第八章 核酸的化学结构
核酸的化学结构范文

核酸的化学结构范文核酸是生物体内的重要分子,主要包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
它们在维持生物遗传信息传递、蛋白质合成等生物过程中起着关键的作用。
核酸的化学结构非常复杂,包括碱基、糖分子和磷酸。
首先是核酸的碱基。
碱基是核酸的重要组成部分,决定了核酸的信息编码能力。
DNA含有腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)、胞嘧啶(C)四种碱基;而RNA中则替换了胸腺嘧啶为尿嘧啶(U)。
这些碱基都属于嘌呤和嘧啶两类。
嘌呤碱基包括腺嘌呤和鸟嘌呤,它们是由两个环状结构连接而成。
其中,腺嘌呤由一个嘌呤环和一个五碳糖分子(脱氧核糖或核糖)连接而成;鸟嘌呤则由两个嘌呤环和一个五碳糖分子连接而成。
嘧啶碱基包括胸腺嘧啶、胞嘧啶和尿嘧啶,它们只有一个环状结构。
类似于腺嘌呤,胸腺嘧啶和胞嘧啶由一个嘧啶环和一个五碳糖分子连接而成;尿嘧啶则由一个嘧啶环和一个五碳糖分子连接。
其次是核酸的糖分子。
DNA包含脱氧核糖,而RNA则含有核糖。
这两种糖分子的组成类似,都是由一个五碳糖环和一个碱基连接而成。
脱氧核糖和核糖之间的差别在于核糖多了一个氧原子。
这个氧原子的存在使得RNA相对DNA更容易被降解,因为氧原子较容易被攻击。
最后是核酸的磷酸。
磷酸是核酸的重要组成部分,可以将碱基和糖分子连接在一起形成多个核苷酸单元。
核酸分子中的每个碱基都与一个磷酸基团连接在一起,形成了核苷酸。
这些核苷酸在DNA或RNA链的构建中通过磷酸基团的缩合反应形成磷酸二酯键。
综上所述,核酸的化学结构非常复杂,由碱基、糖分子和磷酸组成。
碱基决定了核酸的信息编码能力,糖分子连接碱基和磷酸基团,而磷酸则连接核苷酸单元。
这种复杂的化学结构赋予了核酸在生物体内存储和传递遗传信息的重要功能。
核酸化学式

核酸化学式核酸是生命体中的重要分子之一,它们负责存储和传递遗传信息,控制生命的许多过程。
核酸的化学式是什么?本文将介绍核酸的基本结构和化学式。
核酸的基本结构核酸是由核苷酸组成的长链分子。
核苷酸由三个部分组成:一个五碳糖(核糖或脱氧核糖)、一个含氮碱基和一个磷酸基团。
核糖和脱氧核糖的区别在于核糖分子上有一个氧原子,而脱氧核糖分子上没有这个氧原子。
核糖和脱氧核糖分子上的碳原子编号为1-5。
碱基连接到核糖或脱氧核糖分子的1号碳上,磷酸基团连接到3号碳上。
核苷酸的化学式可以表示为:Base-Nucleoside-Phosphate。
核酸的两种类型核酸分为两种类型:DNA(脱氧核糖核酸)和RNA(核糖核酸)。
它们之间的区别在于核糖和脱氧核糖的差异,以及RNA分子中的碱基尿嘧啶(U)替代了DNA分子中的胸腺嘧啶(T)。
DNA分子由两条互补的链组成,这些链通过碱基间的氢键相互连接。
DNA的化学式可以表示为:(Base1-Nucleoside1-Phosphate)-(Base2-Nucleoside2-Phosphate)。
RNA分子是单链的,它们可以通过碱基间的氢键形成二级结构。
RNA的化学式可以表示为:Base-Nucleoside-Phosphate。
核酸的化学式DNA和RNA的化学式可以表示为:DNA:(Base1-Nucleoside1-Phosphate)-(Base2-Nucleoside2-Phosphate)RNA:Base-Nucleoside-Phosphate其中,Base表示碱基,Nucleoside表示核苷,Phosphate表示磷酸基团。
DNA和RNA的碱基DNA和RNA分别由四种碱基组成:腺嘌呤(A)、胸腺嘧啶(T,仅存在于DNA中)、鸟嘌呤(G)和胞嘧啶(C)。
RNA分子中的胸腺嘧啶被尿嘧啶(U)替代。
碱基的化学式如下:腺嘌呤(A):C5H5N5胸腺嘧啶(T):C5H6N2O2鸟嘌呤(G):C5H5N5O胞嘧啶(C):C4H4N2O2尿嘧啶(U):C4H4N2O2碱基的命名规则是以它们的化学结构命名的。
第八章 核酸的结构

第八章核酸的结构主要内容一.核苷酸二.核酸的共价结构三.DNA的高级结构四.RNA的高级结构核糖常见的核苷酸及其缩写符号多磷酸核苷酸3`,5`-环化腺苷酸z5′-磷酸端(常用5′-P表示);3′-羟基端(常用3′-OH表示)z多聚核苷酸链具有方向性,当表示一个多聚核苷酸链时,必须注明它的方向是5′→3′或是3′→5′。
5′P dA P dC P dG P dT OH3′5′P A P C P G P U OH3′或5′ACGTGCGT 3′5′ACGUAUGU 3′DNA RNA2.DNA的一级结构DNA的一级结构是由数量巨大的四种核苷酸连接起来的直线或环线多聚体。
包含着生物体的遗传信息。
基因组计划人类基因组中仅有1.1-1.4%编码蛋白质。
2.RNA的一级结构RNA的种类多,结构也不一样。
tRNA含有较多的稀有碱基,3′-端为CCA,5′-端多数为pG,也有的为pC。
一级结构中有一些保守序列,与其特殊结构与功能有关。
真核生物rRNA的甲基化修饰核苷比原核生物多。
原核生物的mRNA是多顺反子mRNA:一条mRNA上有多个编码区、5′-端、3′-端和各编码区间的非编码区。
真核生物的mRNA为单顺反子,5′-端有帽子结构,3′-端有poly(A)尾巴。
帽子结构有助于核糖体对mRNA的识别和结合,使翻译正确起始。
尾巴结构与mRNA的运输与寿命有关。
1953年Watson和Crick提出了著名的DNA双螺旋结构模型。
1962年,沃森与克里克,偕同威尔金斯共享诺贝尔生理或医学奖。
1976年沃森担任美国冷泉港实验室主任。
沃森使冷泉港实验室成为世界上最好的实验室之一。
他还是人类基因组计划的倡导者,1988年至1993年曾担任人类基因组计划的主持人。
DNA双螺旋内容:的多核苷酸链围绕同一中心轴盘绕而成的右手双螺旋(2)碱基处于螺旋内侧,而磷酸及戊糖位于外侧。
碱基的平面与螺旋轴相垂直,糖平面与碱基平面几乎成直角。
核酸化学课件

核酸化学课件核酸是生物体内重要的分子之一,它们在遗传信息的存储和传递过程中起着至关重要的作用。
核酸是由核苷酸组成的,核苷酸由戊糖、碱基和磷酸组成。
根据所含戊糖的类型,可以将核酸分为核糖核酸(RNA)和脱氧核糖核酸(DNA)。
本课件将介绍核酸的化学组成、结构和功能。
核酸是由核苷酸组成的,每个核苷酸都由戊糖、碱基和磷酸组成。
其中,戊糖分为核糖和脱氧核糖,碱基包括腺嘌呤(A)、鸟嘌呤(G)、胞嘧啶(C)和胸腺嘧啶(T)等。
RNA中的戊糖是核糖,而DNA中的戊糖是脱氧核糖。
核酸是由许多核苷酸组成的链状结构,每个核苷酸通过磷酸二酯键连接到下一个核苷酸。
DNA是双链结构,两条链通过碱基之间的氢键相互作用形成一个双螺旋结构。
RNA通常是单链结构,但在某些情况下也可以形成双链结构。
核酸是遗传信息的主要载体,它们存储和传递着生物体的遗传信息。
DNA中的基因序列编码着蛋白质和其他分子的合成,而RNA则在蛋白质合成过程中起重要作用。
核酸还参与了细胞内的许多其他过程,如信号转导、免疫应答等。
核酸是生物体内重要的分子之一,它们在遗传信息的存储和传递过程中起着至关重要的作用。
通过了解核酸的化学组成、结构和功能,我们可以更好地理解生物体的生命活动和疾病的发生机制。
随着科技的快速发展,教育行业正在经历前所未有的变革。
化学作为一门重要的科学学科,对于培养学生的科学素养和解决问题的能力具有独特的作用。
然而,传统的化学教学方式往往让学生感到枯燥无味,无法激发他们的学习兴趣。
为了解决这个问题,化学课件化学模板应运而生,为教育进步提供了强大的推动力。
化学课件化学模板是一种结合了现代科技与传统教学方法的新型教育工具。
它通过将化学知识以生动、形象的方式呈现出来,帮助学生更好地理解和掌握化学知识。
这种模板可以利用多媒体技术,将化学反应、分子结构等难以理解的概念以直观的方式展示出来,使学生更加容易理解。
化学课件化学模板具有许多优点。
它能够激发学生的学习兴趣。
核酸化学知识点总结

核酸化学知识点总结一、核酸的化学结构1. 核酸的基本结构核酸是由核苷酸组成的,核苷酸又由碱基、糖和磷酸组成。
碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶包括胞嘧啶(C)和胸腺嘧啶(T)或尿嘧啶(U)。
糖分为核糖和脱氧核糖,其中RNA中的糖为核糖,DNA中的糖为脱氧核糖。
核苷酸是由碱基和糖组成的核苷,再与磷酸结合形成核苷酸。
2. 核酸的二级结构核酸的二级结构是指单条核酸链上碱基序列所具有的空间结构。
DNA分子具有双螺旋结构,由两条互补的DNA链通过氢键相互缠绕形成。
RNA分子没有固定的二级结构,但在一些情况下也可以形成双链结构。
3. 核酸的三级结构核酸的三级结构是指单条核酸链在立体空间上所呈现的结构。
DNA分子呈现出右旋的螺旋结构,RNA分子则可以形成各种复杂的结构。
4. 核酸的四级结构核酸的四级结构是指多条核酸链相互作用所形成的更为复杂的结构。
在一些特定情况下,核酸分子可以形成四级结构,并参与到一些生物学过程中。
二、核酸的功能1. 遗传信息的储存与传递核酸是生物体内遗传信息的携带者,DNA分子储存着生物体的遗传信息,RNA分子则在转录和翻译过程中参与到遗传信息的传递和表达中。
2. 蛋白质合成核酸通过转录和翻译的过程,参与到蛋白质的合成过程中。
DNA分子在转录过程中产生mRNA,mRNA再通过翻译过程将基因信息翻译成蛋白质。
3. 调节基因表达在一些生物学过程中,核酸可以通过转录调控、剪接调控和甲基化调控等方式来参与到基因的表达调节中。
4. 氧化磷酸化核酸分子参与到细胞内氧化磷酸化过程中,通过释放出磷酸来提供细胞内化学能量,并维持细胞内正常生理活动。
三、核酸的合成1. DNA的合成(DNA合成)DNA的合成是DNA聚合酶在DNA模板的引导下,将合适的脱氧核苷酸三磷酸酶与新合成的核甙核苷酸通过磷酸二酯键连接,使DNA链不断延长的过程。
DNA合成是细胞分裂前的准备工作,也是基因工程和分子生物学研究中的重要技术手段。
核酸的生物化学结构和功能解析

核酸的生物化学结构和功能解析核酸是构成生物体的重要分子之一,它在细胞内担负着存储和传递遗传信息的重要功能。
本文将深入探讨核酸的生物化学结构和功能,揭示核酸在生命活动中的重要作用。
一、核酸生物化学结构核酸是由核苷酸组成的大分子化合物。
核苷酸是由碱基、糖和磷酸基团组合而成。
碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶则包括胸腺嘧啶(T)、尿嘧啶(U)和胞嘧啶(C)。
糖分为核糖(在RNA中)和脱氧核糖(在DNA中)。
磷酸基团连接在糖的3'位和5'位,形成磷酸二酯键,从而将核苷酸链接成链状结构。
核酸的主要类型包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA是双链结构,由两条互补的核苷酸链缠绕而成,通过碱基配对形成稳定的螺旋结构。
RNA则是单链结构,可以形成类似DNA的二级结构,也可以形成各种不同的三维结构。
二、核酸的功能1. 存储遗传信息DNA是细胞中的遗传物质,它编码了细胞中合成蛋白质所需的遗传信息。
每个生物体细胞核内都包含一段完整的DNA,称为基因组。
基因组中的基因决定了生物的遗传特征,包括形态、功能和行为等。
2. 转录和翻译DNA通过转录过程生成RNA,而RNA通过翻译过程转化为蛋白质。
这一过程被称为中心法则。
在细胞内,DNA通过转录酶酶解,使其中的一条链作为模板,合成相应的RNA分子。
这一过程可以是一次性的(即合成的RNA直接用于蛋白质合成)或经过修饰后再转化为蛋白质。
通过这种机制,细胞可以根据需要合成特定的蛋白质,发挥不同的功能。
3. 调控基因表达RNA具有多种功能,其中包括调控基因表达。
在基因调控过程中,某些RNA分子可以与DNA的调控区结合,阻止或促进基因的转录。
这种调控方式可以调整细胞内基因的表达水平,对细胞功能的稳定和适应具有重要影响。
4. 催化反应核酸具有催化某些生物化学反应的能力。
在细胞中,一类特殊的RNA分子称为酶RNA(ribozyme),它能够催化化学反应,如自身剪切、肽键形成等。
核酸的化学组成以及一级结构

脱氧核苷一磷酸
脱氧腺苷一磷酸 (deoxyadenosine monophosphate, dAMP)
脱氧鸟苷一磷酸 (deoxyguanosine monophosphate, dGMP)
脱氧胞苷一磷酸 (deoxycytidine monophosphate, dCMP)
脱氧胸苷一磷酸 (deoxythymidine monophosphate, dTMP)
磷酯键
5’
H
脱氧腺苷三磷酸 (dATP)
核苷酸衍生物
5’
3´,5´-环腺苷酸 (cyclic AMP, cAMP)
3’
碱基
腺嘌呤 (adenine,A)
鸟嘌呤 (guanine,G)
胞嘧啶 (cytosine,C)
尿嘧啶 (uracil,U)
RNA的分子组成
核苷
腺苷 (adenosine)
鸟苷 (guanosine)
b-N-糖苷键 胞苷 碱基和戊糖环处在反式构象
9 1’
b-N-糖苷键 脱氧腺苷
核苷酸(nucleotide)
磷酯键
5’
H
脱氧腺苷
核苷酸(nucleotide)
磷酯键
5’
H
脱氧腺苷一磷酸 (dAMP)
核苷酸(nucleotide)
磷酯键
5’
H
脱氧腺苷二磷酸 (dADP)
核苷酸(nucleotide)
5’
三、RNA是核糖核苷酸通过3´,5´-磷酸二脂键链接 形成的线性大分子
虽然C2´原子也有羟基,磷酸二脂键只能在C3´和C5´间形成。 RNA也具有5´→3´的方向性。 RNA的核糖而不是脱氧核糖。 RNA的嘧啶是胞嘧啶和尿嘧啶,没有胸腺嘧啶。
生物化学核酸化学核酸结构和功能PPT课件

NH
2
N
N
9
N
N
CH OH 2O
1'
HH
H 2'
H
OH OH
腺嘌呤核苷
糖苷键
核苷酸(脱氧核苷酸):核苷(脱氧核苷)
和磷酸以酯键连接形成。
核苷酸:
酯键 N
O 5'
HO P O CH2 OHH
NH2 N
9
N
N
O
1'
H 2'
H
糖苷键
AMP, GMP, UMP, CMP OH OH
脱氧核苷酸:
腺苷酸
dAMP, dGMP, dTMP, dCMP
核是酸核的 酸基的本基组本成组单成位单是位核苷酸
RNA通常以单链形式存在,局部可有二、三级 某围些绕病 同毒一R中N心A也轴可构作成为右遗手传双信螺息旋的。载体。
*参t与RN遗A的传一信级息结的构复特制点与表达。
结构 围* t绕RN同A的一三中级心结轴构构成右手双螺旋 。
大ATP多是数生真物核体m能RN量A的直3´末接端供有应多体聚:A尾。
在信2使6R0nNmA(波m长R有NA最)大吸携收带峰D,NA是遗由传碱信基息的共轭双键决定的。
尿* t嘧RN啶A的(ur一ac级il,结U)构特点
第核四苷节 (或核脱酸氧的核分苷子)结:构碱基和核糖(或脱氧核糖)通过糖苷键连接形成。
DAMNAP,复G性MP时, U,M其P,溶CM液POD260降低。
胞嘧啶(C) 胸腺嘧啶(T) 尿嘧啶(U)
DNA有 RNA有
每种核酸都含有四种碱基 。
戊糖
5 (deoxyribonucleic acid, DNA)
5
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章核酸的化学结构
一名词解释
核酸的变性与复性/ 退火/ 增色效应/ 减色效应/ DNA的熔解温度(T m)/ 分子杂交
①核酸的变性:碱基对之间的氢键断裂,双螺旋结构解开,成为两条单链的DNA分子,即改变了
DNA的二级结构,但并不破坏一级结构。
②核酸的复性:在适当条件下,变性DNA分开的两条链又重新缔合而恢复双螺旋结构,这个过程
称为复性。
③退火:当将双股呈分散状态的DNA溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成
双链螺旋结构,这现象称为“退火”。
④增色效应:DNA变性后,氢键断开,碱基堆积破坏,碱基暴露,于是紫外光的吸收就明显升高,
这种现象称为增色效应。
⑤减色效应:双螺旋结构和3,5-磷酸二酯键的形成都会减弱碱基对紫外光的吸收。
⑥DNA的熔解温度(T m):50%的DNA分子发生变性时的温度。
⑦分子杂交:不同来源的多核苷酸链,经变性分离和退火处理,当它们之间有互补的碱基序列时
就可能发生杂交,形成DNA/DNA的杂合链,甚至可以在DNA和RNA之间形成DNA/RNA的杂合体。
二填空题
1.DNA双螺旋结构模型是沃森、克里克于1953年提出的。
2.核酸的基本结构单位是核苷酸。
3.两类核酸在细胞中的分布不同,DNA主要位于细胞核的染色体中,RNA主要位于细胞质中。
4.在DNA分子中,一般来说G-C含量高时,比重越大,T m则越高,分子比较稳定。
5.因为核酸分子具有嘌呤、嘧啶,所以在260nm处有吸收峰,可用紫外分光光度计测定。
6.与片段TAGA互补的片段为TCTA。
7.tRNA的二级结构呈三叶草形,三级结构呈倒“L”形,其3'末端有一共同碱基序列-CCA,其功能是接受氨基酸
8.常见的环化核苷酸有3',5'-环状腺苷酸(cAMP)和3',5'-环状鸟苷酸(cGMP)。
其作用是第二信使,他们核糖上的3’位与5’位磷酸-OH环化。
9.真核细胞的mRNA帽子由甲基化的鸟苷酸组成,其尾部由聚腺苷酸组成,他们的功能分别是m7G 识别起始信号的一部分并保护mRNA不被降解,polyA对mRNA的稳定性有一定影响。
10.含有稀有碱基比例较多的RNA是tRNA;含量最多的是rRNA。
三简答题
1.将核酸完全水解后可得到哪些组分? DNA和RNA的水解产物有何不同?
答:碱基、戊糖、磷酸。
(1)DNA的水解产物中的戊糖为脱氧核糖,而RNA为核糖
(2)DNA的水解产物中的碱基为A、T、C、G,而RNA为A、U、C、G。
2.计算下列各题:
(1)T7噬菌体DNA,其双螺旋链的相对分子质量为2.5×107。
计算DNA链的长度(设一对核苷酸的平均相对分子质量为650)。
2.5×10^7/650×0.34×10^(-9)=1.3×10^(-5)(m)=13(μm)
(2)相对分子质量为130×106的病毒DNA分子,每微米的质量是多少?
650/0.34=1.96*10^6/μm
3.真核和原核生物mRNA结构有什么不同?
答:原核生物mRNA结构特点:多顺反子。
真核生物mRNA结构特点:单顺反子,且在5’端有帽子结构,3’端有polyA尾结构。
4.Watson和crick提出的DNA双螺旋结构有哪些特点?
1. DNA分子由两条反向平行的多聚脱氧核苷酸链组成。
一条链的走向为5’→3’,而另一条链的走向为3’→5’。
两条链沿一个假想的中心轴右旋平行盘绕,形成大沟与小沟。
2. 磷酸和脱氧核糖作为不变的链骨架位于外侧,作为可变成分的碱基位于螺旋的内侧。
链间的碱基按A=T和G C配对形成碱基平面,平面与纵轴近于垂直。
3.螺旋横截面的直径约为2nm,相邻碱基平面的垂直距离为0.34nm,螺旋结构每隔10个碱基重复一次,间距为3.4nm。
4. DNA双螺旋结构在生理条件下是很稳定的,稳定力量主要有两个:
碱基堆积力(base stacking force)
氢键(hydrogen bond)。