平面几何基础知识教程(圆)
241圆的标准方程(基础知识+基本题型)(含解析)2022高二数学(选择性必修第一册)

2.4.1圆的标准方程(基础知识+基本题型)知识点一 确定圆的几何要素确定一个圆的最基本的要素是圆心和半径,当圆心位置与半径大小确定后,圆就唯一确定了.从集合的角度理解圆(1)圆的定义在平面内,到定点的距离等于定长的点的集合,定点叫做圆心,定长叫做半径.(2)确定一个圆的条件在平面直角坐标系中,圆心为(,)A a b ,半径长为(0)r r >的圆上的点M 的集合就是集合{|||}P M MA r ==.知识点二 圆的标准方程1.圆的标准方程的推导如图所示,设圆上任意一点(,)M x y ,圆心A 的坐标为(,)a b ,由||MA r =r =,等式两边平方得222()()x a y b r -+-=.①若点(,)M x y 在圆上,易知点M 的坐标满足方程①;反之,若点(,)M x y 的坐标适合方程①,则点M 在圆上,我们把方程222()()x a y b r -+-=称为圆心为(,)A a b ,半径长为(0)r r >的圆的标准方程.确定圆的标准方程的条件(1)圆的标准方程中有三个参数a ,b ,r ,其中实数对(,)a b 是圆心的坐标,能确定圆的位置;正数r 表示圆的半径,能确定圆的大小.(2)已知圆的圆心坐标和圆的半径,即可写出圆的标准方程,反之,已知圆的标准方程,即可写出圆的圆心坐标和圆的半径.2.几种常见的特殊位置的圆的方程1.圆的标准方程的推导圆的标准方程为222()()x a y b r-+-=,圆心为(,)A a b,半径长为r.设所给点为00(,)M x y,则点M与圆的位置关系及判断方法如下:(系来判断.(2)判断点与圆的位置关系时,还可将点的坐标代入圆的标准方程的左边,与半径的平方比较大小.考点一:圆的标准方程例1.求满足下列条件的各圆的方程:(1)圆心在原点,半径是3;(2)已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上;(3)经过点()5,1P ,圆心在点()8,3C -.【思路点拨】一般情况下,如果已知圆心或易于求出圆心,可用圆的标准方程来求解,用待定系数法,求出圆心坐标和半径.【答案】(1)229x y +=(2)22(2)10x y -+=(3)()()228325x y -++= 【解析】(1)229x y +=(2)线段AB 的中垂线方程为240x y --=,与x 轴的交点(2,0)即为圆心C 的坐标,所以半径为||CB =,所以圆C 的方程为22(2)10x y -+=.(3)解法一:∵圆的半径||5r CP ===,圆心在点()8,3C - ∴圆的方程是()()228325x y -++=解法二:∵圆心在点()8,3C -,故设圆的方程为()()22283x y r -++= 又∵点()5,1P 在圆上,∴()()2225813r -++=,∴225r = ∴所求圆的方程是()()228325x y -++=.例2 已知圆过两点(3,1)A ,(1,3)B -,且它的圆心在直线320x y --=上,求此圆的标准方程.解:方法1:设所求圆的标准方程为222()()x a y b r -+-=.依题意,有222222(3)(1)(1)(3)320a b r a b r a b ⎧-+-=⎪--+-=⎨⎪--=⎩,即22222262102610320a b a b r a b a b r a b ⎧+--=-⎪++-=-⎨⎪--=⎩,解得22410a b r ⎧=⎪=⎨⎪=⎩.故所求圆的标准方程为22(2)(4)10x y -+-=.方法2:直线AB 的斜率311132k -==---, 所以线段AB 的垂直平分线m 的斜率为2.线段AB 的中点的横坐标和纵坐标分别为3112x -==,1322y +==. 因此直线m 的方程为22(1)y x -=-即20x y -=.又因为圆心在直线320x y --=上,所以圆心是这两条直线的交点.联立方程,得20320x y x y -=⎧⎨--=⎩,解得24x y =⎧⎨=⎩.设圆心为C ,所以圆心坐标为(2,4),又因为半径长||r CA ==所以所求圆的标准方程为22(2)(4)10x y -+-=.方法3:设圆心为C .因为圆心C 在直线320x y --=上,所以可设圆心C 的坐标为(,32)a a -.又因为||||CA CB =2a =.所以圆心为(2,4),半径长||r CA ==.故所求圆的标准方程为22(2)(4)10x y -+-=.【总结升华】确定圆的方程的主要方法是待定系数法,即列出关于a 、b 、r 的方程组,求a 、b 、r 或直接求出圆心(a ,b )和半径r ,一般步骤为:(1)根据题意,设所求的圆的标准方程为(x ―a)2+(y ―b)2=r 2;(2)根据已知条件,建立关于a 、b 、r 的方程组;(3)解方程组,求出a 、b 、r 的值,并把它们代入所设的方程中去,就得到所求圆的方程.考点二:点与圆的位置关系例3.判断点M (6,9),N (3,3),Q (5,3)与圆(x ―5)2+(y ―6)2=10的位置关系.【答案】M 在圆上 N 在圆外 Q 在圆内【解析】 ∵圆的方程为(x ―5)2+(y ―6)2=10,分别将M (6,9),N (3,3),Q (5,3)代入得(6―5)2+(9―6)2=10,∴M 在圆上;(3―5)2+(3―6)2=13>10,∴N 在圆外;(5―5)2+(3―6)2=9<10,∴Q 在圆内.【总结升华】点与圆的位置关系,从形的角度来看,设圆心为O ,半径为r ,则点P 在圆内⇔|PQ|<r ;点P 在圆上⇔|PQ|=r ;点P 在圆外⇔|PO|>r .从数的角度来看,设圆的标准方程为(x ―a)2+(y ―b)2=r 2,圆心为A (a ,b ),半径为r ,则点M (x 0,y 0)在圆上⇔(x 0―a)2+(y 0―b)2=r 2;点M (x 0,y 0)在圆外⇔(x 0―a)2+(y 0―b)2>r 2;点M (x 0,y 0)在圆内⇔(x 0―a)2+(y 0―b)2<r 2.例4 已知点(1,2)A 在圆C :222()()2x a y a a -++=的内部,求实数a 的取值范围. 解:因为点A 在圆的内部,所以222(1)(2)2a a a -++<.所以250a +<,52a <-.所以a 的取值范围是5|2a a ⎧⎫<-⎨⎬⎩⎭. 总结:利用已知点与圆的位置关系确定圆中的参数的值或取值范围时,可直接将点的坐标代入圆的标准方程,依据点与圆的位置关系,得出方程或不等式,求解即可.例5 已知两点1(3,8)P 和2(5,4)P ,求以线段12P P 为直径的圆的标准方程,并判断点(5,3)M ,(3,4)N ,(3,5)P 是在圆上、在圆内、还是在圆外.解:设圆心(,)C a b ,半径长为r .因为点C 为线段12P P 的中点,所以3542a +==,8462b +==,即圆心坐标为(4,6)C .又由两点间的距离公式,得1||r CP =所求圆的标准方程为22(4)(6)5x y -+-=.分别计算点M ,N ,P 到圆心C 的距离:||CM =>||CN =,||CP =所以点点M 在此圆外,点N 在此圆上,点P 在此圆内.。
苏科版九年级上册圆知识点精讲

苏科版九年级上册圆知识点精讲圆是几何学中最基础的概念之一,不仅在数学中有着广泛的应用,而且在生活中也随处可见。
今天我们就来精讲苏科版九年级上册关于圆的知识点,深入了解圆的性质和相关定理。
1. 圆的定义圆是由在同一平面内离该平面一定距离的所有点组成的集合。
其中,距离被定义为圆心到圆上任意点的距离,称为半径。
2. 圆的性质(1) 圆心:圆心是圆上任意两点间的线段的中点,用字母O表示。
(2) 半径:半径是从圆心到圆上任意一点的线段,用字母r表示。
(3) 直径:直径是通过圆心且在圆上的线段,直径的长度是半径的两倍,用字母d表示。
(4) 弦:弦是圆上两点之间的线段。
(5) 弧:弧是圆上的一段弯曲部分。
(6) 弧长:弧长是弧的长度,在计算时用字母L表示。
(7) 圆周:围绕圆形的线段,它的长度用字母C表示。
3. 圆的相关定理(1) 圆的半径相等性质:在同一圆中,任意两条半径相等。
(2) 弧对应角相等定理:在同一圆中,对应于同一弧的两个交角相等。
(3) 弧的度数:一个弧所对应的圆心角的度数等于这个扇形所占的整个圆所对应的度数。
(4) 弧长公式:弧长L等于弧所对应的圆心角的度数除以360度再乘以圆的周长C。
(5) 弦切定理:如果一条切线与一条弦相交,那么它的切点到圆心的线段是弦的中垂线。
(6) 切线与半径的垂直性:当半径和切线相交时,相交点处的半径垂直于切线。
通过对这些圆的性质和相关定理的理解,我们可以在解决几何问题时灵活运用,进一步推导和分析。
同时,这也为我们理解更高级的几何知识打下了基础。
4. 应用示例(1) 例题一:已知圆的半径是3cm,求圆的面积。
解答:圆的面积公式为A = πr²,其中r是半径。
代入已知条件,即可求得圆的面积为A = 3.14×(3)² = 28.26cm²。
(2) 例题二:已知圆的周长是10π,求圆的半径。
解答:圆的周长公式为C = 2πr,其中r是半径。
高中 平面解析几何直线与圆、圆与圆的位置关系 知识点+例题

辅导讲义――直线和圆、圆与圆的位置关系圆的切线方程设法:(1)过圆222r y x =+上一点),(00y x P 的圆的切线方程为200r y y x x =+.(2)过圆222)()(r b y a x =-+-上一点),(00y x P 的圆的切线方程为200))(())((r b y b y a x a x =--+--. (3)过圆222r y x =+外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200r y y x x =+.(4)过圆222)()(r b y a x =-+-外一点),(00y x P 作圆的两条切线,则两切点所在直线方程为200))(())((r b y b y a x a x =--+--.[例]经过点M (2,-1)作圆522=+y x 的切线,则切线方程为_________________. 2x-y-5=0[巩固] 过点P (3,1)作曲线C :0222=-+x y x 的两条切线,切点分别为A ,B ,则直线AB 的方程为____________. 2x+y-3=01.若两圆的半径分别为r 1,r 2,两圆的圆心距为d ,则两圆的位置关系的判断方法如下:位置 关系 外离外切相交内切内含图示d 与r 1,r 2 的关系d >r 1+r 2 d =r 1+r 2 |r 1-r 2|< d < r 1+r 2d =|r 1-r 2|d <|r 1-r 2|两圆的公共点个数0个 1个 2个 1个 0个2.两圆的共切线:(1)当两圆内含时,没有公切线; (2)当两圆内切时有一条公切线; (3)当两圆相交时,有两条外公切线;知识模块4圆与圆的位置关系 精典例题透析知识模块3切线及弦所在直线的方程设法∴切线方程为2x +y ±52=0; ③∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.[巩固] (2013·江苏)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使|MA |=2|MO |,求圆心C 的横坐标a 的取值范围. (1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2), 于是切线的斜率必存在.设过A (0,3)的圆C 的切线方程为y =kx +3, 由题意,得|3k +1|k 2+1=1,解得k =0或-34,故所求切线方程为y =3或3x +4y -12=0.(2)因为圆心在直线y =2x -4上,所以圆C 的方程为 (x -a )2+[y -2(a -2)]2=1.设点M (x ,y ),因为|MA |=2|MO |,所以x 2+(y -3)2=2 x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4,所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点,则|2-1|≤|CD |≤2+1, 即1≤a 2+(2a -3)2≤3. 由5a 2-12a +8≥0,得a ∈R ; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125.题型三:直线与圆相交的问题[例]已知直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为8,求k 的值.设直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为AB ,其中点为C ,则△OCB 为直角三角形.因为圆的半径为|OB |=5,半弦长为|AB |2=|BC |=4,所以圆心到直线kx -y +6=0的距离为3,由点到直线的距离公式得6k 2+1=3,解之得k =±3.[巩固] 求直线x -3y +23=0被圆x 2+y 2=4截得的弦长.如图,设直线x -3y +23=0与圆x 2+y 2=4交于A ,B 两点,弦AB 的中点为M ,则OM ⊥AB (O 为坐标原点),所以OM =|0-0+23|12+(-3)2=3,所以AB =2AM =2OA 2-OM 2=222-(3)2=2.圆x 2+(y -3)2=4的圆心为点(0,3),又因为直线l 与直线x +y +1=0垂直,所以直线l 的斜率k =1.由点斜式得直线l :y -3=x -0,化简得x -y +3=0.3.若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,则ab 的最大值为___________. 圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R ).化为:(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1,∵圆C 1:x 2+y 2-2ax +a 2-9=0 (a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0 (b ∈R )内切,∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2013·山东)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为____________.解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2, ∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.已知直线y =kx +b 与圆O :x 2+y 2=1相交于A ,B 两点,当b =1+k 2时,OA →·OB →等于___________.设A (x 1,y 1),B (x 2,y 2),将y =kx +b 代入x 2+y 2=1得(1+k 2)x 2+2kbx +b 2-1=0,故x 1+x 2=-2kb 1+k 2,x 1x 2=b 2-11+k 2, 从而·=x 1x 2+y 1y 2=(1+k 2)x 1x 2+kb (x 1+x 2)+b 2=b 2-1-2k 2b 21+k 2+b 2=2b 21+k 2-1=1. 6.若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是______________.由y =3-4x -x 2,得(x -2)2+(y -3)2=4(1≤y ≤3).∴曲线y =3-4x -x 2是半圆,如图中实线所示.当直线y =x +b 与圆相切时,|2-3+b |2=2.∴b =1±2 2. 由图可知b =1-2 2.∴b 的取值范围是[]1-22,3.7.(2014·上海)已知曲线C :x =-4-y 2,直线l :x =6,若对于点A (m,0),存在C 上的点P 和l 上的Q 使得AP →+AO→=0,则m 的取值范围为________.曲线C :x =-4-y 2,是以原点为圆心,2为半径的圆,并且x P ∈[-2,0],对于点A (m,0),存在C 上的点P 和l 上的Q 使得+=0,(1)求矩形ABCD 的外接圆的方程;(2)已知直线l :(1-2k )x +(1+k )y -5+4k =0(k ∈R ),求证:直线l 与矩形ABCD 的外接圆恒相交,并求出相交的弦长最短时的直线l 的方程.(1)∵l AB :x -3y -6=0且AD ⊥AB ,点(-1,1)在边AD 所在的直线上,∴AD 所在直线的方程是y -1=-3(x +1),即3x +y +2=0.由⎩⎪⎨⎪⎧x -3y -6=0,3x +y +2=0,得A (0,-2). ∴|AP |=4+4=22, ∴矩形ABCD 的外接圆的方程是(x -2)2+y 2=8.(2)直线l 的方程可化为k (-2x +y +4)+x +y -5=0,l 可看作是过直线-2x +y +4=0和x +y -5=0的交点(3,2)的直线系,即l 恒过定点Q (3,2),由(3-2)2+22=5<8知点Q 在圆P 内,∴l 与圆P 恒相交.设l 与圆P 的交点为M ,N ,则|MN |=28-d 2(d 为P 到l 的距离),设PQ 与l 的夹角为θ,则d =|PQ |·sin θ=5sin θ,当θ=90°时,d 最大,|MN |最短.此时l 的斜率为PQ 的斜率的负倒数,即-12, 故l 的方程为y -2=-12(x -3),即x +2y -7=0.11.若直线l :y =kx +1 (k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是_________. 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交. 12.设曲线C 的方程为(x -2)2+(y +1)2=9,直线l 的方程为x -3y +2=0,则曲线上的点到直线l 的距离为71010的点的个数为____________.B解析 由(x -2)2+(y +1)2=9,得圆心坐标为(2,-1),半径r =3,圆心到直线l 的距离d =|2+3+2|1+(-3)2=710=71010. 能力提升训练要使曲线上的点到直线l 的距离为71010, 此时对应的点在直径上,故有两个点.13.(2013·江西)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于____________.∵S △AOB =12|OA ||OB |sin ∠AOB =12sin ∠AOB ≤12. 当∠AOB =π2时, △AOB 面积最大.此时O 到AB 的距离d =22. 设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33). 14.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2,即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 15.(2014·重庆)已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2,所以(|a +a -2|a 2+1)2+12=22,解得a =4±15.。
九年级数学平面几何过三点的圆和垂径定理人教四年制知识精讲

九年级数学平面几何过三点的圆和垂径定理人教四年制【同步教育信息】一. 本周教学内容:平面几何过三点的圆和垂径定理二. 学习要求:(过三点的圆)1. 定理:不在同一直线上的三个点确定一个圆:它的意思是如果有三个点,它们三点不共线,那么经过这三个点可以作一个圆并且只可以做一个圆。
2. 三角形的外接圆,外心以及圆的内接三角形:经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫三角形的外心,这个三角形叫做这个圆的内接三角形,如图:A、(二)学习要点:1. 圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2. 垂径定理:垂直于弦的直径平分这条弦且平分这条弦所对的两条弧。
如图:CD 是直径,AB 是弦,AB CD ⊥于E ,则有:AE=EB ,⋂⋂=DB AD ,⋂⋂=CB AC 。
理由是:因为圆是轴对称图形,CD 是直径是圆的对称轴,若延CD 将圆对折,则CD⋂⋂⋂⋂【典型例题】[例1] 如图,已知直径AB 和CD 相交于点E ,︒=∠==60,5,1BED cm BE cm AE ,求:OA B CD证:依题意:OC=OD ,OA=OB∴OD OBOC OA =且夹角O ∠∴OAB ∆∽OCD ∆ ∴ABCD OA OC =∴CD OA AB OC ⋅=⋅ [例3] ABC ∆中,︒=∠90C 直角边a 、b 分别是方程0132=+-x x 的两个根,求ABC Rt ∆外接圆面积。
解:∵a 、b 是0132=+-x x 两个根∴1,3==+ab b a72132)(22222=⨯-=-+==+ab b a c b a∴7=c ,而ABC Rt ∆外接圆半径=27 ∴ππ47)27(2=⋅=圆S [例4] 已知四边形ABCD 中,︒=∠=∠90D B ,求证ABCD 有外接圆。
ADBCO证:连AC ,取AC 中点O在ABC Rt ∆和ADC Rt ∆中,连OB 、OD 则OC AO AC OD OB ====21∴A 、B 、C 、D 在以O 为圆心,以OA 为半径的圆上[例5] 如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,延长DC 与BA 的延长线交于P ,且PC=OB ,︒=∠99BOD ,求P ∠的度数。
平面几何知识点总结大全

平面几何知识点总结大全一、基本图形。
1. 点。
- 点是平面几何中最基本的元素,没有大小、长度、宽度或厚度。
它通常用一个大写字母表示,如点A。
2. 线。
- 直线。
- 直线没有端点,可以向两端无限延伸。
直线可以用直线上的两个点表示,如直线AB;也可以用一个小写字母表示,如直线l。
- 经过两点有且只有一条直线(两点确定一条直线)。
- 射线。
- 射线有一个端点,它可以向一端无限延伸。
射线用表示端点的字母和射线上另一点的字母表示,端点字母写在前面,如射线OA。
- 线段。
- 线段有两个端点,有确定的长度。
线段用表示两个端点的字母表示,如线段AB;也可以用一个小写字母表示,如线段a。
- 两点之间,线段最短。
3. 角。
- 由公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
角通常用三个大写字母表示(顶点字母写在中间),如∠AOB;也可以用一个大写字母表示(这个大写字母表示顶点,且以这个顶点为顶点的角只有一个时),如∠ O;还可以用一个数字或希腊字母表示,如∠1、∠α。
- 角的度量单位是度、分、秒,1^∘=60',1' = 60''。
- 角的分类:- 锐角:大于0^∘而小于90^∘的角。
- 直角:等于90^∘的角。
- 钝角:大于90^∘而小于180^∘的角。
- 平角:等于180^∘的角。
- 周角:等于360^∘的角。
二、相交线与平行线。
1. 相交线。
- 对顶角。
- 两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角。
对顶角相等。
- 邻补角。
- 两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角互补,即和为180^∘。
- 垂直。
- 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
- 在同一平面内,过一点有且只有一条直线与已知直线垂直。
新教材高中数学第2章平面解析几何圆的一般方程课件新人教B版选择性必修第一册

(2)由圆的一般方程判断点与圆的位置关系
已知点 M(x0,y0)和圆的方程 x2+y2+Dx+Ey+F=0(D2+E2-4F>0).则 其位置关系如下表:
位置关系
代数关系
点 M 在圆 06 _外__ 点 M 在圆 07 _上__ 点 M 在圆 08 _内__
x20+y20+Dx0+Ey0+F>0 x20+y20+Dx0+Ey0+F=0 x20+y20+Dx0+Ey0+F<0
89+8D+5E+F=0, 由题意知73+3D+8E+F=0,
9+3E+F=0,
D=-8, 解得E=-8,
解
(3)两边同除以 2,得
x2+y2+ax-ay=0,D=a,E=-a,F=0,
∴D2+E2-4F=2a2>0,
∴方程(3)表示圆,它的圆心为-a2,a2,
半径 r=12
D2+E2-4F=
2 2 |a|.
解
题型二 求圆的一般方程
例 2 已知 Rt△ABC 的顶点 A(8,5),直角顶点为 B(3,8),顶点 C 在 y 轴 上,求:
半径长.
[跟踪训练 1] 下列方程各表示什么图形?若表示圆,求出其圆心和半 径.
(1)x2+y2+x+1=0; (2)x2+y2+2ax+a2=0(a≠0);(3)2x2+2y2+2ax-2ay=0(a≠0).
解 (1)∵D=1,E=0,F=1, ∴D2+E2-4F=1-4=-3<0, ∴方程(1)不表示任何图形. (2)∵D=2a,E=0,F=a2, ∴D2+E2-4F=4a2-4a2=0, ∴方程(2)表示点(-a,0).
判断二元二次方程 Ax2+Bxy+Cy2+Dx+Ey+F=0 表示圆要“两看”: 一看方程是否具备圆的一般方程的特征:①A=C≠0;②B=0; 二看它能否表示圆.此时判断 D2+E2-4AF 是否大于 0;或直接配方变 形,判断等号右边是否为大于零的常数.
高中数学平面几何中的圆的切线与圆心角解析

高中数学平面几何中的圆的切线与圆心角解析在高中数学的平面几何中,圆的切线与圆心角是一个重要的考点。
本文将从解析的角度出发,详细介绍圆的切线和圆心角的相关概念、性质以及解题技巧,并通过具体的题目进行举例,帮助高中学生或他们的父母更好地理解和应用这一知识点。
一、圆的切线圆的切线是指与圆相切且只有一个交点的直线。
在解题时,我们常常需要确定切点、切线的斜率以及切线方程等。
例题一:已知圆C的方程为x^2 + y^2 = 4,点A(1, 1)在圆上,求过点A的切线方程。
解析:首先,我们可以将圆C的方程改写为y = √(4 - x^2)或y = -√(4 - x^2),这样我们可以得到点A的纵坐标为√3或-√3。
由于切线与圆相切,因此切线过点A,切线的斜率等于圆在点A处的切线斜率。
根据导数的定义,我们可以求得圆C的方程关于x的导数为dy/dx = -x/√(4 - x^2)。
将点A的坐标代入导数表达式,可得到切线斜率k = -1/√3。
由于切线过点A,我们可以得到切线方程为y - 1 = (-1/√3)(x - 1),即√3y + x -√3 - 1 = 0或-√3y + x + √3 - 1 = 0。
通过以上步骤,我们成功求得过点A的切线方程。
二、圆心角圆心角是指圆心所对的弧所对应的角。
在解题时,我们常常需要利用圆心角的性质来求解未知角度或弧长。
例题二:已知圆C的半径为r,圆心角为α,求弧AB的长度。
解析:根据圆心角的定义,我们知道圆心角α所对的弧AB的长度等于圆周长的α/360倍。
而圆周长为2πr,因此弧AB的长度为2πr * α/360。
通过以上步骤,我们成功求得弧AB的长度。
综上所述,圆的切线与圆心角是高中数学平面几何中的重要内容。
解析的角度可以帮助我们更深入地理解这一知识点,并通过具体的题目进行举例,帮助高中学生或他们的父母掌握解题技巧。
在解题过程中,我们需要注意确定切点、切线的斜率以及切线方程等,同时利用圆心角的性质来求解未知角度或弧长。
平面解析几何(圆的方程)

平面解析几何——圆的方程圆的定义与方程【知识拓展】1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤为 (1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a ,b ,r 或D 、E 、F 的方程组; (3)解出a 、b 、r 或D 、E 、F 代入标准方程或一般方程. 2.点与圆的位置关系 点和圆的位置关系有三种.圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0) (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)确定圆的几何要素是圆心与半径.( √ )(2)已知点A (x 1,y 1),B (x 2,y 2),则以AB 为直径的圆的方程是(x -x 1)(x-x 2)+(y -y 1)(y -y 2)=0.( √ ) (3)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( √ ) (4)方程x 2+2ax +y 2=0一定表示圆.( × )(5)若点M (x 0,y 0)在圆x 2+y 2+Dx +Ey +F =0外,则x 20+y 20+Dx 0+Ey 0+F >0.( √ )1.(教材改编)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0答案 C解析 圆心是(1,2),所以将圆心坐标代入检验选项C 满足.2.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .4 答案 B解析 根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m . 因为∠APB =90°,连接OP , 易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离. 因为|OC |=32+42=5, 所以|OP |max =|OC |+r =6, 即m 的最大值为6.3.(2015·北京)圆心为(1,1)且过原点的圆的方程是( ) A .(x -1)2+(y -1)2=1 B .(x +1)2+(y +1)2=1 C .(x +1)2+(y +1)2=2 D .(x -1)2+(y -1)2=2 答案 D解析 圆的半径r =12+12=2,∴圆的方程为(x -1)2+(y -1)2=2.4.(教材改编)圆C 的圆心在x 轴上,并且过点A (-1,1)和B (1,3),则圆C 的方程为______________. 答案 (x -2)2+y 2=10 解析 设圆心坐标为C (a,0), ∵点A (-1,1)和B (1,3)在圆C 上, ∴|CA |=|CB |,即(a +1)2+1=(a -1)2+9, 解得a =2, ∴圆心为C (2,0),∴圆C 的方程为(x -2)2+y 2=10.5.(2016·浙江)已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆.题型一 求圆的方程例1 (1)(2016·天津)已知圆C 的圆心在x 轴的正半轴上,点M (0,5)在圆C 上,且圆心到直线2x -y =0的距离为455,则圆C 的方程为________________.(2)(2015·课标全国Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.答案 (1)(x -2)2+y 2=9 (2)⎝⎛⎭⎫x -322+y 2=254解析 (1)因为圆C 的圆心在x 轴的正半轴上,设C (a,0),且a >0, 所以圆心到直线2x -y =0的距离d =2a 5=455,解得a =2,所以圆C 的半径r =|CM |=4+5=3, 所以圆C 的方程为(x -2)2+y 2=9.(2)由题意知圆过(4,0),(0,2),(0,-2)三点, (4,0),(0,-2)两点的垂直平分线方程为 y +1=-2(x -2),令y =0,解得x =32,圆心为⎝⎛⎭⎫32,0,半径为52. 思维升华 (1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D 、E 、F 的方程组,进而求出D 、E 、F 的值.(2016·湖北八校联考)已知圆C 关于y 轴对称,经过点A (1,0),且被x 轴分成两段弧,弧长之比为1∶2,则圆C 的标准方程为________________. 答案 x 2+(y ±33)2=43解析 ∵圆C 关于y 轴对称,∴可设C (0,b ),设圆C 的半径为r ,则圆C 的标准方程为x 2+(y -b )2=r 2, 依题意,得⎩⎪⎨⎪⎧12+(-b )2=r 2,|b |=12r ,解得⎩⎨⎧r 2=43,b =±33,于是圆C 的标准方程为x 2+(y ±33)2=43. 题型二 与圆有关的最值问题例2 已知点(x ,y )在圆(x -2)2+(y +3)2=1上.求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1,解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,yx 的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k=-2+233或k =-2-233.∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1, 2)的距离的最值,可转化为圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34, ∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a 型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离平方的最值问题.已知实数x ,y 满足方程x 2+y 2-4x +1=0.求:(1)yx 的最大值和最小值; (2)y -x 的最小值;(3)x 2+y 2的最大值和最小值.解 (1)如图,方程x 2+y 2-4x +1=0表示以点(2,0)为圆心,以3为半径的圆.设yx =k ,即y =kx ,则圆心(2,0)到直线y =kx 的距离为半径,即直线与圆相切时,斜率取得最大值、最小值. 由|2k -0|k 2+1=3,解得k 2=3,∴k max =3,k min =- 3. (2)设y -x =b ,则y =x +b ,当且仅当直线y =x +b 与圆切于第四象限时,在y 轴上的截距b 取最小值, 由点到直线的距离公式,得|2-0+b |2=3, 即b =-2±6, 故(y -x )min =-2- 6.(3)x 2+y 2是圆上的点与原点的距离的平方,故连接OC , 与圆交于B 点,并延长交圆于C ′,则 (x 2+y 2)max =|OC ′|2=(2+3)2=7+43, (x 2+y 2)min =|OB |2=(2-3)2=7-4 3. 题型三 与圆有关的轨迹问题例3 (2017·潍坊调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中, |PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.(2016·天津模拟)设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM 、ON 为两边作平行四边形MONP ,求点P 的轨迹.解 如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为⎝⎛⎭⎫x 2,y 2,线段MN 的中点坐标为⎝⎛⎭⎫x 0-32,y 0+42.由于平行四边形的对角线互相平分,故x 2=x 0-32,y 2=y 0+42.从而⎩⎪⎨⎪⎧x 0=x +3,y 0=y -4. 又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4. 因此所求轨迹为圆:(x +3)2+(y -4)2=4,但应除去两点⎝⎛⎭⎫-95,125和⎝⎛⎭⎫-215,285(点P 在直线OM 上的情况).21.利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程. 思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题. 规范解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0). 故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+(t -1)2=3, 所以圆C 的方程为(x -3)2+(y -1)2=9.1.(2016·南昌检测)圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0 D .x 2+y 2-10x =0答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r ,则32+(r -1)2=r 2, 解得r =5,可得圆的方程为x 2+y 2-10y =0.2.(2016·昆明一模)方程|x |-1=1-(y -1)2所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆 D .两个半圆答案 D解析 由题意得⎩⎪⎨⎪⎧(|x |-1)2+(y -1)2=1,|x |-1≥0,即⎩⎪⎨⎪⎧ (x -1)2+(y -1)2=1,x ≥1,或⎩⎪⎨⎪⎧(x +1)2+(y -1)2=1,x ≤-1.故原方程表示两个半圆.3.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2b 的最小值为( )A .1B .5C .4 2D .3+22 答案 D解析 由题意知圆心C (2,1)在直线ax +2by -2=0上,∴2a +2b -2=0,整理得a +b =1, ∴1a +2b =(1a +2b )(a +b )=3+b a +2ab≥3+2 b a ×2ab=3+22, 当且仅当b a =2ab ,即b =2-2,a =2-1时,等号成立.∴1a +2b的最小值为3+2 2. 4.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4 D .(x +2)2+(y -1)2=1 答案 A解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧ 2x =x 0+42y =y 0-2⇒⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2, 代入x 20+y 20=4中得(x -2)2+(y +1)2=1.5.(2016·绵阳诊断)圆C 的圆心在y 轴正半轴上,且与x 轴相切,被双曲线x 2-y 23=1的渐近线截得的弦长为3,则圆C 的方程为( ) A .x 2+(y -1)2=1 B .x 2+(y -3)2=3 C .x 2+(y +1)2=1 D .x 2+(y +3)2=3答案 A解析 依题意得,题中的双曲线的一条渐近线的斜率为3,倾斜角为60°,结合图形(图略)可知,所求的圆C 的圆心坐标是(0,1)、半径是1,因此其方程是x 2+(y -1)2=1.6.(2016·九江模拟)已知P 是直线l :3x -4y +11=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线(A ,B 是切点),C 是圆心,那么四边形P ACB 的面积的最小值是( ) A. 2 B .2 2 C. 3 D .23 答案 C解析 圆的方程可化为(x -1)2+(y -1)2=1, 则C (1,1),当|PC |最小时,四边形P ACB 的面积最小, |PC |min =|3-4+11|32+42=2,此时|P A |=|PB |= 3.所以四边形P ACB 的面积S =2×12×3×1=3,故选C.7.(2016·南昌模拟)若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________. 答案 (x -2)2+(y +32)2=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |, 解之得m =-32.所以圆C 的方程为(x -2)2+(y +32)2=254.8.过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为______________. 答案 x +y -2=0解析 当圆心与点P 的连线和过点P 的直线垂直时,符合条件.圆心O 与点P 连线的斜率k =1, 所求直线方程为y -1=-(x -1),即x +y -2=0.9.已知D 是由不等式组⎩⎪⎨⎪⎧x -2y ≥0,x +3y ≥0所确定的平面区域,则圆x 2+y 2=4在区域D 内的弧长为________.答案 π2解析 作出可行域D 及圆x 2+y 2=4,如图所示,图中阴影部分所在圆心角θ=α-β所对的弧长即为所求. 易知图中两直线的斜率分别为12、-13,得tan α=12,tan β=-13,tan θ=tan(α-β)=12+131-12×13=1,得θ=π4,得弧长l =θ·R =π4×2=π2(R 为圆的半径).10.(2016·岳阳模拟)在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________. 答案7+1解析 设D (x ,y ),由CD →=(x -3,y )及|CD →|=1知(x -3)2+y 2=1,即动点D 的轨迹为以点C 为圆心的单位圆,又OA →+OB →+OD →=(-1,0)+(0,3)+(x ,y )=(x -1,y +3),∴|OA →+OB →+OD →|=(x -1)2+(y +3)2.问题转化为圆(x -3)2+y 2=1上的点与点P (1,-3)间距离的最大值. ∵圆心C (3,0)与点P (1,-3)之间的距离为(3-1)2+(0+3)2=7, 故(x -1)2+(y +3)2的最大值为7+1.11.已知圆C 经过P (4,-2),Q (-1,3)两点,且在y 轴上截得的线段的长为43,半径小于5. (1)求直线PQ 与圆C 的方程;(2)若直线l ∥PQ ,且l 与圆C 交于点A ,B ,且以线段AB 为直径的圆经过坐标原点,求直线l 的方程. 解 (1)由题意知直线PQ 的方程为x +y -2=0. 设圆心C (a ,b ),半径为r ,由于线段PQ 的垂直平分线的方程是y -12=x -32,即y =x -1,所以b =a -1.①由圆C 在y 轴上截得的线段的长为43, 知r 2=12+a 2,可得(a +1)2+(b -3)2=12+a 2,② 由①②得a =1,b =0或a =5,b =4. 当a =1,b =0时,r 2=13,满足题意, 当a =5,b =4时,r 2=37,不满足题意. 故圆C 的方程为(x -1)2+y 2=13. (2)设直线l 的方程为y =-x +m (m ≠2), A (x 1,m -x 1),B (x 2,m -x 2). 由题意可知OA ⊥OB ,即OA →·OB →=0, ∴x 1x 2+(m -x 1)(m -x 2)=0, 化简得2x 1x 2-m (x 1+x 2)+m 2=0.③由⎩⎪⎨⎪⎧y =-x +m ,(x -1)2+y 2=13得 2x 2-2(m +1)x +m 2-12=0, ∴x 1+x 2=m +1,x 1x 2=m 2-122,代入③,得m 2-12-m ·(1+m )+m 2=0, ∴m =4或m =-3,经检验都满足题意, ∴直线l 的方程为x +y -4=0或x +y +3=0.12.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3. (1)求圆心P 的轨迹方程; (2)若P 点到直线y =x 的距离为22,求圆P 的方程.解 (1)设P (x ,y ),圆P 的半径为r . 则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴P 点的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3. ∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3. ∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3. *13.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值. 解 (1)由圆C :x 2+y 2-4x -14y +45=0, 可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2. 又|QC |=(2+2)2+(7-3)2=4 2. 所以|MQ |max =42+22=62, |MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k . 由直线MQ 与圆C 有交点, 所以|2k -7+2k +3|1+k 2≤22, 可得2-3≤k ≤2+3,n-3所以m+2的最大值为2+3,最小值为2- 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何基础知识教程(圆)一、几个重要定义外心:三角形三边中垂线恰好交于一点,此点称为外心内心:三角形三内角平分线恰好交于一点,此点称为内心垂心:三角形三边上的高所在直线恰好交于一点,此点称为垂心凸四边形:四边形的所有对角线都在四边形ABCD内部的四边形称为凸四边形折四边形:有一双对边相交的四边形叫做折四边形(如下图)(折四边形)二、圆内重要定理:1.四点共圆定义:若四边形ABCD的四点同时共于一圆上,则称A,B,C,D四点共圆基本性质:若凸四边形ABCD是圆内接四边形,则其对角互补证明:略判定方法:1.定义法:若存在一点O使OA=OB=OC=OD,则A,B,C,D四点共圆2.定理1:若凸四边形ABCD的对角互补,则此凸四边形ABCD有一外接圆证明:略特别地,当凸四边形ABCD中有一双对角都是90度时,此四边形有一外接圆3.视角定理:若折四边形ABCD中,∠=∠ADB ACB,则A,B,C,D四点共圆证明:如上图,连CD ,AB ,设AC 与BD 交于点P因为∠=∠ADB ACB ,所以180=∠=∠∠=∠∠+∠=∠+∠+∠=∠+∠+∠=ΔCPB ∽ΔDPA所以有再注意到因此Δ∽Δ因此由此(ΔABD 的内角和)因此A ,B,C,D四点共圆PC PB PD PACPD BPA CPD BPAPCD PBABCD BAD BCA PCD BAD BDA PBA BAD特别地,当∠=∠ADB ACB =90时,四边形ABCD 有一外接圆2.圆幂定理:圆幂定理是圆的相交弦定理、切割线定理、割线定理、切线长定理的统一形式。
相交弦定理:P 是圆内任一点,过P 作圆的两弦AB ,CD ,则PA PB PC PD ∙=∙证明:∠=∠∠=∠=∙=∙连,,则(等弧对等圆周角)而(对顶角相等)因此ΔAPC ∽ΔDPB即,因此AC BD CAB CDB APC DPB PA PC PA PB PC PD PD PB(切)割线定理:P 是圆外任意一点,过P 任作圆的两割(切)线PAB ,PCD ,则PA PB PC PD ∙=∙证明方法与相交弦定理完全一样,可仿前。
特别地,当C ,D 两点重合成为一点C’时,割线PCD 变成为切线PC’而由割线定理,2'PA PB PC PD PC ∙=∙=,此时割线定理成为切割线定理而当B ,A 两点亦重合为一点A’时,由切割线定理22''PC PA PB PA =∙=因此有PC’=PA’,此时切割线定理成为切线长定理现考虑割线与切线同时存在的情况,即切割线定理的情况:如图,PCD是圆的割线,PE是圆的切线设圆心为O,连PO,OE,则由切割线定理有:2∙=而注意到黄色Δ是RTΔ,由勾股定理有:PC PD PE222=-,结合切割线定理,我们得到PE PO OE222∙==-,这个结果表明,如果圆心O与P是确定的,那么PC PD PE PO OEPC与PD之积也是唯一确定的。
以上是P在圆外的讨论现在再重新考虑P在圆内的情形,如下图,PCD是圆内的现,PAB是以P为中点的弦则由相交弦定理有2(因为P是弦A B中点)=PCPA PB PA PD∙=∙连OP,OA,由垂径定理,ΔOPA是RTΔ由勾股定理有222=-,结合相交弦定理,便得到PA OA OP222PA PB PA PD OA OP ∙=∙=-(因为P 是弦A B 中点)=PC这个结果同样表明,当O 与P 是固定的时候PC 与PD 之积是定值以上是P 在圆内的讨论当P 在圆上时,过P 任作一弦交圆于A (即弦AP ),此时220PO OA -=也是定值综上,我们可以把相交弦定理,切割线定理,割线定理,切线长定理统一起来,得到圆幂定理。
圆幂定理:P 是圆O 所在平面上任意一点(可以在圆内,圆上,圆外),过点P 任作一直线交圆O 于A ,B 两点(A ,B 两点可以重合,也可以之一和P 重合),圆O 半径为r则我们有:22||PA PB PO r ∙=-由上面我们可以看到,当P 点在圆内的时候,220PO r -<,此时圆幂定理为相交弦定理当P 在圆上的时候,220PO r -=当P 在圆外的时候,220PO r ->此时圆幂定理为切割线定理,割线定理,或切线长定理以下有很重要的概念和定理:根轴先来定义幂的概念:从一点A 作一圆周上的任一割线,从A 起到和圆周相交为止的两线段之积,称为点对于这圆周的幂对于已知两圆有等幂的点的轨迹,是一条垂直于连心线的直线。
根轴的定义:两圆等幂点的轨迹是一条直线,这条直线称为两圆的根轴性质1 若两圆相交,其根轴就是公共弦所在直线由于两圆交点对于两圆的幂都是0,所以它们位于根轴上,而根轴是直线,所以根轴是两交点的连线性质2 若两圆相切,其根轴就是过两圆切点的公切线(即性质1的极限情况)性质3 若三圆两两不同心,则其两两的根轴交于一点,或互相平行所交的这点称为根心证明:若三圆心共线,则两两圆的根轴均垂直于连心线,因此此时两两的根轴互相平行若三圆心不共线,则必成一三角形,因此两两的根轴必垂直于两两的连心线。
如图,设CD与EF交于点O,连AO交圆分O2圆O3于B’,B’’,则∙=∙=∙=∙其中前两式是点O对圆O2的幂,后二式是OA OB OE OF OC OD OA OB'''点O对圆O3的幂,中间是圆O对圆O1的幂进行转化由此B’与B’’重合,事实上它们就是点B(圆O2与圆O3的非A的交点),由此两两的根轴共点圆幂定理是对于圆适用的定理,今使用圆幂定理对圆内接四边形判定方法的补充:圆内接四边形判定方法4.相交弦定理逆定理:如果四边形ABCD 的对角线AC ,BD 交于点P ,且满足 PA PC PB PD ∙=∙,则四边形ABCD 有一外接圆5.切割线定理逆定理:如果凸四边形ABCD 一双对边AB 与DC 交于点P 且满足PA PC PB PD ∙=∙,则四边形ABCD 有一外接圆这样我们就补充了两种判定方法例(射影定理):RTΔABC 中,BC 是斜边,AD 是斜边上的高则222(1)(2)(3)AD BD CDAB BD BCAC CD BC =∙=∙=∙证明:(1)2'180''AD BAC BA C A B C A AD DA AD BD CD ≅∠+∠=∙==∙如图,延长至A ',使A D =D A ',连A 'B ,A 'C则ΔA B C ΔA 'B C ,因此因此,,,四点共圆由相交弦定理有:(2)(3)2(2)(3)⊥=∙同理,现证(3)作RT ΔADB 的外接圆,则RT ΔADB 的外接圆圆心为E其中E 是AB 的中点则EA AC ,因此AC 是圆ABD 的切线由切割线定理有CA CD CB例2:垂心ΔABC 中,三边所在的高的所在的直线交于一点证明:9018018018090⊥∠=∠=∠=-∠-∠=-∠-∠=-∠-∠=∠∠=设与CF交于H ,连AH 延长交BC 于D即证AD BC因为,因此,,E,C四点共圆同理A ,F,H,E四点共圆所以因此,,,四点共圆由此BE BEC BFC B F BHD AHF BHF AEF EHCB A CH D E C HDC3.Miquel 定理之前1,2的重要定理都是讨论关于点共圆的情况。
那么反过来,圆共点的情况从最简单的开始了解,在本文之后讨论圆共点问题中,甚至其他类型的问题,Miquel定理都给予莫大的便利,我们将要不止一次地用到它。
先看一个事实:如图,ΔABC中,AD,BE,CF分别是三边上的高,则分别以AEF,BDF,CDE作圆这三个圆共于一点,而且可以通过观察,这个点就是垂心刚好是AD,BE,CF的交点在介绍Miquel定理之后,我们将会给这题与垂心一个阐释Miquel定理:ΔABC中,X,Y,Z分别是直线AB,BC,AC上的点,则,,共于一点AXZ BXY CYZ O这样的点O称为X,Y,Z对于ΔABC的Miquel点180180180∠=-∠==-∠=∠∠+∠=如图,设与交于,连OX ,,即问题转化为证,,,四点共圆因为,,O,Z与B,X,Y,O 为两组四点圆则即因此,,,四点共圆AXZ BXY O OY OZO Z Y C A X AZO AXO BXO BYO OYCOZC OYC O Z Y C事实上这个证明隐含着对一般证圆共点的方法在发掘Miquel 定理的证明方法时可以得到一种更一般的证题方法注意这个证明只在X ,Y ,Z 在AB ,BC ,AC 边上时可以当在直线AB ,BC ,AC 上时需要改一下,这里略去了。
现在回到之前关于垂心的问题。
为什么D ,E ,F 关于ΔABC 的Miquel 点就是ΔABC 的垂心证明:如图,,,是Δ的三条高,垂心为H ,则,,,,,,,,,共三组四点共圆由此可见,,共于一点而H 就是垂心AD BE CF ABC A E F HB D F HC D E HAEF BDF CDE H有了Miquel 定理,我们可以对垂心有一个新的看法90∠=∠=是与的根轴对,同理而因此BDF 与CDE的连心线平行于BC (中位线定理)因此HD 垂直于BC HE ,HF同理因此垂心可以被认为是这三圆的根轴的交点(根轴性质3)HD BDF CDE HE HF ADB ADC用同样的方法可以对内心,外心以同样的解释:由此可见,共点圆与三角形的特殊点有很大的关系,上述3种只是最简单的最容易发现的提起外心就会联想到外接圆,这里不得不提一个常用定理:正弦定理 正弦定理:ΔABC 中,外接圆半径R ,则2sin sin sin BC AC ABR A B C=== 证明:作直径AOD ,连BD902sin sin ∠=∠=∠===∠则,因此在Δ中ABD ADB ACB Rt ABD AB ABAD RADB C其余同理想到三角函数里面的函数名,那么自然会想到余弦定理 余弦定理:2222222222cos 2cos 2cos =+-=+-=+-Δ中AB=c,AC=b,BC=a ABC a b c bc A b a c ac B c b a ab C证明:222222222222222222cos cos cos (cos )(cos )cos 2cos cos 2cos =∙==-=--=---=---+=-=+-作边上的高AD因此即c 即其余同理BC CD AC C b C BD BC CD a b C AB BD AC CD a b C b b C c a b C ab C b b C c a b ab C接着便就是著名的费马点,它也与共点圆有关系费马点,即ΔABC 内一点,使其到三顶点距离之和最小的点当ΔABC 任一内角都<120时,费马点存在于内部,当Δ有一内角>=120时费马点与此角顶点重合设ΔABC中任一内角均<120,则费马点F可以通过如下方法作出来:分别以AB,AC,BC向外作正Δ,连接对着的顶点,则得事实上,点F是这3个正Δ的外接圆所共的点而FA+FB+FC其实就是顶点到对着的正Δ顶点的连线的长而且之后将会有一种方法计算FA+FB+FC的长度而这将会在之后进行讨论4.Simson定理Simson定理是常用而且著名的定理,多用于证明点共线,其逆定理也成立Simson 定理:P 是ΔABC 外接圆上一点,过点P 作PD 垂直BC ,PE 垂直于AB ,同理PF则D ,E ,F 是共线的三点直线DEF 称为点P 关于ΔABC 的Simson 线引理(完全四边形的Miquel 定理):四条直线两两交于A ,B ,C ,D ,E ,F 六点 则ABF BCE CDF DAE ,,,共点先从Δ对,,三点运用密克定理,则,,共点Δ对,,三点运用密克定理,则,,共点因此,,,共点ABF E C D BCE CDF DAE DAE B C F ABF BCE CDF ABF BCE CDF DAE其中所共的点叫做完全四边形的Miquel 点 证明:这里运用Miquel 定理作为证明Miquel Miquel ∠=∠设垂直,垂直,延长交于则问题等价于证明垂直连四边形是完全四边形所以由完全四边形的定理(引理),,,共点注意到所以,,D,E四点共圆所以与交于点和B因此完全四边形FACDBE的点非P 则B 而A ,E,B是同一直线上三点因此A ,E,F,B不可能共圆因此P 是完全四PD BC PE AB DE CA F PF AC PFAFCDBE ABC BDE AEF CDF PEB PDB P B ABC BDE P Miquel ∠边形FACDBE的点由此P ,E,F,A四点共圆则PFA=90今逆定理证略从这个证明我们看到Miquel 定理的威力不仅在于圆共点,而且对于共点圆也同样适用在有了Simson 定理之后,我们可以运用Simson 定理来给予完全四边形的Miquel定理一个新的证明(即前面的引理)证明:设与非的一个交点为M ,过M 作MP 垂直BE ,MQ垂直EC ,其余同理。