相位编码脉冲压缩方法在空气耦合超声检测信号处理中的应用_周正干

相位编码脉冲压缩方法在空气耦合超声检测信号处理中的应用_周正干
相位编码脉冲压缩方法在空气耦合超声检测信号处理中的应用_周正干

数字信号处理Matlab实现实例(推荐给学生)

数字信号处理Matlab 实现实例 第1章离散时间信号与系统 例1-1 用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。 解 MATLAB程序如下: a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 图1.1给出了卷积结果的图形,求得的结果存放在数组c中为:{-2 -4 1 3 1 5 1 -3}。 例1-2 用MATLAB计算差分方程 当输入序列为时的输出结果。 解 MATLAB程序如下: N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)];

k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n');ylabel('幅度') 图 1.2 给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。 例1-3 用MATLAB 计算例1-2差分方程 所对应的系统函数的DTFT 。 解 例1-2差分方程所对应的系统函数为: 123 123 0.80.440.360.02()10.70.450.6z z z H z z z z -------++= +-- 其DTFT 为 23230.80.440.360.02()10.70.450.6j j j j j j j e e e H e e e e ωωωω ωωω--------++= +-- 用MATLAB 计算的程序如下: k=256; num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h));grid title('实部') xlabel('\omega/\pi');ylabel('幅度')

传感器脉冲信号处理电路设计

传感器脉冲信号处理电路设计 摘要 介绍了一种基于单片机平台,采用霍尔传感器实施电机转速测量的方法,硬件系统包括脉冲信号产生,脉冲信号处理和显示模块,重点分析,脉冲信号处理电路,采用c 语言编程,通过实验检测电路信号。 关键词:霍尔传感器;转速测量;单片机

目录 1 绪论 (1) 1.1 课题描述 (1) 1.2 基本工作原理及框图 (1) 2 相关芯片及硬件电路设计 (1) 2.1系统的主控电路 (1) 2.2 STC89C52单片机介绍 (2) 2.2.1 STC89C52芯片管脚介绍 (2) 2.2.2 时钟电路 (3) 2.3 单片机复位电路 (3) 2.4 霍尔传感器电机采样电路 (4) 2.4.1 A3144霍尔开关的工作原理及应用说明 (4) 2.4.2 霍尔传感器测量原理 (5) 2.5 电机驱动电路 (6) 2.6 显示电路 (6) 3 软件系统设计 (7) 3.1 软件流程图 (7) 3.2 系统初始化 (9) 3.3 定时获取脉冲数据 (10) 3.4 数据处理及显示 (11) 3.5 C语言程序 (12) 总结 (15) 致谢 (16) 参考文献 (17)

1 绪论 1.1 课题描述 在工农业生产和工程实践中,经常会遇到各种需要测量转速的场合,测量转速的方法分为模拟式和数字式两种。模拟式采用测速发电机为检测元件,得到的信号是模拟量,控制系统的硬件部分非常复杂,功能单一,而且系统非常不灵活、调试困难。数字式通常采用光电编码器、圆光栅、霍尔元件等为检测元件,得到的信号是脉冲信号。单片机技术的日新月异,特别是高性能价格比的单片机的出现,转速测量普遍采用以单片机为核心的数字式测量方法,使得许多控制功能及算法可以采用软件技术来完成。采用单片机构成控制系统,可以节约人力资源和降低系统成本,从而有效的提高工作效率。本课题,是要利用霍尔传感器来测量转速。由磁场的变化来使霍尔传感器产生脉冲,由单片机计数,经过数据计算转化成所测转速,再由数码管显示出来。 1.2 基本工作原理及框图 本课程设计的电机采用直流电机,然后利用霍尔传感A3144对电机的转速进行采样从而输出脉冲信号。主控芯片采用STC89C52单片机,对脉冲个数进行计数并经过数据处理以后得到单位时间电机转过的转数机电机的转速,再通过显示电路将电机转速显示出来。基本工作原理框图如图1所示。 图1基本工作原理框图 2 相关芯片及硬件电路设计 2.1系统的主控电路 图2是该系统的主控单元的电路图。J2、J3、J4、J5是单片机的I/O端口的扩展,预留接口用于调试等。主控芯片采用STC89C52单片机,该系统中采用定时器0作为定时器,定时器的时间为1S。定时器1作为计数器,对P35引脚采集到的脉冲信号进行计数操作,单片机然后对数据进行处理,计算出1S计数脉冲的个数,即电机转速。然后通过显示电路将电机转速显示出来,从而实现整个系统的功能。

多波束天线通道幅相一致性校正及实现(精)

多波束天线通道幅相一致性校正及实现 朱丽龚文斌杨根庆 (中科院上海微系统与信息技术研究所,上海 200050) 摘要:本文针对多波束天线接收机的通道幅相一致性校正,提出了一种基于自适应算法的校正方法并在FPGA 中实现了该方法。在满足系统要求的前提下,该方法不但实现起来相对容易,而且算法的精度和动态范围也有一定的保证。仿真和试验结果表明,该方法是可行的。关键词:多波束天线,通道失衡,幅相误差,最小均方误差,校正 1.引言 随着人们对卫星通信要求的不断提高,卫星通信技术得到了很大的发展。其中,卫星多波束天线目前己成为提高卫星通信性能、降低系统成本的一项关键性技术。 多通道接收机是DBF 天线系统中信号的必经之路,正是这种多接收通道的结构,使DBF 天线系统增加了幅度和相位误差的潜在来源。与多个天线阵列相连接的多个接收机通道必须要有很高的一致性,否则通道间的失配将严重影响数字波束系统的性能。对多通道间误差的校正正是星载数字多波束天线的关键技术之一。由于目前国内对星载DBF 天线的研究还处于初级阶段,所以需要更多的借鉴智能天线、自适应天线和雷达等领域已有的研究成果。 本文主要针对基于卫星应用的两维阵列DBF 天线系统,采用目前最常用的LMS 算法设计并在FPGA 中实现了对其前端射频多通道接收机的幅相校正系统,最后给出了测试结果。测试结果表明,这种采用定点数制的LMS 算法对系统的幅相误差具有较好的校正性能。 2.数字多波束天线的幅相校正原理

数字多波束天线的组成如图1所示。前端天线阵是由多个天线单元组成两维阵列,阵元接收的信号经射频前端电路、A/ D 转换电路、数字下变频器后送入数字波束形成器处理。[2][1] 设计一个六边形排列的7单元天线阵,A/D后端的数字下变频器和波束形成器均采用FPGA 实现。天线阵接收到的信号首先通过射频通道混频后得到中频信号,再将此模拟中频信号经过ADC 后得到数字中频信号,然后送入DDC 进行下变频;下变频后,每路信号分为正交的I、Q 两路,这些正交的信号再送入波束成形器中进行波束成形,最后的输出即为合成的波束。接收通道在制造时的各种误差、电路器件的选择,A/D的量化精度、DDC 的性能、I/Q两路的正交误差等因素都会引起信号幅度和相位的变化。为了能够正确的波束成形,达到系统的精度要求,就必须要对多通道接收机进行校正,校正系统原理图如下图2 所示。

信号处理论文

SHANGHAI UNIVERSITY 课程论文 COURSE PAPER 学院机电工程与自动化学院学号16721828 学生姓名石成章 课程信号处理

基于ZigBee技术的智能照明系统设计 石成章16721828 (上海大学机自学院控制工程) 摘要:本文设计了基于ZigBee无线传感器网络技术的智能照明系统。该系统由若干智能灯光节点以自组网的形式组成,通过感知外部光强信息的变化情况,能够自适应的调节灯光节点的亮度,并可以通过PC上的数据中心对灯光节点进行智能控制。 关键词:ZigBee技术;MSP430F2618单片机; Design of Intelligent Lighting System Based on ZigBee Technology Shi Chengzhang 16721828 Abstract:This paper designs an intelligent lighting system based on ZigBee wireless sensor network technology. The system is composed of several intelligent lighting nodes in the form of self-organizing network. By sensing the change of external light intensity information, the system can adjust the brightness of the lighting node adaptively and can intelligently control the lighting nodes through the data center on the PC. Key words:ZigBee technology; MSP430F2618 microcontroller 1背景介绍 随着科技的飞速发展和生活水平的不断提高,人们对于家居生活的现代化、节能化和舒适化的需求越来越强烈,家庭自动化[1]的概念也为人们所熟知。智能照明系统作为家庭自动化的应用之一,具有广阔的应用前景。传统的照明系统往往采用有线连接,具有布线麻烦、增减设备需要重新布线、系统可扩展性差、安装和维护成本高以及移动性能差等缺点[2],且往往采用人工控制的方法或使用节能灯具来实现节能,不能根据室外光强自适应地调整灯具的发光亮度,从而达不到高效节能的目的。 针对传统照明系统的不足,一方面可以考虑采用无线连接的形式取代传统的有线连接。ZigBee技术[3]作为新兴的近距离无线通信技术之一,具有近距离、低速率、低功耗、且极廉价的市场定位,非常适合在照明系统中应用;另一方面可以使用先进的微处理电子技术,对灯具的亮度变化进行自适应调节。当室外光强较强时,室内灯具亮度自动调暗,室外光强较弱时,室内灯具亮度自动调亮,从而达到高效节能的目的。 2 zigbee技术简介 2.1 Zigbee技术 ZigBee是基于IEEE 802. 15. 4的无线通信协议,它是一种短距离、低功耗协议,专

现代光电信息处理技术样本

1、 在空域中, 如何利用d 函数进行物光场分解。( 5分) 答: 根据δ函数的筛选性质, 任何输入函数都能够表示为 ()()()ηξηξδηξd d y x f y x f 1??∞ ∞-111--=,,, 上式表明, 函数()1y x f 1, 能够分解成为在1y x 1, 平面上不同位置处无穷多个δ函数的线性组合, 系数()ηξ,f 为坐标位于()ηξ, 处的δ函数在叠加时的权重。函数()1y x f 1,经过系统后的输出为 () ()()??????--=??∞∞-112ηξηξδηξd d y x f y x g 2,,,L 根据线性系统的叠加性质, 算符{} L 与对基元函数积分的顺序能够交换, 即可将算符{} L 先作用于各基元函数, 再把各基元函数得到的响应叠加起来 ()()(){}ηξηξδηξd d y x f y x g 2??∞ ∞-112--=,, ,L ( 1.4) (){ }ηξδ--11y x ,L 的意义是物平面上位于()ηξ, 处的单位脉冲函数经过系统后的输出, 可把它定义为系统的脉冲响应函数( 图1.3) ()(){}ηξδηξ--=112y x y x h 2,,; ,L ( 1.5) 2、 卷积与相关各表示什么意义? 在运算上有什么差异? ( 5分) 答: 函数()y x g ,和()y x h ,的卷积定义为 ()()()()ηd ξd ηy ξx h ηξg y x h y x g ??∞ ∞---=*,,,, 则 ()(){}()()y x y x f f H f f G y x h y x g ,,,,F ?=* 即空间域中两个函数的卷积的傅里叶变换等于它们对应傅里叶变换的乘积。另一方面有

模拟电路数字电路的脉冲电路信号处理

如何看懂脉冲电路 2010-06-2215:28:07作者:来源:21IC电子网 脉冲电路是专门用来产生电脉冲和对电脉冲进行放大、变换和整形的电路。家用电器中的定时器、报警器、电子开关、电子钟表、电子玩具以及电子医疗器具等,都要用到脉冲电路。 在电子电路中,电源、放大、振荡和调制电路被称为模拟电子电路,因为它们加工和处理的是连续变化的模拟信号。电子电路中另一大类电路的数字电子电路。它加工和处理的对象是不连续变化的数字信号。数字电子电路又可分成脉冲电路和数字逻辑电路,它们处理的都是不连续的脉冲信号。 电脉冲有各式各样的形状,有矩形、三角形、锯齿形、钟形、阶梯形和尖顶形的,最具有代表性的是矩形脉冲。要说明一个矩形脉冲的特性可以用脉冲幅度Um、脉冲周期T或频率f、脉冲前沿t r、脉冲后沿t f和脉冲宽度t k来表示。如果一个脉冲的宽度t k=1/2T,它就是一个方波。 脉冲电路和放大振荡电路最大的不同点,或者说脉冲电路的特点是:脉冲电路中的晶体管是工作在开关状态的。大多数情况下,晶体管是工作在特性曲线的饱和区或截止区的,所以脉冲电路有时也叫开关电路。从所用的晶体管也可以看出来,在工作频率较高时都采用专用的开关管,如2AK、2CK、DK、3AK 型管,只有在工作频率较低时才使用一般的晶体管。 就拿脉冲电路中最常用的反相器电路(图1)来说,从电路形式上看,它和放大电路中的共发射极电路很相似。在放大电路中,基极电阻R b2是接到正电源上以取得基极偏压;而这个电路中,为了保证电路可靠地截止,R b2是接到一个负电源上的,而且R b1和R b2的数值是按晶体管能可靠地进入饱和区或止区的要求计算出来的。不仅如此,为了使晶体管开关速度更快,在基极上还加有加速电容C,在脉前沿产生正向尖脉冲可使晶体管快速进入导通并饱和;在脉冲后沿产生负向尖脉冲使晶体管快速进入截止状态。除了射极输出器是个特例,脉冲电路中的晶体管都是工作在开关状态的,这是一个特点。

实验一基于Matlab的数字信号处理基本分析解析

实验一 基于Matlab 的数字信号处理基本操作 一、 实验目的:学会运用MA TLAB 表示的常用离散时间信号;学会运用MA TLAB 实现离 散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0() 0(0 1)(≠=?? ?=n n n δ 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1]) 程序运行结果如图1-1所示。 图1-1 单位冲激序列

脉冲多普勒雷达信号处理技术研究

脉冲多普勒雷达信号处理技术研究 发表时间:2019-08-20T08:43:14.537Z 来源:《防护工程》2019年10期作者:张炯[导读] 结合测速测距的实际要求,研究了线性调频脉冲信号处理的相关算法和实现方法. 浙江 摘要:经济在快速的发展,社会在不断的进步,脉冲多普勒(PD)雷达是一种依靠多普勒效应提高目标检测能力的全相参体制的雷达,它利用多普勒效应对目标信息进行提取和处理,具有较高的速度分辨率,可以有效的抑制强地杂波的干扰,完成相应的探测功能。论文首先研究了脉冲多普勒雷达测速测距原理,并从PD雷达模糊函数出发,以各个信号的模糊函数仿真为依据,讨论了如何设计波形以获得较高的分辨率。依据线性调频信号处理相关研究成果,结合测速测距的实际要求,研究了线性调频脉冲信号处理的相关算法和实现方法. 关键词:脉冲多普勒雷达;模糊函数;脉冲压缩 引言 本论文研究的是脉冲多普勒雷达信号处理关键技术,重点研究了脉冲多普勒雷达解距离模糊,地杂波特性以及地杂波抑制算法。简要介绍了海杂波特性,海杂波的抑制技术和发展方向,以及脉冲多普勒雷达抗干扰技术。首先简要介绍了脉冲多普勒雷达的发展概况,以及信号处理系统的基本构成和各部分的主要功能。其次,本文研究了脉冲多普勒雷达解距离模糊的问题。脉冲多普勒雷达存在距离或速度模糊,本文介绍了几种消除距离模糊的方法,并对这几种方法的优劣进行了比较。再次,本文研究了脉冲多普勒雷达杂波以及杂波抑制算法。分析了地杂波统计特性,研究了相关雷达杂波功率谱特性的AR模型及其模拟方法。介绍了几种典型的杂波抑制算法,对此几种方法进行了比较,并用LMS算法进行抑制。简要介绍了海杂波特性,海杂波的抑制技术及其发展方向。最后,本文研究了脉冲多普勒雷达的抗干扰性能。对脉冲多普勒雷达反电子侦察、抗噪声干扰能力、抗欺骗干扰能力等进行了分析。并给出几种抗干扰措施。 1 我国雷达的发展历程 现代雷达门类多,其发展历程也不尽相同,起步有早有晚,仿制和自行设计互有交叉。我国的雷达工业是在新中国成立后根据国防需要形成和发展起来的新型工业。在党和国家的支持下,经过广大科研人员的不懈努力,经历了从小到大,从维修、仿制到自发研制的发展历程。从我国雷达技术发展总体来说,大致可分为修配、仿制、自行研发和发展提高这四个阶段。(1)修配阶段这一阶段主要以修配美、口等强国的旧雷达为标志。1949年,我军接管了国民党雷达研究所,这标志着我国从此揭开了雷达工业发展的序幕。新中国成立以后,国家对雷达研究所从人力、物力等各个方面大力支持,对缴获的雷达器材和美、口在二战中遗留下的旧雷达进行维修和补缺,而这些修复的雷达大多都是警戒雷达。(2)仿制阶段这一阶段以建立雷达基地并仿制苏式雷达为主要标志。新中国成立后,在前苏联的帮助下,我国开始仿制苏式的雷达产品,包括炮瞄雷达、机载雷达、舰用雷达、警戒雷达和指导雷达等。1954年仿制的警戒雷达是我国的第一批国产雷达,而19_56年仿制出我国第一部采用微波对海技术的远程警戒雷达。此外,我国仿制的海用雷达包括搜索攻击专用雷达、海军警戒专用雷达、鱼雷快艇专用雷达、导弹制导雷达等。这一阶段仿制的雷达大部分都相当于前苏联四五十年代的水平,仿制的成功使得我国的雷达产品得到了扩展,也使我国基本掌握了雷达生产的基本过程。(3)自行设计1960年中央军委提出了以两弹为主,努力发展电子技术的方针,为我国雷达工业明确了方向。在弹道导弹预警系统方面,我国成功研制了大型的远程跟踪雷达,超视距试验雷达和大型相控阵雷达。与此同时,我国还自行研制出了一批与武器配套的雷达,包括机载火控雷达、轰炸瞄准雷达、测距雷达、多普勒导航雷达、导弹制导雷达等。除了军用雷达,我国还自行研制出了民用的气象雷达、空中交通管制雷达等。这一阶段我国脱离了国外产品的图纸和资料,自行研制和开发新雷达,所需原材料、元器件都立足于国内。并且开始大量生产,向国外出口。 2 脉冲多普勒雷达信号处理技术研究 2.1 脉冲多普勒雷达反电子侦察能力 电子干扰的针对性很强,有效的电子干扰需要知道雷达工作的时间、空间、频率等信息,所以现代电子干扰设备都有侦察功能。用侦察设备引导干扰机,使干扰机能把有限的干扰功率投向需要干扰的目标。干扰设备的工作过程大致可分为三个阶段:截获雷达信号;分选识别威胁源;组织实施干扰。如果破坏或延误其中的任何一步,都会降低干扰机的作战效能。如果使干扰机收不到雷达信号,雷达肯定不会受到敌意的干扰。即使雷达信号不能躲过干扰机的侦察,但能使干扰机无法确定所截获的信号是否值得干扰,使干扰机要么在干扰与不干扰之间犹豫不决而错过良机,要么不能采取有效的干扰样式或合适的干扰参数而达不到预期的干扰效果,同样能收到抗侦察的效果。 2.2 脉冲多普勒雷达抗箔条干扰能力分析 箔条使用简单、造价低,容易覆盖较宽的频带。在过去的较大战争中,都使用了箔条干扰。大面积的箔条云形成类似于地杂波的分布式干扰背景,雷达在这种干扰中检测目标类似于在高斯噪声背景中的日标检测。小面积的箔条云可形成假目标,起欺骗干扰作用。总之,对于只从时域检测目标的普通脉冲雷达,箔条有较好的干扰效果。PD雷达从频域检测目标,目标的多普勒频率由它的运动速度确定,箔条能否干扰PD雷达由箔条具有的速度确定。箔条通常是从具有一定初速度的载体上投放出来的,刚投放时具有载体的速度。箔条散开到有干扰作用需要一定时间。虽然刚投放的箔条有大的速度,但反射面积小。相反,反射面积大时,速度又小。箔条从载机投放后只需几秒钟,其速度就降为当时的风速。如此大的加速度,使其反射信号在每个多普勒滤波器中的停留时间太短。来不及建立起足以和目标信号相对抗的幅度。所以箔条的初速度对PD雷达的干扰作用很小。 2.3 PD雷达保护喇叭抗来自旁瓣的干扰 PD雷达中重复频率工作模式,目标检测是在旁瓣杂波中进行的。为防止地面大建筑物及类似反射体的强反射信号从天线旁瓣进入雷达,造成虚警干扰,PD雷达应有保护喇叭。干扰机可通过雷达天线旁瓣对雷达实施干扰。对此雷达可用保护喇叭对干扰信号进行对消或匿隐。主天线和保护喇叭的相对增益。若要对来自旁瓣的干扰匿隐,保护喇叭的增益应比天线主瓣的增益小,比天线旁瓣的增益大。因此经旁瓣进入雷达的干扰信号将在保护通道某个距离多普勒单元产生一个比主通道对应单元中更大的幅度响应。当主通道信号与保护通道信号之比较小时,表明该信号是自旁瓣进入的,比较器产生一个匿隐门来抑制主通道对该信号的检测。反之则认为信号来自天线主瓣,主通道对信号进行检测。利用对消的方法也可以抑制来自旁瓣的干扰。

光电信号处理习题答案模板

光电信号处理习题 1 光电探测器按物理原理分为哪两类,各有何特点? 一类是利用各种光子效应的光子探测器,特点是入射光子直接和材料中的电子发生相互作用,即光电子效应;一类是利用温度变化效应的热探测器,特点是基于材料吸收光辐射能量以后温度升高的现象,即光热效应。 2 分别画出主动、被动光电探测系统的结构框图,说明各部分的作用。 被动式: 主动式:需要有光源照射目标。 3 什么是噪声?噪声与干扰有何不同?光电探测系统有哪些噪声?光电探测器有哪些噪声? 噪声:由于元器件内微观粒子随即的无规则运动产生的有害信号,称为噪声。 不同:噪声是来自元器件内部粒子;而干扰是指其他的有害信号,有系统外部的,也可以有内部的。 光电探测系统的噪声:光子噪声,探测器噪声,电路噪声。 光电探测器的噪声:热噪声,散粒噪声,产生-复合噪声,1/f 噪声,温度噪声。 4 等效噪声带宽表示什么意义?与系统的频率带宽有何不同? 将噪声功率谱图按照面积相等变换成矩形,以最大噪声功率为高,则宽就是等效噪声带宽。 系统的频率带宽指在幅频特性曲线中高度为0.707倍峰值的两频率之差。 5 放大器的En-In 噪声模型并说明意义。 放大器的内部噪声可以用串联在输入端的零阻抗电压发生器En 和并联在输入端具有无穷大阻抗的电流发生器In 来表示。两者相关系数为r 。这种模型叫En-In 噪声模型。 意义:可将放大器看作无噪声,对放大器噪声的研究归结为分析En 、In 在电路中的作用。简化了电路系统的噪声计算。 6 什么是噪声系数,证明放大器的噪声系数NF ≧1。 噪声系数:输入端信噪比与输出端信噪比的比值。 //si si ni ni si no no so so no ni so so ni no si P P P P P P P NF P P P P P P P P P ?==== ?? ??? , no ni p P NF P A =? (A p 为放大器功率增益) 放大器的输出噪声功率P no 由两部分组成,一部分为P ni (信号源内阻热噪声)×A p ;另一部分为放大器本身产生的噪声在输出端呈现的噪声P n ; 1no p ni n no n P A P P P P =+=+, 所以噪声系数又为:11p ni n no n n ni p p ni ni p p ni A P P P P P NF P A A P P A A P += ==+=+ 一般情况下,实际Pn 不会为零,所以NF >1;理想情况下NF=1。得证。 7 证明最佳源电阻R sopt =E n /I n 噪声系数有表示式:2222222222 1ns n n s n n s ns ns ns E E I R E I R N F E E E ++==++ (等效输入噪声比信号源噪声)

数字信号处理实例

数字信号处理实例 MATLAB下的数字信号处理实现示例 一信号、系统和系统响应 1、理想采样信号序列 (1)首先产生信号x(n),0<=n<=50 n=0:50; %定义序列的长度是50 A=444.128; %设置信号有关的参数 a=50*sqrt(2.0)*pi; T=0.001; %采样率 w0=50*sqrt(2.0)*pi; x=A*exp(-a*n*T).*sin(w0*n*T); %pi是MATLAB定义的π,信号乘可采用“.*”close all %清除已经绘制的x(n)图形 subplot(3,1,1);stem(x); %绘制x(n)的图形 title(‘理想采样信号序列’); (2)绘制信号x(n)的幅度谱和相位谱 k=-25:25; W=(pi/12.5)*k; X=x*(exp(-j*pi/12.5)).^(n’*k); magX=abs(X); %绘制x(n)的幅度谱 subplot(3,1,2);stem(magX);title(‘理想采样信号序列的幅度谱’); angX=angle(X); %绘制x(n)的相位谱 subplot(3,1,3);stem(angX) ; title (‘理想采样信号序列的相位谱’) (3)改变参数为:1,0734.2,4.0,10==Ω==TAα n=0:50; %定义序列的长度是50 A=1; %设置信号有关的参数 a=0.4; T=1; %采样率 w0=2.0734; x=A*exp(-a*n*T).*sin(w0*n*T); %pi是MATLAB定义的π,信号乘可采用“.*”close all %清除已经绘制的x(n)图形 subplot(3,1,1);stem(x); %绘制x(n)的图形 title(‘理想采样信号序列’); k=-25:25; W=(pi/12.5)*k; X=x*(exp(-j*pi/12.5)).^(n’*k); magX=abs(X); %绘制x(n)的幅度谱 subplot(3,1,2);stem(magX);title(‘理想采样信号序列的幅度谱’);

matlab仿真脉冲多卜勒雷达的信号处理

matlab仿真脉冲多卜勒雷达的信号处理

目录 目录-------------------------------------------------------- 1 第一章绪论-------------------------------------------------- 3 1.1 雷达起源 ---------------------------------------------- 3 1.2 雷达的发展历程 --------------------------------------- 4 第二章原理分析----------------------------------------------- 6 2.1 匹配滤波器原理 --------------------------------------- 6 2.2 线性调频信号(LFM) ---------------------------------- 8 2.3 LFM信号的脉冲压缩----------------------------------- 10 第三章多目标线性调频信号的脉冲压缩------------------------- 14 第四章仿真结果分析------------------------------------------ 16 4.1 时域图分析 ------------------------------------------ 16 4.2 回波信号频域图分析 ---------------------------------- 17 4.3 压缩信号图分析 -------------------------------------- 19 4.4 多目标压缩信号图分析 -------------------------------- 21 第五章问题回答--------------------------------------------- 23 第六章致谢与总结------------------------------------------- 24 附录(Matlab程序)------------------------------------------ 25

信号处理常用方法

信号处理常用方法 对于实时数据采集系统,为了消除干扰信号,通常需要对采集到的数据进行数字滤波,常采用的数字滤波法有以下几种: 一、算术平均滤波法 算术平均滤波法是指对一点数据连续采n个值,然后取其平均值。这种方法能够滤除一般的随机干扰信号,使信号变的平滑,但当n值较大时,灵敏度会降低,故n值要视具体情况进行选取。一般情况下取3~5平均即可。 二、滑动平均滤波法 算术平均滤波法每计算一次数据需要采集n次数据,这对于测量数据较慢或要求数据计算速度较快的实时控制系统则无法使用,此时可采用滑动平均滤波法。滑动平均滤波法是把n个采样值看成一个队列,队列是长度为n,每进行一次采样就把采样值放入队尾,而去掉原队首的一个采样值,这样,队列中就始终有n个“最新”的采样值,对这n个值进行平均就可以得到新的滤波值。 滑动平均滤波法对周期性的干扰具有较好的抑制作用,但对偶然出现的脉冲性干扰抑制作用差,难以消除由于脉冲干扰而引起的采样值的偏差。 三、去极值滤波法 算术平均滤波法和滑动平均滤波法都难以消除脉冲干扰所引起的误差,会将脉冲干扰“平均”到结果中去。在脉冲干扰严重的场合可采用去极值平均滤波法。去极值平均滤波法的思想是:连续采样n个值,找出并去除其中的最大值和最小值,然后对其余的n-2个值求平均,即可得到有效采样值。为了使算法简单,n通常取偶数,如4,6,8,10等。 四、中位值滤波法 对某一被测信号连续采样n次,然后把n次采样值按大小排序,取中间值为本次采样值。为方便,n一般取奇数。算法上,则可以采用“冒泡法”来对这n个数据进行排序。中位值滤波法能有效地克服因偶然因素引起的波动干扰,但对于一些快变参数则不宜采用。

光电信号处理习题和答案

f I n ?/f E n ?/1.利用低噪声集成运算放大器设计低噪放大电路应遵循哪些原则?如何选择器件? 答:要遵循的原则有:(1)“噪声匹配”原则,即源电阻满足:R s =E n /I n ,此时可以使放大器的噪声系数为最小;(2)多级放大器的噪声系数Friis 公式:从它可以看出多级放大器噪声系数的大小主要取决于第一级的噪声系数,为使总噪声系数小应该尽量减小第一级的噪声系数以及提高第一级的功率放大倍数;(3)放大电路中如果要用耦合网络,耦合网络也要满足下面的三个条件:(a )对于耦合网络中的串联阻抗元件满足: (b )对于耦合网络中的并联阻抗元件 (c )为了减小电阻元件的过剩噪声,(过剩噪声是除了热噪声之外的一种由流过电阻的直流电流所引起的1/f 噪声)必须尽量减小流过电阻的电流,或降低电阻两端的直流压降。由于每一个元件都是一个噪声源,对系统的输出噪声都有贡献,因此为了减小输出端的噪声,提高信噪比,应尽量采用简单的耦合方式, 在可能的情况下,应采用直接耦合方式,从而消除耦合网络所带来的噪声;(4)由于集成放大电路,第一级通常采用差动式放大电路,这是用来克服温漂的措施,是不适于作低噪声前放使用的,差动式的放大电路的噪声是功率增益相同的单级放大电路的2倍,因此低噪声集成放大电路的输入级从理论上说必须采用单管工作方式,并且其负载或偏置电路必须采用电阻而不宜用有源器件代替,否则会增加第一级的噪声但是有些低噪声集成运放,为了兼顾温漂指标,亦采用差动式输入级,此时一般用场效应管作为差动式输入级,因为场效应管的噪声系数在中、低频区比晶体三极管的小得多. 选择器件的方法有: (1) 利用低噪声运放的NF-Rs 曲线选择运放。 (2) 利用E n 、I n 计算E ni ???<<<

数字信号处理matlab版答案

数字信号处理matlab版答案 【篇一:数字信号处理matlab实例】 txt>例1-1 用matlab计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的 离散卷积。 解 matlab程序如下: a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); m=length(c)-1; n=0:1:m; stem(n,c); xlabel(n); ylabel(幅度); 图1.1给出了卷积结果的图形,求得的结果存放在数组c中为:{-2 5 1 -3}。 例1-2 用matlab计算差分方程 -4 1 31 当输入序列为 解 matlab程序如下:时的输出结果。 脉冲响应。 n=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,n-1)]; k=0:1:n-1; y=filter(a,b,x); stem(k,y) xlabel(n);ylabel(幅度) 1.2 给出了该差分方程的前41个样点的输出,即该系统的单位图 例1-3 用matlab计算例1-2差分方程 所对应的系统函数的dtft。 解例1-2差分方程所对应的系统函数为: 0.8?0.44z?1?0.36z?2?0.02z?3 h(z)?1?0.7z?1?0.45z?2?0.6z?3 其dtft为 0.8?0.44e?j??0.36e?j2??0.02e?j3? )?1?0.7e?j??0.45e?j2??0.6e?j3? h(e ?j? 用matlab计算的程序如下: k=256; num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h));grid title(实部) xlabel(\omega/\pi);ylabel(幅度) subplot(2,2,2); plot(w/pi,imag(h));grid

基于MATLAB的数字信号处理实例分析

湖北文理学院理工学院 学生结业论文 课程名称:MATLAB教程 结业论文名称:基于MATLAB的数字信号处理 实例分析 专业名称:通信工程 班级:1011 学号: 10387123 学生姓名:赵彦彦 教师姓名:李敏 2013年1月6日

基于MATLAB的数字信号处理实例分析 摘要 随着信息科学和计算技术的迅速发展,在人们的日常生活中,对信号的处理显得尤为重要,而计算机不能直接对模拟信号进行处理,使得人们对数字信号处理理论的认知与了解要求更为深入。由于计算机解决复杂的数字信号系统有一定的困难,而MATLAB的出现,解决了这一难题。MATLAB提供了用于数值运算和信号处理的数学计算软件包,同时可以实现系统级的通信系统设计与仿真。随着版本的不断升级,不同应用领域的专用库函数和模块汇集起来作为工具箱添加到软件包中,其功能越来越强大。本文是基于MATLAB的数字信号处理实例分析,主要介绍了用MATLAB对系统函数零点、极点分布图以及模拟周期信号的频谱分析(模拟信号x(t)等间隔T采样后x(nT)的N点DFT)。 关键字:MATLAB 数字信号系统函数频谱

1.系统函数零点、极点分布图 通过学习信号与系统、数字信号处理,掌握了传输函数和系统函数等,本文仅对系统函数X(z)零点和极点分布进行分析。 (1)利用下面的程序段,观察系统函数X(z)零点和极点分布的特点 )16.06.0()(22-+=z z z z X 程序段如下:n=[1 0 0];m=[1 0.6 -0.16]; >> zplane(n,m); 执行结果如图: (2)改变系统函数X(z),观察与上图的差异 )32()(23++-= z z z z z X 程序段如下: n=[0 1 0 0];m=[1 -1 2 3]; >> zplane(n,m); 执行结果如下图:

光电探测与信号处理

光电探测与信号处理试卷 考试时间2012年11月27日 一、填空题(20分) 1. 一波长为555纳米的点辐射源,功率为5mW ,在空间一点的发光强度为______,距离辐射源0.5米处的光照度为______。2. 一黑体辐射峰值波长为1605nm ,其温度为______,总的辐射功率为_____。3. 一器件的比探测率D*为(已知),光敏面面积Ad (已知),探测带宽f ?为10HZ ,则它的最小可探测功率P 为_____。4.器件在波长为(已知),功率为Φ(已知)的辐射照射下,输出电流为I (已知),则它的量子效率为_____。 二、简答题(20分) 1. 比较光电导探测器和光伏探测器的差别。2. 最佳源电阻的表达式及其物理意义。3.热释电探测器的工作原理。 4.解释光外差效应的原理。 三、计算题(50分) 1.硅光电池,在100lx 光照下Voc=400mV,ISC=30μA,若输入光照度 )(sin 50150lx t E ω+=,最大功率输出时的偏置电阻,最大功率PLmax 。 2. 已知F1=(已知),F2=(已知),F3=(已知),Kp1=(已知),Kp2=(已知),,求Eni 。3.画出锁相放大器的工作原理框图,描述其工作原理。若参考信号频率 200Hz ,待测信号幅值1V ,积分器的直流增益为10,求以下信号输入时 的系统输出: a) )180600sin(+=t V V Am A π,Vo=?b) )60400sin(+=t V V Am A π,Vo=?c) )180800sin(+=t V V Am A π,Vo=?4. 画出双沟道双相CCD 的结构示意图,叙述其电荷耦合原理,画出其输出波形,包含out R sh V ,,,21,ΦΦΦΦ。四、设计题(10分) 设计一光电探测系统测量直径为20mm 的圆柱体的直径,要求画出原理框图,详细叙述其原理,并解释那些因素会影响其测量精度。 声明 这是2012年华中科技大学测控及光电相关专业光电探测与信号处理试卷,题目由本人根据今天考试默写,具体数值不清楚但都有标注,重在说明考试题型。郑重警告,切勿用作商业用途传播! 2012年11月27日

信号处理在实际生活中的运用

广义来说,数字信号处理是研究用数字方法对信号进行分析、变换、滤波、检测、调制、解调以及快速算法的一门技术学科。但很多人认为:数字信号处理主要是研究有关数字滤波技术、离散变换快速算法和谱分析方法。随着数字电路与系统技术以及计算机技术的发展,数字信号处理技术也相应地得到发展,其应用领域十分广泛。 数字滤波器 数字滤波器的实用型式很多,大略可分为有限冲激响应型和无限冲激响应型两类,可用硬件和软件两种方式实现。在硬件实现方式中,它由加法器、乘法器等单元所组成,这与电阻器、电感器和电容器所构成的模拟滤波器完全不同。数字信号处理系统很容易用数字集成电路制成,显示出体积小、稳定性高、可程控等优点。数字滤波器也可以用软件实现。软件实现方法是借助于通用数字计算机按滤波器的设计算法编出程序进行数字滤波计算。 离散傅里叶变换的快速算法 1965年J.W.库利和T.W.图基首先提出离散傅里叶变换的快速算法,简称快速傅里叶变换,以FFT表示。自有了快速算法以后,离散傅里叶变换的运算次数大为减少,使数字信号处理的实现成为可能。快速傅里叶变换还可用来进行一系列有关的快速运算,如相关、褶积、功率谱等运算。快速傅里叶变换可做成专用设备,也可以通过软件实现。与快速傅里叶变换相似,其他形式的变换,如沃尔什变换、数论变换等也可有其快速算法。 谱分析 在频域中描述信号特性的一种分析方法,不仅可用于确定性信号,也可用于随机性信号。所谓确定性信号可用既定的时间函数来表示,它在任何时刻的值是确定的;随机信号则不具有这样的特性,它在某一时刻的值是随机的。因此,随机信号处理只能根据随机过程理论,利用统计方法来进行分析和处理,如经常利用均值、均方值、方差、相关函数、功率谱密度函数等统计量来描述随机过程的特征或随机信号的特性。 实际上,经常遇到的随机过程多是平稳随机过程而且是各态历经的,因而它的样本函数集平均可以根据某一个样本函数的时间平均来确定。平稳随机信号本身虽仍是不确定的,但它的相关函数却是确定的。在均值为零时,它的相关函数的傅里叶变换或Z变换恰恰可以表示为随机信号的功率谱密度函数,一般简称为功率谱。这一特性十分重要,这样就可以利用快速变换算法进行计算和处理。 在实际中观测到的数据是有限的。这就需要利用一些估计的方法,根据有限的实测数据估计出整个信号的功率谱。针对不同的要求,如减小谱分析的偏差,减小对噪声的灵敏程度,提高谱分辨率等。已提出许多不同

数字信号处理各章节重点知识的matlab实例

1数字信号处理各章节重点知识的matlab实例 第1,2章离散时间信号与系统 例1-1 用MATLAB计算序列{-2 0 1 –1 3}和序列{1 2 0 -1}的离散卷积。 解MATLAB程序如下: a=[-2 0 1 -1 3]; b=[1 2 0 -1]; c=conv(a,b); M=length(c)-1; n=0:1:M; stem(n,c); xlabel('n'); ylabel('幅度'); 图1.1给出了卷积结果的图形,求得的结果存放在数组c中为: {-2 -4 1 3 1 5 1 -3}。 例1-2 用MATLAB计算差分方程

当输入序列为 时的输出结果。 解MATLAB程序如下: N=41; a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)]; k=0:1:N-1; y=filter(a,b,x); stem(k,y) xlabel('n');ylabel('幅度') 图 1.2 给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。 例1-3用MATLAB计算例1-2差分方程

所对应的系统函数的DTFT。 解例1-2差分方程所对应的系统函数为: 其DTFT为 用MATLAB计算的程序如下: k=256; num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den, w); subplot(2,2,1); plot(w/pi,real(h ));grid title('实部') xlabel('\omega/\ pi');ylabel('幅度') subplot(2,2,2);

相关文档
最新文档