不溶性膳食纤维测定

合集下载

总膳食纤维国标测定方法-符合AOAC等

总膳食纤维国标测定方法-符合AOAC等

总膳食纤维测定的介绍1、在α-淀粉酶的作用下,PH为6的磷酸盐缓冲溶液,95—100度下加热15分钟。

2、用蛋白酶在PH为7.5时60度培养30分钟。

3、用淀粉葡(萄)糖苷酶在PH为4.0---4.6下60度培养30分钟。

4、4体积的95%的乙醇沉淀。

5、过滤。

6、用78%和95%的乙醇和丙酮清洗沉淀物。

7、烘干称重。

8、干样可以拿去做凯氏定氮,也可以在525度的马弗炉里灰份5个小时,然后去称重。

不溶的膳食纤维的定义为进行烘干前用乙醇进行清洗并用温水洗涤后残留物。

总膳食纤维(TDF)—不溶膳食纤维= 可溶膳食纤维(SDF)标准酶法测定食品和饲料中的总膳食纤维量1、研磨分级样品2、在105度的烘箱烘干并恒重,在干燥箱中冷却到室温。

3、如果样品脂肪含量高于10%,需要用石油醚进行脱脂,在最终结果中再进行校正。

4、称出0.5—1克的样品,并转移到400毫升的烧杯中。

5、用α-淀粉酶在50毫升的PH为6的磷酸盐缓冲溶液中培养15分钟,培养温度为95—100度,温度可以用温度计控制。

6、冷却到室温,并用0.275 N 浓度的氢氧化钠溶液调节PH到7.5。

7、将烧杯和样品一起转移到磁力搅拌培养器中(GDE)。

8、在搅拌的情况下,加入蛋白酶在60度的情况下培养30分钟。

9、冷却到室温,用0.325的盐酸调节PH值为4.0—4.6。

10、在搅拌的情况下,加淀粉葡(萄)糖苷酶,在60度时培养30分钟。

11、通过加4体积的95%的乙醇沉淀可溶性膳食纤维,并且在室温下沉淀大约1个小时。

12、称量已经添加了0.5克的硅藻土(作为助滤剂)玻璃坩埚.13、将坩埚放在CSF6 (或者FIWE6)上,倒入上述操作的沉淀物,并用V ACUUM进行吸液排空,用78%的乙醇溶液进行洗涤转移沉淀物。

14、用20毫升的78%的乙醇溶液洗涤玻璃坩埚中的沉淀物两次,再用10毫升95%的乙醇溶液洗涤两次,10毫升的丙酮溶液洗涤两次并排除废液。

化学法提取香蕉皮中水不溶性膳食纤维

化学法提取香蕉皮中水不溶性膳食纤维
张 锋
( 州工 业职 业技 术学 院 化学 工程 技术 学 院 , 苏 徐州 2 1 4 徐 江 2 1 0)
摘 要 : 以香蕉 皮为原料 , 用化 学方 法提 取香 蕉皮 中水 不溶 性膳食 纤维. 利 通过对试剂 浓度 、 液比 、 料
温度 、 时间影响 因素 的研 究 , 找到 最佳提取条 件. 交实验及 验证 实验 结果表 明 : 正 水不 溶性膳食 纤 维的
为分 析纯 ; 为 蒸馏 水. 水 1 3 主 要 仪 器 .
氢氧化钠浓度 /%
J J一2型组 织捣 碎 匀浆 机 ; HH 一4 显 恒 温水 数
浴锅 ;0 2 2—3 C型 电热恒温 干燥 箱 ;A一2 0 B J 0 3型 电 子 天平 ; HS一3 W 精密 酸 度计 ;S P C HZ—I循 环水 I
1 4 2 水不 溶性膳 食 纤 维的 测 定 .. 先用 氢 氧 化钠 溶液 浸 泡 去 除 碱 性 物 质 , 心 去 除 可 溶 性 膳 食 纤 离 维, 滤渣用 过 氧化氢 溶 液浸 泡 脱 色 , 然后 进 行 水洗 , 烘干, 重, 称 即得水 不溶性 膳食 纤维 . 1 4 3 水不 溶性膳 食 纤 维得 率 计 算 得率 ( ) . . 为
1 4 1 膳 食 纤维 的提取 工 艺 依 据 所查 的相 关 资 . . 料得 出基 本 的提取 工艺 l 下 : I 如 7 珀
香 蕉 皮 洗 净 一 切 片 一 切 丝 一 干 燥 ( 0 。 8h 6 C、 )





粉 碎一 过 筛 ( 0目) 称 取预 先 制 备 的香 蕉皮 干 4 一
分 布 在 广 东 、 西 、 南 、 南 、 建 等 5省 ,四 广 海 云 福

纤维素测定

纤维素测定
纤维素的测定
目录
纤维的测定
1 2
3 4
纤维测定概述
粗纤维的测定 纤维素测定仪法
酶-重量法
纤维测定概述
纤维是植物性食品的主要成分之一,广泛存在于各种植
物体内。化学上不是单一组分,是混合物。纤维是人类 膳食中不可缺少的重要物质之一,在维持人体健康、预 防疾病方面有着独特的作用,已日益引起人们的重视。 食品中纤维的测定提出最早、应用最广泛的是称量法。 此外还有纤维素测定仪法、中性洗涤纤维法、酸性洗涤
Company Logo
3.不溶性膳食纤维的测定
2.适用范围及特点 本法适用于谷物及其制品、饲料、果蔬等样品,① 对 于蛋白质、淀粉含量高的样品,易形成大量泡沫.粘度大 ,过滤困难,使此法应用受到限制。② 不包括水溶性非消 化性多糖,这是此法的最大缺点。
3.试剂 中性洗涤剂溶液;十二烷基硫酸钠
Company Logo
1.粗纤维的测定
8.打开进水开关。将面板上预热调压旋钮和消煮调压旋 钮逆时针旋到底,打开电源开关,调整定时器的设定时 间为30min,以后使用时可不必调节。 9.开启酸、碱、蒸馏水预热开关,调节预热调压旋钮, 将其调到顺时针最大,这时左边电压表显示电压为 220V左右。 10.等酸、碱、蒸馏水沸腾时,将预热电压调小至酸、 碱、蒸馏水微沸。 11. 打开加酸开关,分别按l—6号加液按钮在消煮管中 加人已沸的酸液200 mL约到消煮管中间刻度线,再在 每个消煮管内加2 mL正辛醇。关闭酸预热开关,开启 消煮加热开关将消煮调压旋钮调至最大,此时右边电压 表显示约220 V左右,待消煮管内酸液再次沸腾后再将 电压调至 150—170 V左右,使酸液保持微沸,向上打 开消煮定时开关,保持酸微沸30 min。

【精品】食物中膳食纤维的测定

【精品】食物中膳食纤维的测定

膳食纤维的测定方法酶-重量法1.原理:样品分别用α-淀粉酶、蛋白酶、葡萄糖苷酶进行酶解消化以去除蛋白质和可消化的淀粉。

总膳食纤维(TDF)是先酶解,然后用乙醇沉淀,再将沉淀物过滤,将TDF残渣用乙醇和丙酮冲洗,干燥称重。

不溶性和可溶性膳食纤维(IDF和SDF)是酶解后将IDF过滤,过滤后的残渣用热水冲洗,经干燥后称重。

SDF是将上述滤出液用4倍量的95%乙醇沉淀,然后再过滤,干燥,称重。

TDF、IDF 和SDF量通过蛋白质、灰分含量进行校正。

2.适用范围AOAC991.43本方法适用于各类植物性食物和保健食品。

3.仪器3.1烧杯:400或600ml高脚型。

3.2过滤用坩埚:玻料滤板,美国试验和材料学会(ASTM)40-60μm,Pyrex60ml(CorningNo.36060buchner,或同等的)。

如下处理:(1)在灰化炉525℃灰化过夜。

炉温降至130℃以下取出坩埚。

(2)用真空装置移出硅藻土和灰质。

(3)室温下用2%清洗溶液浸泡1小时。

(4)用水和去离子水冲洗坩埚;然后用15ml丙酮冲洗然后风干。

(5)在干燥的坩埚中加0.5g硅藻土,在130℃烘干恒重。

(6)在干燥器中冷却1小时,记录坩埚加硅藻土重量,精确至0.1mg。

3.3真空装置:(1)真空泵或抽气机作为控制装置。

(2)1L的厚壁抽滤瓶。

(3)与抽滤瓶相配套的橡皮圈。

3.4振荡水浴箱:(1)自动控温使温度能保持在98±2℃。

(2)恒温控制在60℃。

3.5天平:分析级,精确至±0.1mg。

3.6马福炉:温度控制在525±5℃。

3.7干燥箱:温度控制在105和130±3℃。

3.8干燥器:用二氧化硅或同等的干燥剂。

干燥剂两周一次在130℃烘干过夜。

3.9PH计:注意温控,用pH4.0、7.0和10.0缓冲液标化。

3.10移液管及套头:容量100μl和5ml。

3.11分配器或量筒:(1)15±0.5ml,供分配78%的乙醇,95%的乙醇以及丙酮。

膳食纤维测定原理

膳食纤维测定原理

膳食纤维测定原理
膳食纤维测定原理是通过测量食物样品中的不溶性和可溶性膳食纤维的含量来评估其膳食纤维含量的方法。

其基本原理如下:
1. 来自食物样品的膳食纤维可以通过一系列预处理步骤来提取和分离。

一般来说,样品首先需要被酶解,以将可溶性膳食纤维从样品中释放出来。

2. 提取过程通常使用不同溶剂(如乙醇、酸、酚等),并通过机械搅拌或超声波处理来增强提取效果。

这将有助于将纤维素和其他成分从样品基质中分离出来。

3. 提取得到的溶液通常需要进行进一步净化和浓缩。

这可以通过离心、过滤或其他净化方法来完成。

目的是去除杂质,使得最终测定结果更加准确。

4. 在提取和净化的过程中,测定膳食纤维的主要方法之一是使用重铬酸钠。

该方法基于重铬酸钠与纤维素形成不容易溶解的沉淀的反应。

此外,也可以使用其他糖类或酸碱滴定法来测定溶解性纤维素的含量。

5. 最终,根据测定所用方法的不同,可以得到食物样品中的不溶性和可溶性膳食纤维的含量。

通常以克/100克食物样品的形式来报告。

需要注意的是,膳食纤维测定原理是一个复杂的过程,需要严格的实验操作和仪器设备。

不同的测定方法可能会有一些细微
的差异,因此在进行膳食纤维含量测定时,应根据所采用的具体方法和标准来操作。

食品中膳食纤维的测定

食品中膳食纤维的测定

1.1.1.1.1.3食品安全国家标准食品中膳食纤维的测定(征求意见稿)发布实施中华人民共和国卫生部发布前言本标准代替《食品中膳食纤维的测定》。

本标准与相比,主要变化如下:——修改了方法适用范围;——增加了膳食纤维、总膳食纤维、不溶性膳食纤维、可溶性膳食纤维的术语和定义;——修改了试剂顺序和文字格式;——修改了总膳食纤维计算公式;——添加了当食品中含有低分子质量可溶性膳食纤维时总膳食纤维计算方法的注释;——将酶重量法作为第一法,中性洗涤剂法作为第二法。

食品安全国家标准食品中膳食纤维的测定1 范围本标准规定了食品中膳食纤维的测定方法。

本标准酶重量法适用于植物类食品及其制品中总的、可溶性和不溶性膳食纤维的测定;中性洗涤剂法适用于谷物原料中不溶性膳食纤维的测定。

本标准第一法为仲裁法。

2 术语和定义下列术语和定义适用于本标准。

2.1 膳食纤维指植物中天然存在的、提取或合成的、聚合度 的碳水化合物聚合物,不能被人体小肠消化吸收、对人体有健康意义,包括纤维素、半纤维素、木质素、果胶、菊粉及其他一些膳食纤维单体成分等。

2.2 可溶性膳食纤维指能溶于水的膳食纤维部分。

2.3 不溶性膳食纤维指不能溶于水的膳食纤维部分,包括木质素、纤维素、部分半纤维素等。

2.4 总膳食纤维可溶性膳食纤维与不溶性膳食纤维之和。

第一法总的、可溶性和不溶性膳食纤维的测定(酶重量法)3 原理干燥试样经热稳定α淀粉酶、蛋白酶和葡萄糖苷酶酶解消化去除蛋白质和淀粉后,酶解液经乙醇沉淀、过滤,残渣用乙醇和丙酮洗涤,干燥后称重,即为总膳食纤维残渣。

另取同样经酶解的酶解液直接过滤,用热水洗涤残渣,干燥后称重,即得不溶性膳食纤维残渣;滤液用倍体积的乙醇沉淀、过滤、干燥后称重,得可溶性膳食纤维残渣。

扣除残渣中相应的蛋白质、灰分和空白即可计算出试样中总的、不溶性和可溶性膳食纤维的含量。

采用酶重量法测定的总膳食纤维包括不溶性膳食纤维和能被乙醇沉淀的高分子质量可溶性膳食纤维,如纤维素、半纤维素、果胶、其它非淀粉多糖及木质素等;不包括低分子质量的可溶性膳食纤维,如抗性麦芽糊精、果寡糖、低聚半乳糖、多聚葡萄糖等,及部分被加热破坏的抗性淀粉。

膳食纤维含量实验报告(3篇)

膳食纤维含量实验报告(3篇)

第1篇一、实验目的本次实验旨在测定不同食物中膳食纤维的含量,了解膳食纤维在食物中的分布情况,以及其对人体健康的重要性。

通过实验,我们可以掌握膳食纤维的测定方法,并对富含膳食纤维的食物进行评估。

二、实验材料1. 食物样品:大米、小麦、玉米、燕麦、豆类、蔬菜、水果等。

2. 试剂与仪器:无水乙醇、丙酮、热稳定α-淀粉酶、蛋白酶、葡萄糖苷酶、电子天平、离心机、烘箱、烧杯、漏斗、滤纸等。

三、实验方法1. 样品处理:将各种食物样品分别研磨成粉末,过筛,以去除杂质。

2. 酶解:取一定量的样品粉末,加入适量的热稳定α-淀粉酶、蛋白酶和葡萄糖苷酶,在适宜的温度和pH条件下进行酶解反应。

3. 沉淀与抽滤:酶解后的溶液加入无水乙醇和丙酮,充分混合,静置沉淀,抽滤,得到膳食纤维残渣。

4. 洗涤与干燥:将残渣用无水乙醇和丙酮洗涤,干燥称量,得到总膳食纤维(TDF)含量。

5. 可溶性膳食纤维(SDF)测定:将酶解后的溶液直接抽滤,用热水洗涤残渣,干燥称量,得到不溶性膳食纤维(IDF)含量;滤液用无水乙醇沉淀,抽滤,干燥称量,得到SDF含量。

四、实验结果1. 大米:TDF含量为2.2%,SDF含量为0.6%。

2. 小麦:TDF含量为2.5%,SDF含量为0.8%。

3. 玉米:TDF含量为2.8%,SDF含量为0.9%。

4. 燕麦:TDF含量为5.3%,SDF含量为1.2%。

5. 豆类:TDF含量为6.5%,SDF含量为1.8%。

6. 蔬菜:TDF含量为3.2%,SDF含量为0.9%。

7. 水果:TDF含量为2.7%,SDF含量为0.8%。

五、实验讨论1. 从实验结果可以看出,不同食物中膳食纤维的含量差异较大。

豆类、蔬菜和燕麦的膳食纤维含量较高,适合作为高纤维食物的来源。

2. 燕麦的膳食纤维含量最高,其TDF含量是大米的2倍多,小麦的2倍。

这说明燕麦是一种非常优秀的膳食纤维来源。

3. 豆类、蔬菜和水果中的膳食纤维含量较高,可以促进肠道蠕动,增加粪便体积,有助于缓解便秘症状。

亚微米级小麦麸皮不溶性膳食纤维的研究(可编辑)

亚微米级小麦麸皮不溶性膳食纤维的研究(可编辑)

亚微米级小麦麸皮不溶性膳食纤维的研究江南大学硕士学位论文亚微米级小麦麸皮不溶性膳食纤维的研究姓名:黄晟申请学位级别:硕士专业:食品科学指导教师:周惠明20090701摘要亚微米级小麦麸皮不溶性膳食纤维的研究学科、专业:食品科学入学时间:.答辩时间:.硕士研究生姓名:黄晟指导教师:周惠明授予学位时间:.摘要本文通过粗粉碎、冷冻粉碎和高能纳米球磨粉碎制备了平均粒径为.的膳食纤维粉末,与文献报道的平均粒径为.的膳食纤维超微粉相比,产品的粒度有了很大程度的下降。

同时,产品在营养成分、理化性质、功能性质等方面都发生了改变。

主要研究内容如下:粉碎后,膳食纤维中检测到的蛋白质、脂肪、淀粉和灰分增加;膳食纤维成分重新分布,可溶性膳食纤维含量上升、不溶性膳食纤维含量下降。

粉碎未改变膳食纤维的晶体结构及分子结构。

由电镜观察发现粉碎后膳食纤维粒径分布在.之间,粉碎使膳食纤维的纤维基质损坏、多孔网状结构破坏。

粉碎使得物料的理化性质发生改变。

粉碎后膳食纤维粉体的持水力、保水力、膨胀力及持油力下降;其中不饱和脂肪酸吸附能力为./,下降.%,饱和脂肪酸吸附能力为./,下降.%;可溶解物质含量增加;粘度随着粒径的减小而减小,随着溶液浓度的增加而增加;颜色变浅,白度从.增加到.,增加了.%。

膳食纤维的功能性质同样由于粉碎处理而发生改变。

粉碎后膳食纤维对胆固醇吸附能力、重金属离子吸附能力、。

清除能力及阳离子交换能力下降;原料麸皮提取膳食纤维导致可提取酚含量下降.%,’自由基清除能力、还原力和螯合铁离子能力也下降。

纳米粉碎使可提取酚含量、还原力、螯合铁离子能力提高,清除。

能力降低,其中总酚含量从.提高到.没食子酸儋,提高了.%,还原力从.到.,螯合铁离子能力从.%到.%,而清除‘能力则从.%下降到.%。

.射线衍射显示粉碎并未改变膳食纤维的晶体结构,纤维晶区基本未受影响;傅立叶红外光谱结果显示粉碎没有改变膳食纤维的分子结构。

将纳米粉碎加工得到的膳食纤维添加到果汁饮料中,得到膳食纤维果汁,产品的口感、色泽、形貌均好于未粉碎、超微粉碎膳食纤维产品,在下保藏天未见沉淀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档