历年高考数学圆锥曲线的中点弦问题的复习
高考圆锥曲线中点弦问题 讲义--高三数学一轮复习

圆锥曲线中点弦问题题型识别:弦中点,斜率积用点差若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,点)(00,y x M 为AB 的中点,OM AB k k .的值为定值么? 答题模版第一步:若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x , 第二步:两式相减得0))(((2212122121=-++-+by y y y a x x x x ))(, 第三步:2121x x y y --是直线AB 的斜率k ,)(2,22121y y x x ++是线段AB 的中点)(00,y x ,化简可得2221212121a b x x y y x x y y -=--⋅++2200ab k x y -=⋅⇒类型1 求中点弦直线斜率或方程典例1:已知椭圆E :22142x y +=,O 为坐标原点,作斜率为k 的直线交椭圆E 于A ,B两点,线段AB 的中点为M ,直线OM 与AB 的夹角为θ,且tan 22θ=则k =( ) A .22±B .2±C .22D 2 【答案】A【解析】由题意知0k ≠,设()11,A x y ,()22,B x y ,()00,M x y ,则0122x x x =+,0122y y y =+,将A ,B 两点坐标代入椭圆方程22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22012121222121212012y y y y y y y k x x x x x x x -+-=-=-⨯=--+-,则0012OM y k x k ==-,设直线OM 的倾斜角为α,则1tan α2k=-,设直线AB 的倾斜角为β,则tan k β=,则()()()1tan αtan π2tan tan απ221tan αtan π12k k k kβθββ--+-=+-===---22k =±.对点训练1.已知(2,1)-是直线l 被椭圆221369x y +=所截得线段的中点,则直线l 的方程是( )A .20x y -=B .240x y -+=C .230x y ++=D .2310x y --=2.已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )A .12 B .12- C .2 D .2-3.已知双曲线2213y x -=上存在两点M,N 关于直线y x m =+对称,且MN 的中点在抛物线29y x =上,则实数m 的值为( )A .4B .-4C .0或4D .0或-4类型2 求曲线的标准方程典例2:已知椭圆2221(02)4x y b b+=<<的左右焦点分别为12,F F ,过左焦点1F 作斜率为2的直线与椭圆交于,A B 两点,AB 的中点是P ,O 为坐标原点,若直线OP 的斜率为14-,则b 的值是( )A .2B 3C .32D 2 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则2211214x y b +=,222224x y b+=1,两式相减可得14(x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0,∵P 为线段AB 的中点,∴2x p =x 1+x 2,2y p =y 1+y 2,∴1212y y x x --•212124y y b x x +=-+,又1212y y x x -=-k AB =2,121214y y x x +=-+∴2124b -=-,即22b =,∴2b =对点训练1.椭圆221ax by +=与直线12y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜2,则ab的值为( ) A 2 B 3 C .22 D .32.若双曲线的中心为原点,(0,2)F -是双曲线的焦点,过F 的直线l 与双曲线相交于M ,N两点,且MN 的中点为(3,1)P 则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=3.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为( )B .y 2=4x B .y 2=−4xC .x 2=4yD .y 2=8x类型三 点差法求离心率典例3:已知A ,B 是椭圆E :22221(0)x y a b a b+=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为( )A .23 B .33 C .23 D .53【答案】D【解析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+-则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,①又2200221x y a b +=,得2222002()b y a x a =-,即2202220y b x a a =--,②联立①②,得2249b a -=-,即22249a c a -=,解得5e =.对点训练1.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3] B .3(0,]4 C .3D .3[,1)42.经过双曲线22221(00)x y a b a b-=>>,的右焦点,倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[2,+∞)B .(1,2)C .(1,2]D .(2,+∞)3.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( ) A 5 B 51+ C .2 D 2 综合训练1.已知 m,n,s,t ∈R ∗,m +n =3,m s+nt=1,其中m ,n 是常数且m <n ,若s +t 的最小值是3+2√2,满足条件的点(m,n )是椭圆 x 24+y 216=1一弦的中点,则此弦所在的直线方程为( )A. x −2y +3=0B. 4x −2y −3=0C. x +y −3=0D. 2x +y −4=02.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12- D .123.已知双曲线22184x y -=上有不共线的三点、、A B C ,且AB BC AC 、、的中点分别为D E F 、、,若OD OE OF 、、的斜率之和为-2,则111AB BC ACk k k ++= ( ) A .-4 B .23- C .4 D .64.若双曲线的中心为原点,()2,0F -是双曲线的焦点,过F 直线l 与双曲线交于M ,N 两点,且MN 的中点为()1,3P ,则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=5.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜2,则m n 的值是( )A .22B 23C 92D 236.中心为原点,一个焦点为F (2)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=7.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( ) A .14 B .12 C .3 D .1548.已知椭圆()222210x y a b a b+=>>,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是(2,1)M -,则椭圆的离心率是( ) A 5B 3C 2D .12圆锥曲线中点弦问题解析题型识别:弦中点,斜率积用点差若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,点)(00,y x M 为AB 的中点,OM AB k k .的值为定值么? 答题模版第一步:若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x , 第二步:两式相减得0))(((2212122121=-++-+by y y y a x x x x ))(, 第三步:2121x x y y --是直线AB 的斜率k ,)(2,22121y y x x ++是线段AB 的中点)(00,y x ,化简可得2221212121a b x x y y x x y y -=--⋅++2200ab k x y -=⋅⇒类型1 求中点弦直线斜率或方程典例1:已知椭圆E :22142x y +=,O 为坐标原点,作斜率为k 的直线交椭圆E 于A ,B两点,线段AB 的中点为M ,直线OM 与AB 的夹角为θ,且tan 22θ=则k =( ) A .22±B .2±C .22D 2 【答案】A【解析】由题意知0k ≠,设()11,A x y ,()22,B x y ,()00,M x y ,则0122x x x =+,0122y y y =+,将A ,B 两点坐标代入椭圆方程22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22012121222121212012y y y y y y y k x x x x x x x -+-=-=-⨯=--+-,则0012OM y k x k ==-,设直线OM 的倾斜角为α,则1tan α2k=-,设直线AB 的倾斜角为β,则tan k β=,则()()()1tan αtan π2tan tan απ221tan αtan π12k k k kβθββ--+-=+-===---22k =±.对点训练1.已知(2,1)-是直线l 被椭圆221369x y +=所截得线段的中点,则直线l 的方程是( )A .20x y -=B .240x y -+=C .230x y ++=D .2310x y --= 【答案】B【解析】设直线和圆锥曲线交点为1(A x ,1)y ,2(B x ,2)y ,其中点坐标为(2,1)-,当斜率不存在时,显然不成立,设y kx m =+,分别代入圆锥曲线的解析式22111369x y +=,22221369x y +=并作差,利用平方差公式对结果进行因式分解,得12121212936y y y y x x x x -+=--+,得19236k =--,12k =,所以1(2)12y x =++,即:240x y -+=.2.已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )A .12 B .12- C .2 D .2- 【答案】A 【解析】设直线l 的方程为1y k x b =+,代入双曲线方程2212x y -=,得到2221112102k x bk x b ⎛⎫----= ⎪⎝⎭,得到11221212k bx x k +=-,设()()111212,,,M x k x b N x k x b ++,则()11212,22k x x x x N b ⎛⎫+++ ⎪⎝⎭,则21121212b k k x x k =+=+,故1212k k ⋅=,故选A .3.已知双曲线2213y x -=上存在两点M,N 关于直线y x m =+对称,且MN 的中点在抛物线29y x =上,则实数m 的值为( )A .4B .-4C .0或4D .0或-4 【答案】D【解析】∵MN 关于y=x+m 对称∴MN 垂直直线y=x+m ,MN 的斜率﹣1,MN 中点P (x 0,x 0+m )在y=x+m 上,且在MN 上设直线MN :y=﹣x+b ,∵P 在MN 上,∴x 0+m=﹣x 0+b ,∴b=2x 0+m由2213y x b y x =+⎧⎪⎨-=⎪⎩﹣消元可得:2x 2+2bx ﹣b 2﹣3=0△=4b 2﹣4×2(﹣b 2﹣3)=12b 2+12>0恒成立,∴M x +N x =﹣b ,∴x 0=﹣2b ,∴b=2m∴MN 中点P (﹣4m ,34m )∵MN 的中点在抛物线y 2=9x 上, ∴299164mm =-∴m=0或m=﹣4类型2 求曲线的标准方程典例2:已知椭圆2221(02)4x y b b+=<<的左右焦点分别为12,F F ,过左焦点1F 作斜率为2的直线与椭圆交于,A B 两点,AB 的中点是P ,O 为坐标原点,若直线OP 的斜率为14-,则b 的值是( )A .2B 3C .32D 2 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则2211214x y b +=,222224x y b+=1,两式相减可得14(x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0,∵P 为线段AB 的中点,∴2x p =x 1+x 2,2y p =y 1+y 2,∴1212y y x x --•212124y y b x x +=-+,又1212y y x x -=-k AB =2,121214y y x x +=-+∴2124b -=-,即22b =,∴2b =对点训练1.椭圆221ax by +=与直线12y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜2,则ab的值为( ) A .24 B .36C .22D .3【答案】C【解析】设点()11,A x y ,()22,B x y ,联立22112ax by y x⎧+=⎨=-⎩,得:()24410a b x bx b +-+-=,()()()244414164b a b b a b ab ∆=--+-=+- .12124414b x x a b b x x a b ⎧+=⎪⎪+⎨-⎪=⎪+⎩⇒12224x x b a b +=+,∴()121212*********x x y y x x -++-+-===()1241144b a x x a b a b -+=-=++.设M 是线段AB 的中点,∴M (2,44b a a b a b++).∴直线OM 的斜率为42224aa ab b b a b+==+则22ab=代入①满足△>0(a >0,b >0).2.若双曲线的中心为原点,(0,2)F -是双曲线的焦点,过F 的直线l 与双曲线相交于M ,N两点,且MN 的中点为(3,1)P 则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=【答案】B【解析】由题意设该双曲线的标准方程为22221(0,0)y x a b a b-=>>,1122(,),(,)M x y N x y ,则2211221y x a b -=且2222221y x a b-=,则1212121222()()()()y y y y x x x x a b +-+-=,即1212222()6()y y x x a b --=,则21221261(2)1230y y a x x b ---===--,即223b a =,则2244c a ==,所以221,3a b ==,即该双曲线的方程为2213x y -=.3.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为( )B .y 2=4x B .y 2=−4xC .x 2=4yD .y 2=8x 【答案】A【解析】设抛物线方程为y 2=2px ,直线与抛物线方程联立求得x 2−2px =0,∴x A +x B =2p ,∵x A +x B =2×2=4,∴p=2,∴抛物线C 的方程为y 2=4x .类型三 点差法求离心率典例3:已知A ,B 是椭圆E :22221(0)x y a b a b +=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为( )A 2B 3C .23D 5【答案】D【解析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+-则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,①又2200221x y a b +=,得2222002()b y a x a =-,即2202220y b x a a =--,②联立①②,得2249b a -=-,即22249a c a -=,解得5e =.对点训练1.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3(0,]2 B .3(0,]4 C .32D .3[,1)4【答案】C【解析】当P 是椭圆的上下顶点时,12F PF ∠最大,121120180,6090,F PF F PO ∴︒≤∠<︒∴︒≤∠<︒12sin 60sin sin 90,F PF ∴︒≤∠<︒113,,1c F P a F O c a ==≤<则椭圆的离心率e 的取值范围为32⎫⎪⎪⎣⎭.2.经过双曲线22221(00)x y a b a b-=>>,的右焦点,倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[2,+∞)B .(1,2)C .(1,2]D .(2,+∞) 【答案】A【解析】已知双曲线()2222100x y a b a b-=>,>的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b a ,∴3b a ≥e 2222224c a b a a+==≥,∴e ≥2,故选:A3.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( ) A 5 B 51+ C .2 D 2 【答案】B【解析】设直线1l 的方程为b y x a =,则直线2l 的方程为b y x a =-,设点11,b A x x a ⎛⎫ ⎪⎝⎭、22,b M x x a ⎛⎫- ⎪⎝⎭,则点11,b B x x a ⎛⎫-- ⎪⎝⎭,()1212AM bx x ak x x +=-,()12121212MBb b b x x x x a a a k x x x x -+-==--+,22AM BM b k k e a ∴⋅==,即21e e -=,即210e e --=,1e >,解得512e =,故选:B.综合训练1.已知 m,n,s,t ∈R ∗,m +n =3,ms +nt =1,其中m ,n 是常数且m <n ,若s +t 的最小值是3+2√2,满足条件的点(m,n )是椭圆 x 24+y 216=1一弦的中点,则此弦所在的直线方程为( )A. x −2y +3=0B. 4x −2y −3=0C. x +y −3=0D. 2x +y −4=0 【答案】D【解析】因为 m ,n ,s ,t 为正数,m +n =3,ms +nt =1,s +t 的最小值是 3+2√2,所以 (s +t )(ms +nt ) 的最小值是 3+2√2,所以 (s +t )(ms +nt )=m +n +mt s+ns t≥m +n +2√mn ,满足mt s =ns t时取最小值,此时最小值为 m +n +2√mn =3+2√2,得:mn =2,又:m +n =3,所以,m =1,n =2.设以 (1,2) 为中点的弦交椭圆 x 24+y 216=1 于A (x 1,y 1),B (x 2,y 2),由中点坐标公式知 x 1+x 2=2,y 1+y 2=4,把 A (x 1,y 1),B (x 2,y 2)分别代入 4x 2+y 2=16,得 {4x 12+y 12=16,4x 22+y 22=16,两式相减得 2(x 1−x 2)+(y 1−y 2)=0,所以 k =y 2−y 1x 2−x 2=−2.所以此弦所在的直线方程为 y −2=−2(x −1),即 2x +y −4=0.2.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12- D .12【答案】C 【解析】由题得2222222242,4()2,2c c a a b a a b a =∴=∴-=∴=.设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=,所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-.3.已知双曲线22184x y -=上有不共线的三点、、A B C ,且AB BC AC 、、的中点分别为D E F 、、,若OD OE OF 、、的斜率之和为-2,则111AB BC ACk k k ++= ( ) A .-4 B .23- C .4 D .6 【答案】A【解析】设112200(,),(,),(,)A x y B x y D x y ,则1201202,2x x x y y y +=+=,2211184x y -=,2222184x y -=,两式相减,得12121212()()()()84x x x x y y y y +-+-=,即0121202y y y x x x -=-,即12OD AB k k =,同理,得112,2OE OF BC AC k k k k ==,所以1112()4OD OE OF AMBC ACk k k k k k ++=++=-. 4.若双曲线的中心为原点,()2,0F -是双曲线的焦点,过F 直线l 与双曲线交于M ,N 两点,且MN 的中点为()1,3P ,则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=【答案】D【解析】根据题意,()2,0F -是双曲线的焦点,则双曲线的焦点在x 轴上,设双曲线的方程为22221x y a b-=,且()11,M x y ,()22,N x y ,直线MN 过焦点F ,则()30112MNK -==--,则有12121y y x x -=-,变形可得1212y y x x -=-,2211222222221,1,x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩①②,-①②,2222121222x x y y a b--=,又由1212y y x x -=-,且122x x +=,126y y +=,变形可得:223b a =,又由2c =,则224a b +=,解可得:21a =,23b =,则要求双曲线的方程为:2213y x -=.5.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则m n 的值是( )A .22B 23C .922D 23【答案】A【解析】设()()1122,,,M x y N x y ,设MN 中点为1212,22x x y y A ++⎛⎫⎪⎝⎭,直线MN 的斜率为1-,直线OA 的斜率为12121212222y y x x x x y y ++==++.由于,M N 在椭圆上,故2211222211mx ny mx ny ⎧+=⎨+=⎩,两式相减得()()222212120m x x n y y -+-=,化简为12121212x x y y m n y y x x +--⋅=+-,即221,2m m n n -=-=. 6.中心为原点,一个焦点为F (2)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=【答案】C【解析】由已知得c =2,设椭圆的方程为2222150x ya a +=-,联立得222215032x y a a y x ⎧+=⎪-⎨⎪=-⎩,消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2),由根与系数关系得x 1+x 2=()22125010450a a --,由题意知x 1+x 2=1,即()22125010450a a --=1,解得a 2=75,所以该椭圆方程为2212575x y +=.7.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( ) A .14 B .12 C .3 D 15 【答案】C【解析】由已知得(,0),(,0)A a B a -,设()00,x y ,由题设可得,2200221x y a b+=,所以()222202b y a x a=-.因为()222220200022222000014A MM B b a x y y y b a k k x a x a x a x a a -⋅=⋅===-=-+---,所以2214b a =,则22222222314c a b b e a a a -===-=,所以3e =8.已知椭圆()222210x y a b a b+=>>,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是(2,1)M -,则椭圆的离心率是( ) A 5B 3C .22D .12 【答案】C【解析】显然(2,1)M - 在椭圆内,设直线30x y -+=与椭圆的交点为112212(,),(,)()A x y B x y x x ≠,由M 是,A B 的中点有:12124,2x x y y +=-+=,将,A B 两点的坐标代入椭圆方程得:2211221x y a b +=, 2222221x y a b+=。
【高考数学复习 解析几何专题】第3讲 中心弦与中点弦-原卷及答案

第3讲 中心弦与中点弦知识与方法圆锥曲线的中心弦、中点弦是圆锥曲线的重要内容,因其性质丰富,处理方式独特、灵活,是高考命题的重要素材.中点弦问题,常运用点差法、韦达定理来构建中点坐标与斜率之间的代数关系,在等腰三角形、平行四边形、对称问题、两个向量的加法中都隐含了中点弦问题. 1.中心弦(1)椭圆22221(0)x y a b a b+=>>上任一条经过原点的弦的两个端点与椭圆上任一点(除这两个顶点)连线的斜率之积是定值22b a -.(2)双曲线22221(,0)x y a b a b-=>上任一条经过原点的弦的两个端点与双曲线上任一点(除这两个端点)连线的斜率之积是定值22b a.2.中点弦(1)中点弦设直线l 与椭圆22221(0)x y a b a b+=>>交于,A B 两点,弦AB 的中点为M ,则22AB OM b k k a ⋅=-.(2)中点弦设直线l 与双曲线22221(0)x y a b a b-=>>交于,A B 两点,弦AB 的中点为M ,则22AB OM b k k a⋅=.(3)设抛物线22(0)y px p =>的弦AB ,记点()()1122,,,A x y B x y ,弦AB 的中点(0C x ,)0y ,则0AB p k y =, 3.圆、椭圆、双曲线的切线性质如图,已知直线l 是各曲线在点M 处的切线,若将圆看作离心率0e =的特殊的椭圆,则有21l OM k k e ⋅=-.下面仅给出椭圆的中心弦、中点弦的性质推导.命题1试证椭圆22221(0)x y a b a b+=>>上任一条经过原点的弦的两个端点与椭圆上任一点(除这两个顶点)连线的斜率之积为定值.证明设点()00,M x y .点()()1111,,,A x y B x y --. 所以直线AB 的斜率()()010*********,AM BM y y y yk x x k x x x x x x -+=≠=≠--+, 所以22222201002222222201,1,1AM BMy y x y x y k k x x a a a a-⋅=+=+=-,所以()()2222220122122,b x a b x a y ya a --=-=-,所以,()22222210201222220101AM BMb x x y y b a k k x x x x a--⋅===---. 命题2已知直线l 与椭圆22221(0)x y a b a b+=>>交于,A B 两点,弦AB 的中点为M .试证明22AB OM b k k a⋅=-.证明设点()()1122,,,A x y B x y ,线段AB 的中点()00,M x y ,则2222222222221122,b x a y a b b x a y a b +=+=,所以()()2222222212121212121200y y y y b x x a y y b a x x x x -+-+-=⇒+⋅=-+, 2121221212y y y y b x x x x a-+⋅=--+.则22AB OM b k k a ⋅=-.典型例题【例1】 已知 ,A B 是椭圆 22221(0)x y a b a b+=>> 长轴的两个端点, ,M N 是椭圆上关于 x 轴对称的两点,直线,AM BN 的斜率分别为()1212,0k k k k ≠.若椭圆则12k k +的最小值为( ) A.1B.C.2【例2】 若 D 是椭圆 22142x y += 的右顶点, 直线 ,AD PD 分别与直线 3x = 相交于 ,E F , 则EF 的最小值为( )【例3】已知椭圆221,4x y P +=是椭圆的上顶点,过点P 作斜率为()0k k ≠的直线l交椭圆于另一点A ,设点A 关于原点的对称点为B .设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,则斜率k 的取值范围为( )【例4】已知椭圆2222:1(0)x y T a b a b+=>>内有一定点()1,1P ,过点P 的两条直线12,l l 分别与椭圆T 交于点,A C 和点,B D ,且满足,AP PC BP PD λλ==.若λ变化时,直线CD 的斜率总为14-,则椭圆T 的离心率为( )B.12C.2 【例5】 已知 ,A B 是椭圆 22:1164x y C += 的左、右顶点, P 是椭圆 C 上异于点 ,A B 的一点,M 是平面上一动点.当点,A B 在以MP 为直径的圆上时,则AM 的最大值是( )【例6】已知椭圆2222:1(0)x yC a ba b+=>>的左焦点为F,过点F作直线l与椭圆C交于A,B两点,P是椭圆C上一点.若存在l和点P使四边形OAPB为平行四边形,则椭圆C的离心率的取值范围为()【例7】如图,已知椭圆2222:1(0),x yC a b Oa b+=>>为坐标原点,()2,0C为椭圆的右顶点,点,A B在椭圆上,且四边形OACB是正方形.(1)求椭圆的方程;(2)斜率为k的直线l与椭圆相交于,P Q两点,且线段PQ的中点M恰在线段AB上,求k的取值范围.【例8】已知点()()2,0,2,0A B-, 动点(),M x y满足直线AM与BM的斜率之积为12-.记点M的轨迹为曲线C.(1)求曲线C的方程;(2)过坐标原点的直线交曲线C于,P Q两点,点P在第一象限,PE x⊥轴,垂足为E,连结QE并延长交曲线C于点G.求PQG面积的最大值.【例9】 已知 221:(3)27F x y ++= 与 222:(3)3F x y -+=, 以 12,F F 分别为左、右焦点的椭圆2222:1(0)x y C a b a b+=>>经过两圆的交点.(1)求椭圆C 的方程;(2),A B 分别为椭圆C 的左、右顶点,,,M N P 是椭圆C 上非顶点的三点,若//,//OM AP ON BP ,试问OMN 的面积是否为定值?若是,求出这个定值,若不是,请说明理由.【例10】已知椭圆221:12x C y +=,抛物线22:2(0),C y px p A =>是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (点,B M 不同于点A ). (1)若116p =,求抛物线2C 的焦点坐标; (2)若存在不过原点的直线l 使得M 为AB 的中点,求p 的最大值.第3讲 中心弦与中点弦知识与方法圆锥曲线的中心弦、中点弦是圆锥曲线的重要内容,因其性质丰富,处理方式独特、灵活,是高考命题的重要素材.中点弦问题,常运用点差法、韦达定理来构建中点坐标与斜率之间的代数关系,在等腰三角形、平行四边形、对称问题、两个向量的加法中都隐含了中点弦问题. 1.中心弦(1)椭圆22221(0)x y a b a b+=>>上任一条经过原点的弦的两个端点与椭圆上任一点(除这两个顶点)连线的斜率之积是定值22b a -.(2)双曲线22221(,0)x y a b a b-=>上任一条经过原点的弦的两个端点与双曲线上任一点(除这两个端点)连线的斜率之积是定值22b a.2.中点弦(1)中点弦设直线l 与椭圆22221(0)x y a b a b+=>>交于,A B 两点,弦AB 的中点为M ,则22AB OM b k k a ⋅=-.(2)中点弦设直线l 与双曲线22221(0)x y a b a b-=>>交于,A B 两点,弦AB 的中点为M ,则22AB OM b k k a⋅=.(3)设抛物线22(0)y px p =>的弦AB ,记点()()1122,,,A x y B x y ,弦AB 的中点(0C x ,)0y ,则0AB p k y =, 3.圆、椭圆、双曲线的切线性质如图,已知直线l 是各曲线在点M 处的切线,若将圆看作离心率0e =的特殊的椭圆,则有21l OM k k e ⋅=-.下面仅给出椭圆的中心弦、中点弦的性质推导.命题1试证椭圆22221(0)x y a b a b+=>>上任一条经过原点的弦的两个端点与椭圆上任一点(除这两个顶点)连线的斜率之积为定值.证明设点()00,M x y .点()()1111,,,A x y B x y --. 所以直线AB 的斜率()()010101010101,AM BM y y y y k x x k x x x x x x -+=≠=≠--+,所以22222201002222222201,1,1AM BMy y x y x y k k x x a a a a-⋅=+=+=-,所以()()2222220122122,b x a b x a y ya a --=-=-,所以,()22222210201222220101AM BMb x x y y b a k k x x x x a--⋅===---. 命题2已知直线l 与椭圆22221(0)x y a b a b+=>>交于,A B 两点,弦AB 的中点为M .试证明22AB OM b k k a⋅=-.证明设点()()1122,,,A x y B x y ,线段AB 的中点()00,M x y ,则2222222222221122,b x a y a b b x a y a b +=+=,所以()()2222222212121212121200y y y y b x x a y y b a x x x x -+-+-=⇒+⋅=-+, 2121221212y y y y b x x x x a-+⋅=--+.则22AB OM b k k a ⋅=-.典型例题【例1】 已知 ,A B 是椭圆 22221(0)x y a b a b+=>> 长轴的两个端点, ,M N 是椭圆上关于 x 轴对称的两点,直线,AM BN 的斜率分别为()1212,0k k k k ≠.若椭圆则12k k +的最小值为( ) A.1B.C.2【分析】由中心弦的性质知,222114MA MB b k k e a ⋅=-=-=-,而BN BM k k =,结合基本不等式可求得12k k +的最小值.【解析】解法1:由点M 与点N 关于x 轴对称,可知2BN BM k k k ==-.又22221114MA MBb k k e a ⋅=-=-=-=-⎝⎭,即1214k k ⋅=, 所以121221k k k k +⋅=,当且仅当12k k =时取得等号,即12k k +的最小值为1.故选A.解法2:设点()()1111,,,()M x y N x y a x a --<<,则111211,y y k k x a x a-==+-.因为椭圆的离心率为2,所以12b a ==,所以211112211221y y y b k k x aa x a x a+=+===+--.故选A. 【点睛】本题主要考查椭圆的中心弦性质,即21MA MB k k e ⋅=-.【例2】 若 D 是椭圆 22142x y += 的右顶点, 直线 ,AD PD 分别与直线 3x = 相交于 ,E F , 则EF 的最小值为( )【分析】 通过观察发现,AP 是椭圆的中心弦,于是思考如何用斜率k 表示点,E F 的纵坐标.【解析】 设点()00,P x y ,则点()()00,,2,0A x y D --. 由中心弦性质得2212DA DPb k k a ⋅=-=-,于是设直线DP 的斜率为k ,则直线DA 的斜率为12k-. 所以直线DP 的方程为()2y k x =-,直线DA 的方程为()122y x k=--. 令3x =,得点()13,,3,2E F k k ⎛⎫- ⎪⎝⎭,所以11222EF k k k k=+=+,当且仅当2k =±时取得等号,所以EF .【点睛】 由于AP 是椭圆的中心弦,引入直线DP 的斜率为k ,将EF 表示为k 的函数,是求解问题的自然的想法.【例3】已知椭圆221,4x y P +=是椭圆的上顶点,过点P 作斜率为()0k k ≠的直线l交椭圆于另一点A ,设点A 关于原点的对称点为B .设线段PB 的中垂线与y 轴交于点N ,若点N 在椭圆内部,则斜率k 的取值范围为( )【分析】 先考虑求出线段PB 的中垂线,然后得到点N 的纵坐标;通过“设直联曲”求出点A 的坐标,继而得到PB 的中点M 的坐标;也可运用中心弦的性质,求出PB 的方程,与直线OM 联立,得到中点M 的坐标,从而得到线段PB 的中垂线方程. 【解析】解法1:椭圆中心弦性质 依题意得2214PA PBb k k a ⋅=-=-.又()0PA k k k =≠,所以14PB k k =-,得1:14PB l y x k=-+. 设PB 中点为()00,M x y ,则OM PA k k k ==,得:OM l y kx =.由,114y kx y x k =⎧⎪⎨=-+⎪⎩得022024,414.41k x k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩线段PB 的中垂线方程为()00:4MN l y y k x x -=-.令0x =,得221241N k y k -=+.因为点N 在椭圆内部,所以1N y <,于是2212141k k <+且0k ≠,解得,044k k -<<≠. 解法2由题意可设直线l 的方程1y kx =+, 代人椭圆方程,整理得()221480k x kx ++=,所以2814A kx k-=+,得221414A k y k -=+. 可得点222814,1414k k A k k ⎛⎫-- ⎪++⎝⎭,则点222841,1414k k B k k ⎛⎫- ⎪++⎝⎭,于是2224111148414PBk k k k k k--+==-+,且PB 的中点坐标22244,1414k k k k ⎛⎫ ⎪++⎝⎭, 所以线段PB 的中垂线方程为2224441414k k y k x k k ⎛⎫-=- ⎪++⎝⎭.令0x =,得221214k y k=-+.由题意得1y <,所以2212114k k <+,解得k <<且0k ≠,所以斜率k 的取值范围为0,44⎛⎫⎛-⋃ ⎪ ⎪ ⎝⎭⎝⎭.【点睛】从知识的层面,本题主要背景是中心弦的性质;从方法的层面,其关键是求出中点M 的坐标,进而表示出PB 的中垂线方程,通过联立直线,PB OM 的方程,求解点M 的坐标更显巧妙.【例4】已知椭圆2222:1(0)x y T a b a b+=>>内有一定点()1,1P ,过点P 的两条直线12,l l 分别与椭圆T 交于点,A C 和点,B D ,且满足,AP PC BP PD λλ==.若λ变化时,直线CD 的斜率总为14-,则椭圆T 的离心率为( )B.12C.2 【分析】由,AP PC BP PD λλ==,可得弦//AB CD ,于是可依据平行弦的中点轨迹是过中心的一条线段,由中点弦性质列出方程.【解析】解法1由,AP PC BP PD λλ==,则//AB CD . 取,AB DC 的中点,E F ,根据椭圆的垂径定理 所以2222,OE ABOF CD b b k k k k a a⋅=-⋅=-.因为AB CD k k =,所以OE OF k k =,所以,,O E F 三点共线,即,,,F O P E 四点共线.于是21CD OP k k e ⋅=-,所以e =【解析】解法2取临界状态,当,AB CD 为椭圆的切线时,则椭圆在,C A 点处的切线斜率为14k =-,故2114OP k k e ⋅=-=-,所以2e =. 【点睛】椭圆中的平行弦的中点的轨迹是过原点的一条线段,故当//AB CD 时,,,E O F ≡点共线.【例5】 已知 ,A B 是椭圆 22:1164x y C += 的左、右顶点, P 是椭圆 C 上异于点 ,A B 的一点,M 是平面上一动点.当点,A B 在以MP 为直径的圆上时,则AM 的最大值是( )【分析】 首先研究点M 的轨迹,注意到41164PA PB k k ⋅=-=-.1,1AP MA BP MB k k k k ⋅=-⋅=-,可得4MA MBk k ⋅=-,于是得点M 的轨迹是椭圆.【解析】 由中心弦性质知41164PA PB k k ⋅=-=-. 因为1,1AP AM BP BM k k k k ⋅=-⋅=-,所以1111444PA PB MA MB AM BM k k k k k k ⋅=-⇒⋅=-⇒⋅=-. 设点()()(),,4,0,4,0M x y A B -,代人上式得444y yx x ⋅=--+.所以22644y x =-,即221616y x +=为动点M 的轨迹方程.又点()4,0A -,所以222222||(4)(4)6443880AM x y x x x x =++=++-=-++. 当44x -时,易得max ||AM ==【点睛】 对于"一动两定”的模型,要探寻定点与两动点的连线段的和差关系或斜率关系,确定动点的轨迹.【例6】已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 作直线l 与椭圆C交于A ,B 两点,P 是椭圆C 上一点.若存在l 和点P 使四边形OAPB 为平行四边形,则椭圆C 的离心率的取值范围为( )【分析】根据平行四边形OAPB ,说明是粗圆的中点弦问题.通过韦达定理或中点弦性质,构建点P 坐标所满足的方程.【解析】解法1设点()00,P x y ,则OP 的中点00,22x y M ⎛⎫⎪⎝⎭.由中心弦性质得22AB OMMF OM b k k k k a⋅=-=⋅,即()22222220000200202y b a y b x b cx x c x a=-⇒++=+. 所以222020a b b cx +=,所以[]20,2a x a a c =-∈-,解得12e .所以1,12e ⎡⎫∈⎪⎢⎣⎭.解法2由于OAPB 为平行四边形,则OP OA OB =+.设点()()()112200,,,,,A x y B x y P x y ,则012012,.x x x y y y =+⎧⎨=+⎩设直线:l x my c =-.由()222222222224,20,b x a y a b b m a y b mcy b x myc ⎧+=⇒+--=⎨=-⎩.所以220120022222222,b mc a cy y y x my c b m a b m a =+==-=-++.由2200221x y a b+=,所以222240b m a c +-=,所以222240a c b m -=-. 即2240c a -解得12e.所以1,12e ⎡⎫∈⎪⎢⎣⎭. 解法3设点()cos ,sin P a b θθ,则中点cos sin ,22a b M θθ⎛⎫ ⎪⎝⎭. 由中点弦性质得22AB OMMF OM b k k k k a⋅=-=⋅,即22sin 0sin 22cos 0cos cos 2b b b a c a a a c θθθθθ-⋅=-⇒+=+,所以1cos 122a ecθ=--⇒.所以1,12e ⎡⎫∈⎪⎢⎣⎭. 【点睛】 对于平行四边形、等腰三角形、菱形等平面图形,通常转化为中点问题.对于中点的处理方法之一是应用中点弦的性质,其二是设而不求,结合韦达定理求出中点坐标,然后利用中点“算两次”得到相应的等量关系,进而求出离心率.【例7】如图,已知椭圆2222:1(0),x y C a b O a b+=>>为坐标原点,()2,0C 为椭圆的右顶点,点,A B 在椭圆上,且四边形OACB 是正方形.(1)求椭圆的方程;(2)斜率为k 的直线l 与椭圆相交于,P Q 两点,且线段PQ 的中点M 恰在线段AB 上,求k 的取值范围.【分析】从问题目例标出发分析.由线段PQ 的中点M 在椭圆内部可以得到k 的不等关系,于是求出中点M 的坐标即可构建目标不等式,可采用韦达定理或点差法求出.【解析】 (1)因为()2,0C 为椭圆的右顶点,故2a =. 因为四边形OACB 是正方形,所以点()1,1在椭圆上,得21114b +=,即243b =.所以椭圆的方程为221443x y +=. (2)方法1设点()()()112200,,,,,P x y Q x y M x y .()222222111212222234,3034,x y x x y y x y ⎧+=⇒-+-=⎨+=⎩,即003x k y =-. 因为点M 在1x =上,所以()001,1,1x y =∈-, 所以013k y =-,即013y k =-,即1113k -<-<,解得11,,33k ∞∞⎛⎫⎛⎫∈--⋃+ ⎪ ⎪⎝⎭⎝⎭. 方法2设点()()()112200,,,,,P x y Q x y M x y ,直线l 的方程为y kx m =+.()2222234,136340,x y k x kmx m y kx m ⎧+=⇒+++-=⎨=+⎩, ()()2222Δ36431340k m k m =-+->,即2212340k m -+>.12000223,23131x x km mx y kx m k k +==-=+=++. 因为PQ 的中点恰在线段AB 上,所以23131kmk -=+, 即202311,3313k m m y k k k+=-==-+. 由()01,1y ∈-得1113k -<-<,解得11,,33k ∞∞⎛⎫⎛⎫∈--⋃+ ⎪ ⎪⎝⎭⎝⎭.【点睛】 利用弦中点在椭圆内部的条件,是构建变量k 的不等关系的常用且高效的方法.【例8】 已知点 ()()2,0,2,0A B -, 动点 (),M x y 满足直线 AM 与 BM 的斜率之积为 12-.记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)过坐标原点的直线交曲线C 于,P Q 两点,点P 在第一象限,PE x ⊥轴,垂足为E ,连结QE 并延长交曲线C 于点G .求PQG 面积的最大值.【分析】 注意到PE x ⊥轴,所以线段PE 分割PQG ,则12PQGG Q S PE x x =⋅-;由中心弦的性质,探寻直线,,PQ GP GQ 的斜率关系,确定三角形的形状,从而求解面积.【解析】(1)因为1222y y x x ⋅=-+-,所以曲线()22:1242x y C x +=≠±. (2)方法1设:PQ y kx =.2222,4(0),121,42P Q y kx x k x x x y k =⎧⎪⇒=>==⎨++=⎪⎩, 记点()()()00000,,,,,0P x y Q x y E x --,所以0022QE y k k x ==. 又由椭圆的中心弦性质知,12GQ GP k k ⋅=-,所以1GP k k=-.所以PQ PG ⊥.故21||tan 2PQGSPQ PQG ∠=⋅. 由两条直线的夹角公式得2tan 2kPQG k ∠=+,()()()()2022812212k k PQ x k k +==++.所以()()()222221881112225PQGk k kk Sk k k k ⎛⎫+ ⎪+⎝⎭==⎛⎫++++ ⎪⎝⎭. 令12t k k=+,所以()28816192252PQGt S t t t==-++. 方法2设点()()()()00000000,,,,,0,:2y P x y Q x y E xQE y x x x --=-. 设2222,4:,121,42P Q y kx PQ y kx x x x x y k =⎧⎪=⋅⇒===⎨++=⎪⎩()()020*******,122,341,42G y y x x x x x x x x y ⎧=-⎪+⎪⇒=⎨+⎪+=⎪⎩()22000020244161211242343412PQGx x k Sy x x k ⋅+++=⋅+=+⋅++ ()()()()22228181169122k k k kk k++=++当且仅当1k =±时取得最大值. 方法3设点()()()()00000000,,,,,0,:2y P x y Q x y E x QE y x x x --=-. ()0020000222200,2221,42G y y x x x x y x x x y x y ⎧=-⎪⎪⇒=+⎨+⎪+=⎪⎩.所以3200002200442G x x y x x x y ++=+, 所以()()()330000002222000018222PQGG x y x y Sy x x x y x y +=+=++.令00y k x =,则同除以40x ,所以()()()300300222200088212212PQGy y k k x x S k k y y x x ⎛⎫+ ⎪+⎝⎭==⎡⎤⎡⎤++⎛⎫⎛⎫⎢⎥⎢⎥++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦. 所以()()()222221881112225PQGk k kk Sk k k k ⎛⎫+ ⎪+⎝⎭==⎛⎫++++ ⎪⎝⎭,所以12t k k =+,所以()28816192252PQGt St t t==-++. 【点睛】问题的核心是根据中心弦的性质,发现直线,,PQ PG QG 的斜率关系. 注若两条直线12,l l 的斜率分别为12,k k ,两条直线的夹角为θ,则()121212tan 11k k k k k k θ-=≠-+.【例9】 已知 221:(3)27F x y ++= 与 222:(3)3F x y -+=, 以 12,F F 分别为左、右焦点的椭圆2222:1(0)x y C a b a b+=>>经过两圆的交点.(1)求椭圆C 的方程;(2),A B 分别为椭圆C 的左、右顶点,,,M N P 是椭圆C 上非顶点的三点,若//,//OM AP ON BP ,试问OMN 的面积是否为定值?若是,求出这个定值,若不是,请说明理由.【分析】 由已知条件分析可得21OM ON AP BP k k k k e ⋅=⋅=-,故考虑引入参量()OM k k k =表示点,M N 的坐标,得到OMN 面积关系式.【解析】(1)设两圆交点为Q ,则12QF QF +==,所以2a a ==又因为222a b c -=,所以23b =.故椭圆方程为221123x y +=. (2)方法1由(1)可得点()(),A B -. 设点()()()112233,,,,,M x y P x y N x y .因为//,//OM AP ON BP ,所以14PA PB OM ON k k k k ⋅=⋅=-,即()13131313140.*4y y x x y y x x =-⇒+=设直线MN 的方程为y kx t =+. ()2222214841201,123y kx t k x ktx t x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 则()()2222Δ644144120k t k t =-+->,即22312t k <+.且21313228412,1414kt t x x x x k k --+==++,()222222222221313132222412841214141414t k t t k t t k y y k x x kt x x t k k k k k -+-=+++=⋅-+=++++,代人()*得222224121241414t t k k k--=-⋅++,可得()22222312,2314t k t k =+=+.于是有13MN x x =-=,点O 到直线MN 的距离d =,即22323t tS t ⋅===为定值.所以OMN 的面积为定值3.方法2依题意知,14PA PB OM ON k k k k ⋅=⋅=-.设直线:OM y kx =,则直线1:4ON y x k=-.设点()()1122,,,M x y N x y . 由22,312y kx x y =⎧⎨+=⎩得221214x k =+,即2121214x k =+. 同理可得222221248411144k x k k ==+⎛⎫+- ⎪⎝⎭. 所以212211221121111114132242424OMNk S x y x y x x x kx k x x k k k +⎛⎫=-=⋅--⋅=+⋅== ⎪⎝⎭故OMN 的面积为定值3.【点睛】 从知识层面,本题直接运用中心弦的性质得到,OM ON 的斜率关系;从面积关系的构建上,本题运用122112OMN S x y x y =-表示面积,这也是常用方法,可以避开传统的底、高的认定与弦长求解.【例10】已知椭圆221:12x C y +=,抛物线22:2(0),C y px p A =>是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (点,B M 不同于点A ). (1)若116p =,求抛物线2C 的焦点坐标; (2)若存在不过原点的直线l 使得M 为AB 的中点,求p 的最大值.【分析】M 既是椭圆弦AB 的中点,也是抛物线上的点,所以设点()()222,2,2,2A pa pa M pm pm ,运用椭圆的中心弦性质得到,m a 之间的关系,由点A 在椭圆上得到,p a 之间的关系,从而得到p 的最大值.【解析】(1)当116p =时,拋物线2C 的焦点坐标为1,032⎛⎫ ⎪⎝⎭. (2)方法1设点()()222,2,2,2A pa pa M pm pm , 所以()2222221222AM OM pa pm pm k k pa pm pm m m a -⋅=⋅=-+.又由中点弦性质知,12AM OM k k ⋅=-,所以220m am ++=,所以22808a a -⇒.思路一因为点()22,2A pa pa 在椭圆1C 上,所以()2222(2)12pa pa +=,所以2421124160p a a =+,当且仅当28a =时,max 40p =.思路二由222222,4202,A A A A A A x y x px y px ⎧+=⇒+-=⎨=⎩,所以2A x p =.又因为2216A xpa p =,216p p , 所以21160p,所以max p =方法2由题意可设直线():0,0l x my t m t =+≠≠,点()00,A x y .将直线l 的方程代入椭圆221:12x C y +=,得()2222220m y mty t +++-=.所以22M mty m =-+. 将直线l 的方程代人抛物线22:2C y px =,得2220y pmy pt --=,所以()()222000222222,,M p m p m y y pt y xmm++=-==.故由点()00,A x y 在椭圆1C 上即220012x y +=, 所以24212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,当且仅当m =,且max 40p =. 【点睛】 本题主要考查中点弦问题,可从设线视角,运用韦达定理沟通变量之间的关系;也可从设点视角,结合点差法,沟通变量之间的关系,体现数学运算中“算两次”的思想.相对而言,比硬解交点容易.。
高考数学二级结论快速解题:专题15 圆锥曲线的中点弦问题(原卷版)

专题15圆锥曲线的中点弦问题一、结论1.在椭圆C :22221(0)x y a b a b中:(特别提醒此题结论适用x 型椭圆)(1)如图①所示,若直线(0)y kx k 与椭圆C 交于A ,B 两点,过A ,B 两点作椭圆的切线l ,l ,有l l ,设其斜率为0k ,则202bk k a.(2)如图②所示,若直线(0)y kx k 与椭圆C 交于A ,B 两点,P 为椭圆上异于A ,B 的点,若直线PA ,PB 的斜率存在,且分别为1k ,2k ,则2122b k k a.(3)如图③所示,若直线(0,0)y kx b k m 与椭圆C 交于A ,B 两点,P 为弦AB 的中点,设直线PO 的斜率为0k ,则202b k k a.2.在双曲线C :22221(0,0)x y a b a b中,类比上述结论有:(特别提醒此题结论适用x 型双曲线)(1)202b k k a .(2)2122b k k a .(3)202b k k a.3.在抛物线C :22(0)y px p 中类比1(3)的结论有00(0)pk y y.特别提醒:圆锥曲线的中点弦问题常用点差法,但是注意使用点差法后要检验答案是否符合题意;另外也可以通过联立+韦达定理求解.二、典型例题1.(2022·内蒙古·海拉尔第二中学高三期末(文))设椭圆的方程为22124x y ,斜率为k的直线不经过原点O ,而且与椭圆相交于A ,B 两点,M 为线段AB 的中点,下列结论正确的是()A .直线AB 与OM 垂直;B .若直线方程为22y x ,则ABC .若直线方程为1y x ,则点M 坐标为1433,D .若点M 坐标为 1,1,则直线方程为230x y ;【答案】D 【详解】不妨设,A B 坐标为 1122,,,x y x y ,则2211124x y ,2222124x y ,两式作差可得:121212122y y y y x x x x ,设 00,M x y ,则002y k x .对A :02AB OM y k k k x,故直线,AB OM 不垂直,则A 错误;对B :若直线方程为22y x ,联立椭圆方程2224x y ,可得:2680x x ,解得1240,3x x ,故1222,3y y ,则AB,故B 错误;对C :若直线方程为y =x +1,故可得12y x ,即002y x ,又001y x ,解得0012,33x y ,即12,33M,故C 错误;此题对C 另解,直接利用二级结论,由于本题椭圆方程为22124x y ,是y 型椭圆,所以:202422a k k b ,故可得0012y x ,即002y x ,又001y x ,解得0012,33x y ,即12,33M,故C 错误;对D :若点M 坐标为 1,1,则121k ,则2AB k ,又AB 过点 1,1,则直线AB 的方程为 121y x ,即230x y ,故D 正确.故选:D .【反思】本题考察椭圆中弦长的求解,以及中点弦问题的处理方法;解决问题的关键是利用点差法,再使用二级结论时,注意先判断椭圆是x 型还是y 型,再利用结论求解.2.(2021·安徽·淮北师范大学附属实验中学高二期中)已知椭圆 2222:10x y E a b a b的右焦点F 与抛物线212y x 的焦点重合,过点F 的直线交E 于A 、B 两点,若AB 的中点坐标为 1,1 ,则E 的方程为()A .2214536x yB .2213627x yC .2212718x yD .221189x y【答案】D 【详解】解:设 11,A x y 、 22,B x y ,若AB x 轴,则A 、B 关于x 轴对称,不合乎题意,将A 、B 的坐标代入椭圆方程得22112222222211x y a b x y a b ,两式相减得22221212220x x y y a b ,可得12121222120x x y y y y a x x b,因为线段AB 的中点坐标为 1,1 ,所以,122x x ,122y y ,因为抛物线212y x 的焦点为 3,0,所以 3,0F ,又直线AB 过点 3,0F ,因此1212101132AB y y k x x,所以,2221202a b,整理得222a b,又3c 218a ,29b ,因此,椭圆E 的方程为221189x y ,故选:D.另解:设 11,A x y 、 22,B x y ,若AB x 轴,则A 、B 关于x 轴对称,不合乎题意,因为抛物线212y x 的焦点为 3,0,所以 3,0F ,所以3c ,设线段AB 的中点坐标为 1,1M ,利用二级结论2222220(1)131OM ABOM FM b b b k k k k a a a 2212b a ,又因为229a b ,解得218a ,29b ,因此,椭圆E 的方程为221189x y,故选:D.【反思】在圆锥曲线中,涉及到中点弦问题,小题中,常用点差法,也可以直接使用二级结论,但是在解答题中,不建议直接使用二级结论,即使使用点差法,也需检验答案是否符合题意,否则,最后还是需要联立直线与圆锥曲线,再求解.3.(2021·湖北·高二阶段练习)已知斜率为1的直线与双曲线 2222:10,0x y C a b a b相交于A 、B 两点,O 为坐标原点,AB 的中点为P ,若直线OP 的斜率为2,则双曲线C 的离心率为()AB .2CD .3【答案】A 【详解】设 11,A x y 、 22,B x y 、 00,P x y ,则22112222222211x y a b x y a b ,两式相减得2222121222x x y y a b ,所以2121221212y y x x b x x a y y .因为1202x x x ,1202y y y ,所以21202120y y b x x x a y .因为12121ABy y k x x ,002 OP y k x ,所以2212b a ,故222b a ,故ce a.故选:A.另解:直接利用双曲线中的二级结论,2222222202221223b b k k b a c a a e e a a.【反思】注意使用二级结论的公式,一定要先判断,第一判断曲线是椭圆,还是双曲线,还是抛物线,第二判断圆锥曲线是x 型,还是y 型,第三,根据判断选择合适的二级结论,代入计算.4.(四川省蓉城名校联盟2021-2022学年高二上学期期末联考理科数学试题)已知抛物线 220x py p ,过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为()A .3y B .32yC .3x D .32x【答案】B【详解】解:根据题意,设 1122,,,A x y B x y ,所以2112x py ①,2222x py ②,所以,① ②得: 1212122x x x x p y y ,即1212122AB y y x x k x x p,因为直线AB 的斜率为1,线段AB 的中点的横坐标为3,所以121212312AB y y x x k x x p p,即3p ,所以抛物线26x y ,准线方程为32y .故选:B【反思】在抛物线C :22(0)y px p 中类比1(3)的结论有00(0)pk y y,注意到本题的抛物线方程是 220x py p ,此时中点弦二级结论有0x k p,直接代入313p p,小题都可以用二级结论直接求解,但是注意先判断适用条件.5.(2021·江西·南昌市新建区第一中学高二期末(理))已知斜率为(0)k k 的直线l 与抛物线2:4C y x 交于,A B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,OFM 的面积等于3,则k ()A .14B .13C .12D.3【答案】B 【详解】由抛物线2:4C y x 知:焦点 1,0F 设 112200,,,,,,A x yB x y M x y 因为M 是线段AB 的中点,所以01201222x x x y y y将2114y x 和2224y x 两式相减可得: 2212124y y x x ,即121202y y k x x y∵000k y ∴00113,62OFM S y y ,022163k y.故选:B另解:因为抛物线方程2:4C y x ,设AB 的中点00(,)M x y ,由中点弦二级结论,可知:00(0)p k y y代入:02k y ,另焦点 1,0F ,因为面积3OFM S ,可知00113,62OFM S y y ,再代入0213k k y.【反思】中点弦,最典型的方法就是点差法,在判断条件满足二级结论时,可直接使用二级结论.6.(2022·湖北·武汉市第十五中学高二期末)已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为4,且点)2在椭圆上.(1)经过点M (1,12)作一直线1l 交椭圆于AB 两点,若点M 为线段AB 的中点,求直线1l 的斜率;【答案】(1)12;.(1)解:由题设椭圆的方程为222+1,4x y b因为椭圆经过点(1,2,所以213+1,1,44b b 所以椭圆的方程为22+14x y .设1122(,),(,)A x y B x y ,所以22112222+44+44x y x y ,所以12121212()()4()()=0x x x x y y y y ,由题得12x x ,所以12121212()4()=0y y x x y y x x ,所以1212241=0y y x x,所以1241=0,=2AB AB k k ,所以直线1l 的斜率为12 ,经检验1l 的斜率等于12复合题意.【反思】在圆锥曲线中,涉及中点弦常用点差法,注意使用点差法,最后需检验,特别是多个答案时,更应该检验,最后保留下符合题意的答案。
圆锥曲线之中点问题及应用+讲义——2024届高三数学一轮复习

第2讲圆锥曲线论之中点问题及应用一、知识点1.中点弦所在直线方程2.有心圆锥垂径定理3.有心圆锥曲线第三定义4.对称问题二、典型例题【题型1 中点弦所在的直线的方程】例1.(1)已知直线l与圆x2+y2=9交于A,B两点,且AB的中点为P(1,1),求直线l的方程(2)已知直线l与椭圆x 24+y23=1交于A,B两点,且AB的中点为P(1,1),求直线l的方程(3)已知直线l与双曲线x2−y22=1交于A,B两点,且AB的中点为P(2,1),求直线l的方程(4)已知直线l与抛物线y2=4x交于A,B两点,且AB的中点为P(1,1),求直线l的方程【题型2有心圆锥曲线垂径定理】例2、(1)已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,点(2,√2)在C上,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,直线OM的斜率与直线l的斜率的乘积为定值。
(2)已知椭圆C:9x2+y2=m2(m>0), 直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB中点为M,证明:直线OM的斜率与直线l的斜率的乘积为定值。
(3)已知A,B,C是椭圆W:x 24+y2=1上的三个点,O是坐标原点,当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由。
(4)已知椭圆E:x 2a2+y2b2=1(a>b>0)的离心率为√32,且过点(√72,34),点P在第一象限,A为左顶点,B为下顶点,PA交y轴于点C,PB交x轴于点D,若CD∥AB,求点P的坐标。
(5)双曲线C:x 2a2−y2b2=1(a>0,b>0),直线y=kx+m交双曲线C于A,B两点,交双曲线C的渐近线于C,D,求证:|AC|=|BD|(6)已知斜率为k的直线l与椭圆C:x 24+y23=1交于A,B两点,且AB的中点为M(1,m)(m>0),证明:k<−12(7)已知双曲线x2−y22=1,过点P(1,1)能否作直线l,使l与所给双曲线交于Q1,Q2两点,且点P是弦Q1Q2的中点?直线l如果存在,求出它的方程;如果不存在,说明理由。
圆锥曲线中点弦专题篇

圆锥曲线专题04 中点弦问题一、用点差法求斜率及常用公式在圆锥曲线中涉及弦中点问题,如果涉及斜率,则常用点差法求斜率,关于点差法求斜率的方法,证明过程如下:直线y km b =+与椭圆2222:1x y C a b+=交于A,B 两点,00(x ,y )M 是弦AB 的中点,求直线AB 的斜率。
【解析】设1122A(x ,y ),B(x ,y ),点A,B 在椭圆上,所以221122x y 1a b +=…………………………………….①222222x y 1a b+=…………………………………….②①-②得:2222121222x x y y 0a b --+= 2121221212(x x )(x x )(y y )(y y )a b -+=--+220220y ..x AB AB OM b b k k k a a=-⇒=-这是一个标准的点差法求斜率的例题,不过需要注意最后的结论,因为方法过程简单但是繁琐,在小题里面可以直接利用结论来求出相关的斜率,常用结论如下:1、斜率为k 的直线l 交椭圆22221x y a b +=于1122A(x ,y ),B(x ,y )两点且AB 的中点为00(x ,y )M ,则22.OMb k k a =-,焦点在y 轴上时有22.OM a k k b=-2、斜率为k 的直线l 交双曲线22221x y a b -=于1122A(x ,y ),B(x ,y )两点且AB 中点为00(x ,y )M ,则22.OMb k k a =,焦点在y 轴上时有22.OM a k k b= 3、斜率为k 的直线l 交抛物线22y px =于1122A(x ,y ),B(x ,y )两点且AB 中点为00(x ,y )M ,则0.OM p k k x =例1:已知双曲线2213x y -=的右焦点是抛物线22(p 0)y px =>的焦点,直线y km b =+与抛物线相交于A,B 两个不同的点,点(2,2)M 是AB 的中点,则AOB ∆的面积是( )A B C D例2:如图,椭圆22214x y a +=的焦点为12,F F ,过1F 的直线交椭圆于点M,N ,交y 轴于点H ,若1F ,H 是线段的三等分点,则2F MN ∆的周长为_______.【解析】2F MN ∆的周长等于4a ,直线MN 斜率必定存在,设其为k ,则:y k(x c)MN =+可得H(0,ck),1F H 中点坐标为(,)22c ckP -所以2K 2op ckk c ==--根据中点弦结论可知22K .K MN op b a=-则,(0,)b bc k H a a =,因为H 是1F N 的中点,可得2N(c,)bc a将N 点代入椭圆方程中整理可得225a c =,结合b=2解得25a = 故2F MN ∆的周长为二、利用导数法求解中点弦问题探究:在点差法中我们设了两个点,每个点中又有两个量,能不能减少未知量的个数,利用中点坐标公式我们可以将四个未知量变成两个,如下:例:过点(2,1)A 作一条直线l 交椭圆221169x y +=于点12,P P ,若点A 恰好是弦12P P 的中点,求直线l 的方程。
圆锥曲线中点弦典型例题及解析

01
总结词
这类问题主要考察了圆锥曲线与切线相关的性质和定理,需要利用切线
性质和圆锥曲线的定义来解决。
02
详细描述
在解决与切线相关的问题时,我们需要利用圆锥曲线的切线性质和定义,
结合题目给出的条件,推导出与中点弦相关的方程或不等式,进而求解。
03
示例
已知抛物线C的方程为y^2 = 2px (p > 0),过其焦点F作直线与C交于A、
数形结合
将代数问题与几何图形相结合 ,利用几何意义求解。
THANKS
感谢观看
特殊情况
当点$P$为圆锥曲线的焦点时, 中点弦称为焦点弦。
中点弦的性质
垂直性质
角度性质
中点弦所在的直线与过点$P$的切线 垂直。
中点弦与切线之间的夹角等于该弦所 对的圆周角。
长度性质
中点弦的长度与过点$P$的切线长度 成反比。
中点弦的几何意义
中点弦是连接圆锥曲 线上的两个对称点的 线段。
中点弦的长度等于圆 锥曲线上的两个对称 点到点$P$的距离之 和的一半。
详细描述
在解决椭圆的中点弦问题时,需要注意中点 弦的特殊性质。例如,当直线过椭圆中心时, 中点弦即为椭圆本身;当直线的斜率为0或 无穷大时,中点弦的长度为椭圆的长轴或短 轴的长度。这些特殊性质可以帮助我们快速 判断中点弦的性质和范围。
双曲线的中点弦问题
总结词
双曲线的性质和方程
详细描述
双曲线的中点弦问题主要考察了双曲线的性质和方程。解决这类问题需要利用双曲线的 性质,如对称性、开口方向等,以及双曲线的方程,如标准方程、参数方程等。通过联 立直线和双曲线的方程,消元化简,可以得到关于中点弦的方程,进一步求解得到中点
圆锥曲线中的中点弦问题

圆锥曲线中的中点弦问题(泌阳第二高级中学河南泌阳463700)直线与圆锥曲线相交所得弦中点问题,是高考的一个热点问题,也是解析几何的主要内容之一。
在近几年的高考试题中时有出现。
以下三个结论在解决相关问题时能有效简化解题过程,节省做题时间。
我们通过练习体会一下。
1. 三个结论结论1:在椭圆x2m+y2n=1(m>0,n>0,m≠n)中,弦AB以点M(x0,y0 )为中点,则弦AB所在直线的斜率与直线OM的斜率之积kAB ·kOM=-nm结论2:在双曲线x2m-y2n=1 (m>0,n>0)中,弦AB以点M(x0,y0)为中点,则弦AB所在直线的斜率与直线OM的斜率之积kAB ·kOM=nm结论3:在抛物线y2=2px(p >0)中,弦AB以点M(x0,y0)为中点,则弦AB所在直线的斜率是kAB =py02. 说明(1)上述结论均只考虑直线斜率存在的情形,做解答题时仍需分类讨论,关注斜率不存在的情形.(2)上述结论均可利用点差法进行证明,(3).利用结论2求弦所在的直线方程时,应注意验证。
3. 结论的应用类型1:求与中点有关的圆锥曲线的标准方程问题例1(2013年高考数学全国新课标卷I理科第10题)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点F(3,0),过F的直线交椭圆于A、B两点,若AB的中点坐标是M(1,-1),则椭圆方程是()A.x245+y236=1B.x227+y218=1C.x236+y227=1D.x218+y29=1析:由结论1可知:kAB·kOM=kMF·kOM=12·-11=-12=-b2a2∴a2=2b2,又a2-b2=9,解得b2=9,a2=18故选D练习.1.(2010年高考数学课标全国卷理科第12题)已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A、B两点,且AB的中点为N(-12,-15),则E的方程是()A.x23-y26=1B.x24-y25=1C.x26-y23=1D.x25-y24=1析:由结论2知:kAB·kON=b2a2=3-(-12)0-(-15)·-15-12=54,4b2=5a2又a2+b2=9,解得a2=4,b2=5,故选B2.(2012郑州三模,16)已知双曲线x2-y23=1上存在两点M、N关于直线y=x+m 对称,且线段MN 中点P在抛物线y2=18x上,则实数m的值为_________析:由结论2可知:kOP ·kMN=kOP ·(-1)=b2a2=3,∴kOP=-3,设P(x0,y0),则y0x0=-3推出y0=-3x0,代入y2=18x 得9x02=18x0,解得x0=2y0=-6,x0=0y0=0,再代入方程y=x+m ,得m=-8或m=0类型2:求以某点为中点的弦所在直线方程问题例2.(北师大版选修1——1第48页A组第8题)已知椭圆x216+y24=1 ,求以点P(2,-1)为中点的弦所在的直线方程。
圆锥曲线中点弦问题 -2023届高三数学二轮专题复习

专题圆锥曲线综合中点弦问题一、单选题1.(2022·云南·景东彝族自治县第一中学高三阶段练习)已知椭圆2222:1(0)x y E a b a b +=>>的左焦点为F ,离心率为25.过点F 作直线与椭圆E 交于A ,B 两点,与直线2y x =-交于点P ,若P 恰好是AB 的中点,则直线l 的斜率为( )A .52B .2150C D .25-2.(2022·全国·高三专题练习)点1F ,2F 是曲线C :2213x y -=的左右焦点,过1F 作互相垂直的两条直线分别与曲线交于A ,B 和C ,D ;线段AB ,CD 的中点分别为M ,N ,直线2GF 与x 轴垂直且点G 在C 上.若以G 为圆心的圆与直线MN 恒有公共点,则圆面积的最小值为( ) A .1153πB .763πC .493πD .283π3.(2022·安徽淮北·一模(文))已知抛物线()220y px p =>的焦点()2,0F ,过焦点F 的直线交抛物线于,A B两点,若(),2M m 是线段AB 的中点,则下列结论不正确的是( ) A .4p = B .准线方程为2x =- C .10AB =D .点M 到准线的距离为64.(2022·湖南长沙·高三阶段练习)已知m ,n ,s ,t 为正数,4m n +=,9m ns t+=,其中m ,n 是常数,且s +t 的最小值是89,点M (m ,n )是曲线22182x y -=的一条弦AB 的中点,则弦AB 所在直线方程为( )A .x -4y +6=0B .4x -y -6=0C .4x +y -10=0D .4100x y +-=5.(2022·全国·高三专题练习)下列结论正确的个数为( )①直线(2)y k x =+与曲线y =[0,]6π;②若动点(,)P x y 2,则点P 的轨迹为双曲线;③点1F ,2F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且椭圆上存在点P 使得12||3||PF PF =,则椭圆的离心率的取值范围为1[,1)2;④点2F 为椭圆2212516x y +=的右焦点,点P 为椭圆上任意一点,点(1,3)M ,则2||||PF PM +的最小值为5;⑤斜率为2的直线与椭圆22221(0)x y a b a b+=>>交于A ,B 两点,点M 为AB 的中点,直线OM 的斜率为1(4O-为坐标原点) A .1B .2C .3D .46.(2022·内蒙古赤峰·高三期末(文))若椭圆221169x y +=的弦被点()2,1平分,则这条弦所在的直线方程是( ) A .20x y -= B .370x y +-= C .240x y +-=D .98260x y +-=7.(2022·江苏苏州·高三期末)若斜率为(0)k k >的直线与抛物线24y x =和圆22:(5)9M x y -+=分别交于,A B 和,C D 两点,且AC BD =,则当MCD △面积最大时k 的值为( )A .B C .2D .8.(2022·浙江·高三专题练习)椭圆22:1C mx ny +=与直线1y =交于M 、N 两点,过原点与线段MN 中点的直线的斜率为23,则mn的值为( )A .2 BC D 9.(2023·全国·高三专题练习)已知斜率为的直线与双曲线()2222:10,0x y C a b a b-=>>相交于A 、B 两点,O为坐标原点,AB 的中点为P ,若直线OP 的斜率为2,则双曲线C 的离心率为( )AB .2C D .10.(2021·宁夏·石嘴山市第三中学高三阶段练习(文))已知椭圆22:184x y C +=,直线不过原点O 且不平行于坐标轴,与C 有两个交点,A B ,线段AB 的中点为M ,则OM 的斜率与直线的斜率的乘积( ) A .1-B .1C .12D .12-11.(2021·新疆昌吉·高三阶段练习(文))过椭圆2222:1(0)x y C a b a b+=>>右焦点F 的直线:0l x y -=交C 于A ,B 两点,P 为AB 的中点,O 为坐标原点,且OP 的斜率为14-,则椭圆C 的标准方程为( )A .22163x y +=B .22152x y +=C .2214x y +=D .22174x y +=12.(2022·全国·高三专题练习)过点(1,1)A 作直线l 与双曲线2212yx -=交于P ,Q 两点,且使得A 是PQ 的中点,直线l 方程为( ) A .210x y --=B .2x +y -3=0C .x =1D .不存在13.(2021·全国·高三专题练习)若椭圆的中心为原点,过椭圆的焦点(2,0)F -的直线l 与椭圆交于A ,B 两点,已知AB 的中点为11,2M ⎛⎫- ⎪⎝⎭,则椭圆的长轴长为( )A.B .4 CD二、多选题14.(2022·全国·高三专题练习)在平面直角坐标系xOy 中,过点()2,0M 的直线l 与抛物线C :()220y px p =>交于A ,B 两点,点()()000,0N x y y ≠为线段AB 的中点,且BN ON =,则下列结论正确的为( ) A .N 为AOB 的外心 B .M 可以为C 的焦点 C .l 的斜率为1y D .0x 可以小于215.(2022·全国·高三专题练习)已知椭圆22:1C mx ny +=与直线1y x =+交于A 、B两点,且AB =,21,33M ⎛⎫- ⎪⎝⎭为AB 的中点,若P 是直线AB 上的点,则( ) A .椭圆CB .椭圆CC .3OA OB ⋅=-D .P 到C的两焦点距离之差的最大值为16.(2022·全国·高三专题练习)已知抛物线2:4C y x =的焦点为F ,斜率为的直线交抛物线于A 、B 两点,则( )A .抛物线C 的准线方程为1x =B .线段AB 的中点在直线2y =上C .若8AB =,则OAB的面积为D .以线段AF 为直径的圆一定与y 轴相切17.(2021·河北衡水中学高三阶段练习)黄金分割是一种数学上的比例,是自然的数美.黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值.应用时一般取0. 618.将离心率为黄金比倒数,即0e=的双曲线称为黄金双曲线,若a ,b ,分别是实半轴、虚半轴、半焦距的长,则对黄金双曲线,下列说法正确的有( )A .当焦点在x轴时,其标准方程为2221x a = B .若双曲线的弦EF 的中点为M ,则0EF OM k k e ⋅=- C .,,a b c 成等比数列D .双曲线的右顶点(,0)A a ,上顶点(0,)B b 和左焦点(),0F c -构成的ABF △是直角三角形18.(2022·全国·高三专题练习)已知椭圆C :()222210x y a b b a +=>>的上下焦点分别为1F ,2F ,且焦距为2c ,离心率为e .直线l :()y kx c k =+∈R 与椭圆交于A ,B 两点,则下列说法中正确的有( ) A .若AB 的最小值为3c ,则12e =B .2ABF △的周长为4aC .若2213AF AF c →→⋅=,则e的取值范围为12⎤⎥⎣⎦ D .若AB 的中点为M ,则22OM bk k a ⋅=- 19.(2022·全国·高三专题练习)已知椭圆2222:1(0)x y a b a b +=>>的离心率为2,ABC 的三个顶点都在椭圆上,O 为坐标原点,设它的三条边AB ,BC ,AC 的中点分别为D ,E ,F ,且三条边所在直线的斜率分别1k ,2k ,3k ,且1k ,2k ,3k 均不为,则( ) A .22:2:1a b =B .直线AB 与直线OD 的斜率之积为2-C .直线BC 与直线OE 的斜率之积为12-D .若直线OD ,OE ,OF 的斜率之和为,则123111k k k ++的值为2- 三、填空题20.(2023·全国·高三专题练习)以(2,1)A 为中点的双曲线22:22C x y -=的弦所在直线的方程为________. 21.(2022·北京二中高三阶段练习)已知A ,B 是抛物线2:4C y x =上的两点,线段AB 的中点为(2,2)M ,则直线AB 的方程为__________.22.(2023·全国·高三专题练习)双曲线E :22221(0,0)x y a b a b-=>>被斜率为4的直线截得的弦AB 的中点为()21,,则双曲线E 的离心率为 ______.23.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________.24.(2022·全国·高三专题练习)若双曲线2213y x -=上存在两个点关于直线:4(0)l y kx k =+>对称,则实数k 的取值范围为______.四、解答题25.(2022·全国·高三专题练习)已知O 为坐标原点,点⎛ ⎝⎭在椭圆C :()222210x y a b a b +=>>上,直线l :=+y x m 与C 交于A ,B 两点,且线段AB 的中点为M ,直线OM 的斜率为12-.(1)求C 的方程;(2)若=1m ,试问C 上是否存在P ,Q 两点关于l 对称,若存在,求出P ,Q 的坐标,若不存在,请说明理由.26.(2022·全国·高三专题练习)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(1)若116=p ,求抛物线2C 的焦点坐标; (2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.27.(2022·全国·高三专题练习)已知抛物线C :22(0)y px p =>与直线2y x =+相切. (1)求C 的方程;(2)过C 的焦点F 的直线l 与C 交于A ,B 两点,AB 的中垂线与C 的准线交于点P ,若PA =,求l 的方程.28.(2022·全国·高三专题练习)已知双曲线C :2214x y -=,过点()2,1P 的直线l 与双曲线C 相交于A ,B两点,O 为坐标原点.(1)判断点P 能否为线段AB 的中点,说明理由(2)若直线OA ,OB 的斜率分别记为OA k ,OB k ,且25OA OB k k +=,求直线l 的方程29.(2022·全国·高三专题练习)已知曲线Γ上一动点P 到两定点()10,2F -,()20,2F 的距离之和为点()1,0Q - 的直线L 与曲线Γ相交于点()11,A x y ,()22,B x y . (1)求曲线Γ的方程;(2)动弦AB 满足:AM MB = ,求点M 的轨迹方程;30.(2022·全国·高三专题练习)已知曲线C 的方程为24(0)y x x =>,曲线E 是以1(1,0)F -、2(1,0)F 为焦点的椭圆,点P 为曲线C 与曲线E 在第一象限的交点,且253PF =. (1)求曲线E 的标准方程;(2)直线与椭圆E 相交于A 、B 两点,若AB 的中点M 在曲线C 上,求直线的斜率k 的取值范围.31.(2022·全国·高三专题练习)已知椭圆22:143x y C +=的一个焦点为()1,0F ,过点()4,0P 且与x 轴不重合的直线与椭圆C 交于,A B 两点.(1)若线段AB 中点的横坐标为47,求直线的方程;(2)设直线AB 与直线=1x 交于点Q ,点M 满足MP x ⊥轴,MB x ∥轴,试求直线MA 的斜率与直线MQ 的斜率的比值.32.(2022·全国·高三专题练习)设12,F F 分别是椭圆:E 22221(0)x y a b a b+=>>的左、右焦点,过1F 斜率为1的直线与E 相交于,A B 两点,且22||,||,||AF AB BF 成等差数列. (1)求a 与b 的等量关系;(2)设点()01P -,满足PA PB =,求E 的方程. 33.(2022·全国·高三专题练习)已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且斜率为1的直线与抛物线C 交于A ,B 两点,且AB 的中点的纵坐标为2.求C 的方程.34.(2022·全国·高三专题练习)已知椭圆22221(0)x y a b a b +=>>,过右焦点()23,0F 的直线交椭圆于A 、B ,且()1,1M -是线段AB 的中点,1F 是椭圆左焦点,求1F AB 的面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。
这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题。
其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。
一、求中点弦所在直线方程问题例1、过椭圆141622=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。
解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:16)12(4)2(8)14(2222=--+--+k x k k x k又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是14)2(82221+-=+k k k x x ,又M 为AB的中点,所以214)2(422221=+-=+k k k x x ,解得21-=k ,故所求直线方程为042=-+y x 。
解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点,所以421=+x x ,221=+y y ,又A 、B 两点在椭圆上,则1642121=+y x ,1642222=+y x ,两式相减得0)(4)(22212221=-+-y y x x , 所以21)(421212121-=++-=--y y x x x x y y ,即21-=AB k , 故所求直线方程为042=-+y x 。
解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1),则另一个交点为B(4-y x -2,),因为A 、B 两点在椭圆上,所以有⎩⎨⎧=-+-=+16)2(4)4(1642222y x y x , 两式相减得042=-+y x ,由于过A 、B 的直线只有一条, 故所求直线方程为042=-+y x 。
二、求弦中点的轨迹方程问题例2、过椭圆1366422=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。
解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),则有⎩⎨⎧=+=+57616957616922222121y x y x , 两式相减得0)(16)(922212221=-+-y y x x ,又因为x x x 221=+,y y y 221=+,所以0)(216)(292121=-⋅+-⋅y y y x x x , 所以yxx x y y 1692121=--,而)8(0---=x y k PQ ,故8169+=x y y x 。
化简可得01672922=++y x x (8-≠x )。
解法二:设弦中点M (y x ,),Q (11,y x ), 由281-=x x ,21yy =可得821+=x x ,y y 21=, 又因为Q 在椭圆上,所以136642121=+yx ,即136464)4(422=++y x , 所以PQ 中点M 的轨迹方程为1916)4(22=++y x (8-≠x )。
三、弦中点的坐标问题例3、求直线1-=x y 被抛物线x y 42=截得线段的中点坐标。
解:解法一:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点),(00y x P ,由题意得⎩⎨⎧=-=x y x y 412, 消去y 得x x 4)1(2=-,即0162=+-x x ,所以32210=+=x x x ,2100=-=x y ,即中点坐标为)2,3(。
解法二:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点),(00y x P ,由题意得⎩⎨⎧==22212144x y x y ,两式相减得)(4122122x x y y -=-, 所以4))((121212=-+-x x y y y y ,所以421=+y y ,即20=y ,3100=+=y x ,即中点坐标为)2,3(。
上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些基本解法。
下面我们看一个结论引理 设A 、B 是二次曲线C :022=++++F Ey Dx Cy Ax 上的两点,P ),(00y x 为弦AB 的中点,则 )02(22000≠+++-=E Cy E Cy DAx k AB 。
设A ),(11y x 、B ),(22y x 则0112121=++++F Ey Dx Cy Ax (1)0222222=++++F Ey Dx Cy Ax (2))2()1(-得0)()())(())((212121212121=-+-+-++-+y y E x x D y y y y C x x x x A ∴0)()()(2)(22121210210=-+-+-+-y y E x x D y y Cy x x Ax ∴0))(2())(2(210210=-++-+y y E Cy x x D Ax∵020≠+E Cy ∴21x x ≠ ∴E Cy D Ax x x y y ++-=--00212122即E Cy D Ax k AB ++-=0022。
(说明:当B A −→−时,上面的结论就是过二次曲线C 上的点P ),(00y x 的切线斜率公式,即E Cy D Ax k ++-=0022) 推论1 设圆022=++++F Ey Dx y x 的弦AB 的中点为P),(00y x ()00≠y ,则E y D x k AB ++-=0022。
(假设点P 在圆上时,则过点P 的切线斜率为)推论2 设椭圆12222=+b y a x 的弦AB 的中点为P ),(00y x ()00≠y ,则0022y x a b k AB •-=。
(注:对a ≤b也成立。
假设点P 在椭圆上,则过点P 的切线斜率为0022y x a b k •-=) 推论3 设双曲线12222=-b y a x 的弦AB 的中点为P ),(00y x ()00≠y 则0022y x a b k AB •=。
(假设点P 在双曲线上,则过P 点的切线斜率为0022y x a b k •=) 推论4 设抛物线px y 22=的弦AB 的中点为P ),(00y x ()00≠y 则0y pk AB =。
(假设点P 在抛物线上,则过点P 的切线斜率为)0y p k =我们可以直接应用上面这些结论解决有关问题,下面举例说明。
例1、求椭圆1162522=+y x 斜率为3的弦的中点轨迹方程。
解:设P (x ,y )是所求轨迹上的任一点,则有y x•-=25163,故所示的轨迹方程为16x+75y=0)2417524175(<<-x例2、已知椭圆),0(12222>>=+b a b y a x A 、B 是椭圆上两点,线段AB 的垂直平分线l 与x 轴相交于P )0,(0x ,求证:a b a x a b a 22022-<<--。
证明:设AB 的中点为T ),(11y x ,由题设可知AB 与x 轴不垂直,∴01≠y ,∴1122y x a b k AB •-= ∵l ⊥AB ∴1122x y b a k l •= E y Dx k ++-=0022∴l 的方程为:)(111221x x x y b a y y -•=- 令y=0 得)(01011221x x x y b a y -•=-∴02221x b a a x •-= ∵a x <||1 ∴ax b a a <•-||0222∴a b a x a b a 22022-<<-- 例3、已知抛物线C :x y =2,直线,1)1(:+-=x k y l 要使抛物线C 上存在关于l 对称的两点,k 的取值范围是什么解:设C 上两点A 、B 两点关于l 对称,AB 的 中点为P),(00y x ()00≠y∴k y y p k AB 12100-=== ∴k y 210-=∵P ∈l ∴,1)1(00+-=x k y ∴,1)1(210+-=-x k k ∴k x 1210-= ∴)21,121(k k P -- ∵P 在抛物线内 ,∴k k 121412-< ∴,04423<+-k k k∴,04)22)(2(2<+-+k k k k ∴.02<<-k。