分子印迹技术及其研究进展
分子识别技术的研究及其应用

分子识别技术的研究及其应用在现实生活中,我们经常需要对各种不同的分子进行识别,例如检测污染物、确定药物分子与受体蛋白的互作等等。
为此,分子识别技术一直是化学研究的重要领域。
本文将介绍目前热门的分子识别技术——分子印迹技术和表面等离子共振(SPR)技术,并探讨它们的应用前景。
一、分子印迹技术1. 原理分子印迹技术是基于化学亲和作用的一种识别技术。
它通过在合适的条件下,将目标分子与功能单体共同反应形成固定相,再将目标分子从固定相中洗脱出来,留下能与目标分子高度亲和、有特定识别性的模板分子,在最后的分析中使用。
这种技术的核心在于“印迹”,即将目标分子与功能单体结合,形成一种高度特异的固定相。
此时,功能单体能够和目标分子发生非共价键作用,比如氢键、离子键、范德华力等等。
而对于其他分子,则几乎不能与功能单体发生这些非共价键作用。
在提取目标分子后,留下的模板分子可以重复识别目标分子。
2. 应用分子印迹技术主要应用于生物医药、环境监测、食品安全等领域。
例如:(1)分离分析:利用印迹技术可以实现对生物样品中特定分子的快速富集和分离,从而便于后续的分析。
(2)药物研究:印迹技术可以用来筛选与靶分子有高度亲和力的化合物,从而帮助药物研究中的药物设计和优化。
(3)环境监测:印迹技术可以对水、大气、土壤等环境样品中的污染物进行检测和分析。
二、表面等离子共振(SPR)技术1. 原理SPR技术是一种广泛应用于表面生物化学和生物医学研究的技术。
它是一种传感技术,通过检测光学信号,实时地测量生物分子之间相互作用的动态变化。
SPR技术的核心是金属薄膜表面上,被称为“感知芯片”的金属分子表面。
当感知芯片与物质相互作用时,物质在感知芯片表面的折射率会发生变化,导致入射光线的反射角发生变化。
利用特殊的光学仪器可以监测到这种变化,从而确定物质与感知芯片之间的相互作用情况。
2. 应用SPR技术主要应用于制药、免疫学、基因组学等领域。
例如:(1)药物筛选:SPR技术可以用来筛选药物分子和受体之间的相互作用,从而帮助制药厂家提高药物的研发效率。
分子印迹技术的研究进展

分子印迹技术的研究进展随着生物技术的不断发展,分子印迹技术作为生物医学领域的一种重要技术,其应用范围也越来越广泛。
分子印迹技术是一种新型的分子识别技术,其基本原理是以化学反应为手段,将所需的分子直接印在高分子材料上,从而使其获得分子识别功能。
本文将从分子印迹技术的定义、原理、分类、应用等方面对其研究进展进行探究。
一、分子印迹技术的定义与原理分子印迹技术(Molecular Imprinting Technology,MIT)是一种以高分子材料为主的制备方法,结合模板分子、功能单体及交联剂,通过化学交联反应的手段,制备具有目标分子选择性识别特性与固定能力的高分子材料。
分子印迹技术制备出的高分子材料成为分子印迹聚合物(Molecularly Imprinted Polymer,MIP),是一种具有分子识别特异性的功能材料,能够与目标分子发生特异性的反应,其分子识别机理主要基于模板分子与单体共价结合,使高分子材料具有特异性识别目标分子的功能。
二、分子印迹技术的分类根据制备方法和目标分子的性质,分子印迹技术可以分为两大类:非共价分子印迹技术和共价分子印迹技术。
非共价分子印迹技术主要包括自组装分子印迹技术和表面印迹技术,其制备过程主要基于模板分子与单体之间的物理吸附作用和范德华力的相互作用。
共价分子印迹技术则以共价键为主,主要包括常规共聚分子印迹技术、研磨共聚分子印迹技术和交联优化共聚分子印迹技术等。
常规共聚分子印迹技术是通过加入适当的功能单体和交联剂直接制备分子印迹体,而研磨共聚分子印迹技术是将模板分子和其他反应物一起研磨搅拌,并在一定条件下进行反应,使反应物进行共聚合,而交联优化共聚分子印迹技术则是在常规共聚分子印迹技术的基础上,加入交联优化剂,以优化高分子材料的交联度和合成条件,从而使分子印迹体性能得到进一步提高。
三、分子印迹技术的应用1、分子识别材料分子印迹技术的最主要应用是制备分子识别材料,其制备的分子识别材料可以用于化学传感器、生物传感器、分离科学、纯化和制备纯化药物等方面。
分子印迹技术的研究与应用

分子印迹技术的研究与应用分子印迹技术是近年来兴起的一种“专属分子识别技术”,该技术通过在特定的模板分子的作用下,使得单体在形成聚合物时可以选择性地结合到模板分子,从而制备出具有特异性的分子印迹聚合物。
分子印迹技术应用广泛,并已成为各种领域中不可或缺的分析手段,下面将介绍分子印迹技术的研究和应用进展。
1. 分子印迹技术的研究进展首先,探究分子印迹技术应用的基础——分子印迹聚合物的制备和性能。
分子印迹聚合物的制备是该技术的核心问题之一,它涉及到选择单体、功能单体和模板分子三个方面的问题。
近年来,研究者陆续开展了有关单体、功能单体和模板分子的选择和配比、聚合反应条件的优化等一系列方面的研究工作。
例如,功能单体的选择是影响聚合物性能的关键因素之一,研究人员经过多次实验验证,发现与自由基反应较缓慢的、含有双键官能团的单体与模板分子配比在1:2,丙烯酸为促进剂,可以获得良好的分子印迹聚合物。
此外,近期开展了很多新型功能单体的设计,如双馏分子(DLM)单体、离子液体(IL)功能单体等,其中的官能团与模板分子的作用力较大,可以进一步提高聚合物的分子识别性。
其次,关于分子印迹聚合物的性能表征也是近年来研究的重点之一。
常用的性能表征方法包括形貌表征、组成表征和性能表征等。
形貌表征方面,近年来已经发展出了各种表征手段,例如红外光谱、紫外光谱、荧光光谱、拉曼光谱等。
特别是近年来逐渐成熟的原子力显微镜(AFM)和透射电子显微镜(TEM),使得科学家们可以更清晰地观察到分子印迹聚合物的形貌结构。
组成表征方面,涉及到化学分析、热分析等方法,诸如元素分析、差示扫描量热分析(DSC)、热重分析(TGA)等,可以直接或间接地反映出分子印迹聚合物的组成和物理化学性质。
性能表征方面,包括对分子印迹和非分子印迹聚合物识别能力的比较、动态弥散光谱(DLS)和表面等电点(pHIEP)等的表征,以及对印迹聚合物特异性识别能力的表征。
2. 分子印迹技术在不同领域的应用2.1在生物领域的应用分子印迹技术具有良好的生物适应性和特异性,因此在生物领域的应用非常广泛。
蛋白质分子印迹聚合物的研究进展

蛋白质分子印迹聚合物的研究进展摘要:现阶段内所使用的最新型的分离技术就是分子印迹技术。
这其中对于蛋白质分子印迹聚合物的识别有着很大的价值贡献,这一项研究同时有着很强的挑战行。
越来越多的学者对于这方面加大了重视。
本文主要是在最近几年内该项目研究基础上进行分析,为以后发展做出简单阐述。
关键词:蛋白质印迹;分子印迹技术;分子识别1、分子印迹聚合物相关内容1.1分子印迹聚合物发展过程所谓的分析印迹聚合物指的是一种通过人工合成的分子识别能力的高分子材料。
这样技术所具备的最大的特点就是能够对于特定的分子实现预期性的选择。
在上世纪40年代,人们在研究免疫学的时候发现了分子印迹,诺贝尔学者对于合成抗体提出这样的理论依据:生物体释放出的物质和外来物质之间所产生的结合位置;所出现的结合位置和外来物质的空间是不是能够相匹配。
1.2 分子印迹聚合物的特点分子印迹聚合物具有其独特的优势,主要表现在以下方面:(1)结构刚性,能有效定位印迹孔穴的构型和互补官能团;(2)空间结构具有柔韧的特点,能完美保证实现动力学;(3)容易接近亲和位点,保证知识分子的识别;(4)机械稳固顽强,即便在重力高压的状态也能实现分子印迹聚合物;(5)热稳定、高温适用的特点。
在所有产品聚合物的家族中,分子印迹聚合物越来越受到青睐,总体说来是由于其显著特性:(1)构效预定性(predetermination)。
在自组装结构过程中,模板分子进行聚合形成,功能单体也是如此,人们会根据自身的目的需要进行压制不同的分子印迹聚合物。
(2)特异识别性(specific recognition)。
印迹分子有其特定的位点,并能利用识别功能实现印迹分子的定做。
(3)广泛实用性(practicability)。
印迹分子聚合物和抗原、抗体、激素、受体进行对比,可以发现其通过化学合成后,能有效抵御恶劣的天气环境,保证非常稳定的状态,寿命时间也比较长。
另一方面,印迹分子聚合物还能辨别一些含剧毒的化合物,而且可循环使用、花费成本低,没有蛋白质分子识别系统的高昂代价。
分子印迹技术在药学研究中应用进展

分子印迹技术在药学研究中应用进展分子印迹技术(Molecular Imprinting Technique,MIT)又称分子烙印技术,是旨在获得在空间结构和结合位点上与印迹分子完全匹配的聚合物的试验制备技术。
传统分子印迹聚合物存在模板分子去除难、印迹位点少和传质速度慢等缺点,在很多方面的应用受到了限制。
改进MIPs的合成方法,使更多印迹位点位于或接近于聚合物的表面,提高印迹效率、使模板分子更易洗脱,成为了科研工的讨论热点,在药学讨论中也得到了广泛地应用。
1 分子印迹技术基本原理MIT的原理如图1所示,通常选择合理的功能单体与模板分子形成复合物,加入适当的交联剂、致孔剂和引发剂,在肯定的条件下(如低温光照或加热)引发聚合反应,最终再用如萃取或经酸水解的方法将分子模板去除。
?得到在三维空间上与模板分子完全匹配并对其有很好选择性的空穴,从而可以在肯定的基质中将模板分子富集。
2 分子印迹方法的分类2.1 依据模板分子与功能单体形成复合物时的作用方式,可以分为预组织法、自组装法。
预组织法是模板分子与功能单体通过可逆共价键相?Y合,而自组装法则是通过非共价键相互作用制备相应的分子印迹聚合物。
两种方法对比结果如表1所示:2.2 依据聚合方法的不同分类,制备MIPs主要有本体聚合法、沉淀聚合法、原位聚合法、悬浮聚合法、多步溶胀法和表面印迹法等,见表2。
3 分子印迹技术的应用近年来,MIT在固相萃取、色谱分别分析、抗体模拟、催化模拟、仿生传感器等方面得到了更加广泛的应用,且应用讨论的领域也在不断扩大,如表3所示。
国内外关于分子印迹在药学讨论中的报道也有许多,如对自然产物中有效成分的分别纯化,分子印迹技术应用实例如表4所示。
4 展望随着分子印迹技术讨论的不断深化和应用领域的不断拓展,分子印迹技术在实际应用方面还有待加强。
结合功能材料作为载体制备表面分子印迹聚合物并将其用于药学讨论中,对自然药物中有效成分的分别讨论具有重要意义和宽阔的实际应用前景。
分子印迹材料的合成及其应用研究

分子印迹材料的合成及其应用研究分子印迹技术是一种基于分子识别原理的高分子材料制备方法。
该技术通过将目标分子与功能单体共聚合成高分子材料,形成一种具有空腔结构的高分子分子印迹材料,能够高度选择性地吸附、分离、检测目标分子。
该技术在生物医药、分析化学、环境监测、食品卫生等方面具有广泛的应用前景。
本文将重点探讨分子印迹材料的合成及其应用研究。
一、分子印迹材料的合成方法分子印迹材料制备方法具有多种方式,其中最具代表性的是热聚合法。
其步骤如下:1.选择功能单体选取具有与目标分子适配的基团的单体,如适配黄酮类化合物的甲基丙烯酸 4-羟基苯甲酯(4-HOPMA)。
2.选择交联剂为保证高分子的力学稳定性,常用交联剂进行交联,常用交联剂如乙二醇二甲基丙烯酸酯(EGDMA)等。
3.形成嵌模复合物将目标分子和功能单体共存于反应混合物中,在一定时间内形成嵌模复合物,该步骤是分子印迹材料制备的关键步骤。
4.形成空腔结构在嵌模复合物中引入交联剂,形成高分子空腔结构。
此时,由于目标分子与功能单体形成相互作用,所以空腔结构体积与目标分子形状相似。
5.除去模板分子使用相应的溶剂除去已形成的分子印迹材料中模板分子。
二、分子印迹材料的应用研究分子印迹技术在医药分析、食品检测、环境污染物检测等领域中是逐渐得到广泛应用的。
1.生物医药领域分子印迹技术在生物医药领域的应用主要体现在分析药物代谢产物、寻找药物靶点、生物诊断等方面。
例如,一项研究中,通过使用PDE4B分子印迹材料实现对PDE4B抑制剂的高效分离和识别。
2.食品卫生领域分子印迹技术在食品卫生领域主要用于食品污染物的检测和食品中添加物的分离。
一项研究中,研制出了橙色三甲氧基硅烷(o-TMOS)共聚合制备的六个农药残留物的分子印迹材料,可实现对污染农产品的高效分离。
3.环境监测领域分子印迹技术在环境监测领域的应用主要包括对水、大气等污染物的检测与处理。
例如,一项研究中,对环境中的离子污染物实现了高效-selective 的去除,利用界面分子印迹技术,通过自组装的方法制备了具有空腔结构的磁性分子印迹材料。
分子印迹技术的研究进展及其在分离中的应用

2 分 子 印迹 技 术在 分 离 中的 应 用
近年 来 , 因为 特有 的 “ 定 ” 择 性 , 子 印 迹 预 选 分 技术在分离方面 , 尤其是在手性分离方面, 已显示出
美好的应 用前 景。 目前 , Is M P 主要 被用在 固相 萃 取、 色谱、 膜分离及高效 毛细血管 电泳 等分离技术 中 , 示 出 良好 的应 用前 景 引。 显 。
性、 识别 性和实用性的优点 ,已广泛应用于分离技术 中 , 示 出良好 的应用前 景 , 显 引起 了人们 的广 泛关注 。介绍 了分子 印迹技术 的产生 、 理及其 在分离技术方面 的应用 , 原 并对其进行 了展望 。 关键词 : 分子印迹技术 ; 原理 ; 分离 ; 应用
中 图分 类号 : 6 8 Q 5 文 献 标 识 码 : A 文 章 编 号 :04 7 5 (0 10 .00 0 10 —0 0 2 1 )40 3 .3
引 言
人 们研 究分 子 印迹 技 术 ( 即分 子 烙 印 技 术 , o m. 1clrm r t gtcnl y M T 的历 史 由来 已久 , eua p ni hoo , I ) i i n e g 可 以追 溯 到 上 个 世 纪 。 14 90年 , 贝 尔 奖 获 得 者 诺
第3 1卷第 4期
21 0 1年 8月
山
西
化
工
V0 . No 4 131 .
Au g.2011
S HANⅪ C HEMI AL I C NDU T S RY
::: ‘ :::::: -一 : ・ ・ - : :: 一 : : :
: ::: :: 癌※: : - : :一 - :::: : 避 簿 : - : :
分子印迹技术在药物筛选中的应用研究

分子印迹技术在药物筛选中的应用研究在当今的药物研发领域,寻找高效、特异性强的药物筛选方法一直是科学家们不懈追求的目标。
分子印迹技术作为一种新兴的技术手段,正逐渐展现出其在药物筛选方面的巨大潜力。
分子印迹技术,简单来说,就是为特定的目标分子“量身定制”具有特异性识别能力的聚合物材料的技术。
它的原理类似于制造一把钥匙配一把锁,通过在模板分子存在的情况下进行聚合反应,形成具有与模板分子形状、大小和功能基团互补的结合位点的聚合物。
当模板分子被去除后,这些结合位点就能够特异性地识别和结合与模板分子结构相似的分子。
在药物筛选中,分子印迹技术具有诸多优势。
首先,它能够提供高度特异性的识别能力。
与传统的筛选方法相比,分子印迹聚合物对目标药物分子的识别具有更高的选择性,能够有效地排除干扰物质,从而提高筛选的准确性。
其次,分子印迹聚合物具有良好的稳定性和可重复性。
它们可以在不同的实验条件下多次使用,并且保持其识别性能不变,这大大降低了筛选的成本和时间。
此外,分子印迹技术还可以实现对复杂混合物中目标药物分子的快速分离和富集,为后续的分析检测提供了便利。
在实际的药物筛选应用中,分子印迹技术有着广泛的用途。
例如,在药物活性成分的筛选方面,通过制备针对特定药物靶点的分子印迹聚合物,可以从大量的化合物库中快速筛选出具有潜在活性的药物分子。
这不仅提高了筛选的效率,还减少了盲目筛选所带来的资源浪费。
另外,在药物杂质的检测中,分子印迹技术也发挥着重要作用。
利用针对杂质分子的印迹聚合物,可以实现对药物中微量杂质的高灵敏检测,确保药物的质量和安全性。
为了更好地将分子印迹技术应用于药物筛选,研究人员在不断探索和改进相关的技术方法。
在分子印迹聚合物的制备方面,优化聚合反应条件、选择合适的功能单体和交联剂等,以提高聚合物的性能。
同时,结合先进的分析检测技术,如高效液相色谱、质谱等,实现对药物分子的快速、准确检测。
此外,利用计算机模拟技术对分子印迹过程进行预测和优化,也为提高分子印迹技术的效率和准确性提供了新的途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子印迹技术及其研究进展Malikullidin iz kaldurux tehnikisi wa uning tarakkiyati分子印迹技术近年来分子印迹学作为一门新兴的科学门类得到巨大的发展。
分子印迹技术是一种模拟抗体- 抗原相互作用的人工生物模板技术。
它可为人们提供具有期望结构和性质的分子组合体,因此,分子印迹技术已成为当今化学研究领域的热点课题之一。
分子印迹的出现源于免疫学,早在20世纪40年代由诺贝尔奖获得者Pauling 根据抗体与抗原相互作用时空穴匹配的“锁匙”现象,提出了以抗原为模板来合成抗体的理论。
直到1972年德国科学家Wulff [18]研究小组首次成功制备出分子印迹聚合物,使这方面的研究得到了飞速的发展。
1993年Mosbach[19]研究小组在美国《自然杂志》(《Nature》)上发表有关分子印迹聚合物的报道,更加速了分子印迹在生物传感器[20-24]、人工抗体模拟[25]及色谱固定相[26-30]分离等方面的发展,并由此使其成为化学和生物学交叉的新兴领域之一,得到了世界注目并迅速发展。
分子印迹技术的应用研究所涉及的领域非常广泛,包括环境、医药、食品、军事等。
1.分子印迹技术的基本原理及特点分子印迹聚合物是具有特定功能基团以及孔穴大小和形状的新型高分子材料。
是具有高度交联的结构,稳定性好,能够在高温、高压、有机溶剂以及耐酸碱的分子识别材料。
它的制备是通过以下方法实现的:首先用功能单体(functional monomer)(funkissial tana)和模板分子(template)(izi kaldurlidigan malikulla)以共价键或非共价键形成复合物,再加入适当的交联剂(cross-linker)(tutaxturguqi)和引发剂在加热、紫外光或其它射线照射的条件下聚合, 从而使模板分子在空间固定下来;最后通过一定的方法把模板分子洗脱,将模板分子从聚合物中除去, 这样就在聚合物中留下一个与模板分子在空间结构上完全匹配,并含有与模板分子结合的功能基的三维空穴(simtirik kawakqa)。
这个三维空穴可以重新专一的,高选择的再和模板分子结合,从而使该聚合物对模板分子具有专一的识别功能。
分子印迹技术具有以下特性:预定性,可根据不同目的制备相应的分子印迹聚合物;识别性, 分子印迹技术是依据模板定做的,它具有与模板分子的立体结构和官能团相符的孔穴,所以选择性地识别模板分子;实用性,它可以与天然的生物识别系统如酶与底物、抗原与抗体等相媲美,具有抗恶劣环境、稳定性高和使用寿命长等优点。
分子印迹技术由于具有亲合性和选择性高、抗干扰性强和稳定性好、使用寿命长、应用范围广等特点,因此,在色谱分离(hirmotografiyelik ayrix)、固相萃取(mukim fazilik ikistirakitlax)、仿生传感(taklidxunaslik)、模拟酶催化、临床药物分析、吸附、膜分离等领域,得到日益广泛的研究和开发[31-37]。
此外,分子印迹技术对于研究酶的结构、认识受体一抗体作用机理以及在分析化学等方面也具有重要的理论意义和实用价值分子印迹技术受到了人们越来越多的关注,其研究和应用获得了迅猛发展。
近年来,国内外对分子印迹技术的应用已有很多文章。
2. 分子印迹聚合物的制备方法在分子印迹聚合物的制备过程中所需要的化学药品包括:能与模板分子形成复合物的功能单体,交联剂,致孔剂(溶剂),引发剂,冲洗模板分子用的溶剂。
2.1 模板分子合成分子印迹聚合物时,模板分子与功能单体在聚合前需形成复合物,复合物(murakkap birikma)必须足够稳定才可在聚合过程中形成大量特异性识别位点。
2.2 功能单体单体的选择主要由印迹分子决定,而且对分子印迹聚合物的识别性能影响很大。
功能单体首先必须能与印迹分子以共价键或非共价键(氢键、静电作用力、金属螯合作金属螯合作用力用力、分子间作用力、基团之间作用力以及疏水作用等) 形成复合物,而且键合空穴要稳定,在反应中与交联剂处于合适的位置,交联度要适当才能使印迹分子恰好镶嵌其中。
因此,功能单体的性质、用量、交联度等对印迹聚合物的识别性能产生很大影响。
分子印迹聚合物根据模板分子与功能单体在聚合过程中相互间作用力类型的不同,可分为共价型和非共价型[38]。
常用的功能单体有:非共价性的单体主要有丙烯酰胺、丙烯酸、甲基丙烯酸(MAA)、三氟甲基丙烯酸(TFMAA),其它的还有甲基丙烯酸甲酯、甲基丙烯酸丁酯、甲基丙烯酸异辛酯、丙烯酞胺及N-(4-乙烯苄基)亚氨基二乙酸铜(II)等。
2.3 交联剂交联剂的作用是使模板分子和功能单体形成高度交联、刚性的聚合物,固化单体功能基团在模板分子周围的特定位置。
选择功能单体的前提条件是:要求在聚合时能够保证体系中所有组分包括单体,交联剂,单体和模板等所形成的非共价印迹保持完好不变。
交联剂的选择中,在有机溶剂中进行分子印迹聚合物试验,乙二醇二甲基丙烯酸酯(EDMA)以及二乙烯基苯(DVB)是最常用的交联剂。
除此之外,三丙烯酸季戊四醇酯(PETRA)、三甲醇基丙烷三甲基丙烯酸酯(TRIM)等。
而在水相中常用的典型交联及是N,N’-亚甲基双丙烯酰胺。
目前用最为广泛的是EDMA。
2.4 溶剂(致孔剂)溶剂应该能够溶解聚合反应中所需的各种试剂。
除此之外溶剂还有一个非常重要的作用,即为印迹整体柱提供多孔结构。
溶剂的选择对聚合过程中分子印迹聚合物的均一性和非共价作用影响很大[39],对分子识别能力也有影响:极性大的溶剂可与模板分子竞争单体的功能基团,降低了特异性识别位点的形成;不同溶剂的溶解性质不同,影响网状结构的形态、识别位点处功能基团的定位及位点的可达到性。
致孔剂的作用是使聚合物具有孔状结构,便于待测物进入识别位点。
目前常用的致孔剂有:甲苯、乙腈、氯仿、环己醇、1,4-丁二醇、正十二醇等。
2.5 引发方式和引发剂分子印迹聚合物的合成主要采用自由基聚合的方法,而引发方式常用的有热引发和光引发两种方式。
热引发聚合常在45℃~60℃或更高的温度下进行。
光引发聚合是在室温或低温时,UV 照射下进行。
低温可以增强模板分子—单体复合物的稳定性,合成的分子印迹聚合物特异性识别能力较强[40],但当模板分子有强烈紫外吸收或光降解时,热引发方式是必要的:并且光引发方式在聚合过程中对温度不易控制。
目前常用的自由基引发剂有偶氮二异丁腈(AIBN)。
2.6 共价印迹法和非共价印迹法根据功能单体和模板分子之间形成的加成物性质,存在着两种形式的分子印迹法,即共价印迹法和非共价印迹法。
共价印迹法共价型分子印迹聚合物最初是由Wullf及其合作者[41]提出,聚合前模板分子通过可逆性共价键与功能单体结合,然后与交联剂在一定条件下聚合,聚合完成以后再通过化学方法使共价键断裂以除去模板分子。
该方法又称为预组织法或预组装法(preorganization approach)。
目前,这种方法主要适用于包括一些糖类及其衍生物、甘油酸及其衍生物、氨基酸及其衍生物等化合物的印迹。
优点:单体模板所形成的配合物十分稳定,而且相互之间存在着计量关系。
由于配合物的稳定性可在高温,较宽酸度范围,高极性溶剂中进行聚合。
然而,一方面,共价作用结合和解离的过程进行缓慢,对色谱分离不适用;由于找到易于解离和再结合的共价键比较困难,共价型分子印迹聚合物有很大的局限性。
非共价印迹法为使功能单体和模板分子相结合,通过非共价的相互作用(如氢键静电相互作用以及配位键的形成等)也可加以实现。
Mosbach及其合作者[42]首次将非共价型分子印迹聚合物引入分子印迹技术。
聚合前模板分子通过氢键、静电作用力及疏水作用等与功能基体结合形成超分子复合物。
关于这种类型分子印迹聚合物的制备和应用报道很多,包括一些染料、二胺类、维生素、氨基酸及其衍生物、多肤等。
制备非共价型分子印迹聚合物对模板分子和功能基体限制较少,模板分子容易除去,而且选择性好。
近年来,非共价法己经成为分子印迹聚合物材料的主要使用方法,该方法也称为自组装法(self-assembly approach)。
优点:这种方法制备步骤简单,模板分子易于除去,其识别过程也更接近于天然的分子识别系统,不必合成共价的单体-模板配合物。
由于单体-模板之间存在着较弱的非共价相互作用力,可在温和条件下将模板从聚合物中除去。
然而,由于单体-模板加成物易于变化,无严格的计量关系,因此印迹过程的轮廓不够清晰。
3.制备方法分子印迹聚合物的种类繁多,对于不同的模板分子选用的功能单体、交联剂、溶剂、引发方式和制备步骤也不相同。
目前MIP的合成方法有本体聚合法(bulk polymerization)、多步溶胀法(multi-step swelling and polymerization)、悬浮聚合法(suspension polymerization)、沉淀聚合法(precipitation polymerization)、表面印迹法和原位聚合法(in situ polymerization)等。
分子印迹聚合物的研究普遍采用本体聚合的方法,即将印迹分子、功能单体、交联剂和引发剂按一定比例溶解在惰性溶剂(通常是氯仿或甲苯)中,然后移入一玻璃安培瓶中,采用超声脱气,通氮气除氧,在真空下密封安培瓶,经热引发(60℃)或紫外光照射(在室温下波长通常为366nm)引发聚合24h(得到块状聚合物,再经粉碎、研磨和筛分,得到适当大小的粒子,洗脱除去印迹分子,经真空干燥后即成。
此方法制备的MIPs 具有满意的“记忆功能”对印迹分子有良好的选择性和识别特性,而且合成操作条件易于控制,实验装置简单,便于普及。
但此方法的缺点是,需要经过研磨、筛选得到适合装填色谱柱的颗粒,费时并造成浪费较多。
而且由于聚合物颗粒的尺寸和形状不均匀等原因,影响柱效和分离效果。
而悬浮聚合法往往需要加入水作为分散剂,不适合水溶性的印迹分子的印迹合成。
目前分子印迹整体柱利用原位聚合在色谱柱内形成完整连续的固定相柱床,它结合了分子印迹技术的预定识别选择性和整体柱制备简单、多孔性好、可以进行高速、高效分离的优点,受到了研究者的关注[43-46]。
我们课题组以不同的药物为模板分子,合成了分子印迹聚合物,合成结果来看,合成条件的选择对于分子印迹聚合物的选择性及柱效起着非常重要的作用[47-49]。
其中模板-单体比例,交联剂-单体比例,单体总量与致孔剂比例,聚合温度等在提高分子印迹整体柱选择性的研究中,有两个关键问题:一是聚合物中是否形成了能特异识别模板分子的位点;二是分析过程中的模板分子能否接近这些位点,并与之产生特异性识别。
后者与孔结构有关。
而前者与分子印迹聚合物的形成过程及分子识别过程密切相关,很多学者对此进行了深入研究前。