应用中出现的新问题提出一些初步的看法。

1 按照流体运动性质分析曝气扩散的区别曝气扩散的实质就是使气相中的氧向液相中转移。

气相中的氧转移为液相中的溶解氧,是通过流体运动形成气液接触界面而完成的。

因此,按照流体运动性质来分析则可以看出曝气扩散技术的区别。

如果采用流体运动的性质来区分,曝气扩散技术则有下列两种基本形式。

1.1 液相流体主动运动型叶轮与转刷(盘)表面曝气是采用制造液相流体的水跃而形成气液接触界面;射流曝气是依靠射流液相流体吸入气相流体而形成气液接触界面,这些均是属于液相流体主动运动型,其技术特征是:动能作用于重质液相流体运动;轻质气相流体是被动接触;在叶轮或转刷(盘)搅动处、射流口附近产生局部连续的气液接触界面。

1.2 气相流体主动运动型鼓风曝气是由风机输送气相流体,经曝气器的扩散作用以升泡运动的方式形成气液接触界面,这就是属于气相流体主动运动型,其技术特征是:动能作用于轻质气相流体运动;重质液相流体是被动接触;由升泡的上升运动,可产生立体连续的气液接触界面。

2 “氧利用率”不能确定曝气器实际运行的功效曝气器的作用就是促进氧的传质,“氧利用率”似乎理所当然的应是反映曝气器技术性能的指标,因此长期以来就存在着一种采用“氧利用率”来判定曝气器技术性能的习惯观点。

但是,如果对“氧利用率”作深入的分析,就会发现该指标不能真实确定曝气器实际运行的功效。

2.1 “氧利用率”实质是不受变量影响的定值2.1.1 氧利用率公式氧利用率=[q c/(0.28×q)]×100% (CJ/T3015.2-93)q c —标准状态下,测试条件,曝气器充氧能力(kg/h);0.28 —标准状态下,1 M3空气所含氧的重量(㎏/ M3);q —标准状态下,曝气器通气量(M3/h)。

由上式可知,氧利用率取决于充氧能力(q c)与通气量(q)两个因素。

2.1.2 在曝气器充氧能力(q c)与通气量(q)两者之间存在一个正比关系,即充氧能力(q c)的大小取决于通气量(q)的多少。

通气量为0,充氧能力也等于0。

在一定的通气量范围之内,随着通气量的加大充氧能力也随之加大。

所有曝气器所标明的充氧能力(q c),都是在清水试验条件下依据一定的通气量(q)而测定获取的。

2.1.3 氧利用率公式也可以写成下式:(1/0.28)×100%×(q c/q)= 0.0357×(q c/q)因为充氧能力(q c)与通气量(q)之间存在正比关系,q c /q结果为常数值,所以“氧利用率”实质上是一个不受变量影响的定值。

不受变量影响的定值参数,所表述的仅仅只是一种物理现象,而决不表明功效的技术性能。

响的定值参数,所表述的仅仅只是一种物理现象,而决不表明曝气器实际运行功效。

2.2 “氧利用率“不反映氧传质的效率2.2.1 一个大泡,如果被分割成小泡的数量愈多,则所形成的“泡表膜”面积愈多,“泡表膜”是进行氧传质的功能膜,如果只站在“氧利用率”这一角度片面的看问题,当然是气泡被分割得愈小愈好。

2.2.2 要获取较高的“氧利用率”,就必须尽可能产生较多的“泡表膜”。

一个大泡(一个单位的空气)被扩散形成的小泡数量愈多,“泡表膜”也就愈多,“氧利用率”也就愈高。

由此可见,“氧利用率”仅仅只是与气泡扩散程度有关,而与动能作用气泡扩散的过程无关。

也就是说“氧利用率”只表明一个单位的大泡被分割成小泡的多少,而与扩散分割过程如何,动能消耗多少完全无关。

因此,“氧利用率”并不等于氧传质的效率。

2.2.3 按照孔隙扩散原则,多大的孔则产生多大的泡。

如果空气通过直径为1 μm的孔眼是被分割形成1 μm的气泡,则此类微孔曝气器在运行中,无论阻力损耗多大,也无论孔眼堵塞了多少,只要还有孔眼在通气,就一定是产生1 μm的小气泡,显然此时“氧利用率”也没有变化,但真实的运行功效却是有了很大的变化。

2.2.4 由于“氧利用率”只与气泡分割扩散的程度有关,一个单位量的空气,只要排气孔眼的直径是1 μm,无论是短时间内经过众多孔眼排出,或是长时间内经过少量孔眼排出,因为扩散结果始终是分割成直径为1μm的小泡,所以,其“氧利用率”是会始终保持不变的。

由此可见,只用“氧利用率”来说明曝气器的氧传质效率,显然会产生误导作用。

2.2.5 如果曝气器的设计参数是:通气量=2 M3/h、氧利用率=25%,由于要确保实现较高的氧利用率,排气孔眼设计为采用微小孔。

但在实际运行中,大部分通气孔眼被堵塞,单个曝气器的通气量只能达到0.2 M3/h,也就是说工作效率已降低了90%,由于“细孔产生细泡”原理与孔眼堵塞程度无关,此时所谓的“氧利用率=25%”并无变化,但其真实的氧传质效率已经是变得很低了。

2.2.6 “氧利用率”所表明的是:单位空气中的氧,经气泡分割所形成的“泡表膜”产生氧传质作用的利用率。

氧传质效率应说明的是:单位空气中的氧,在单位时间内通过“泡表膜”产生氧传质作用的量。

显然,“氧利用率”并非就是氧传质效率。

2.3 鼓风曝气器氧利用率比较大孔排气类:喷射曝气器≈5%螺旋曝气器≈5%散流曝气器≈7%旋混曝气器≈21%小孔排气类:软管微孔曝气器≈13%(受孔变影响)软膜微孔曝气器≈25%(受孔变影响)微孔曝气器≈25%由以上各种鼓风曝气器(旋混曝气器除外)的“氧利用率”可以看出,通气孔眼的大小决定氧利用率的多少(孔隙扩散原则)。

如果采用“氧利用率”来评价曝气器的技术性能,当然会得出曝气器孔眼愈细愈好的观点。

“微孔”必然是阻力大、易堵塞,因此“氧利用率”高,并非就是曝气器的实际氧传质效率高。

实际上决定氧传质效率的先决条件是排气结构的可靠性,曝气器“氧利用率”再好,如果排气结构不可靠,其真实的氧传质效率与技术性能同样也是不可靠的。

HS旋混曝气器由于是采用大孔排气,经多种结构作用扩散产生细泡,因而也就实现了其它类型曝气器无法实现的,既具有较高的“氧利用率”又具有真实可靠的氧传质效率这样一种优良的技术性能。

气结构的可靠性,曝气器“氧利用率”再好,如果排气结构不可靠,其真实的氧传质效率与技术性能同样也是不可靠的。

旋混曝气器由于是采用大孔排气,利用气泡上浮动力经旋流、导流、紊动、碰撞、阻挡等作用扩散产生细泡,因而也就实现了其它类型曝气器无法实现的,既具有较高的“氧利用率”又具有真实可靠的氧传质功效的优良技术性能。

3 关于微孔曝气器孔隙问题的探讨微孔曝气器是依赖于微小孔隙对气流进行扩散,在微孔曝气器表面所具有的有效通气孔隙,是微孔曝气器的技术核心问题。

相关文档
最新文档