分式不等式解法
高中数学 必修5 简单分式不等式的解法

课堂小结
解分式不等式的基本方法是同解转化法, 简便方法是数轴标根法。
相同因式的分式不等式与高次不等式既 要了解他们的联系,又要了解他们的区 别,尤其要注意等号取舍问题。
含重因式的不等式与高次不等式在进行 转化时要注意重因式对其的影响。
f (x) 0 f (x)g(x) 0
g ( x)
f (x) g (x)
0
f g
(x)g(x) (x) 0
0
f ( x) 0 f (x)g(x) 0
g (x)
f ( x) g ( x)
0
f (x) g ( x)
g(x) 0
0
例4:解不等式
x 1 2 3x 2
解:原不等式可化为
1
2
3
此不等式与不等式(x-1)(x-2)(x-3)(x+1)<0解集相
同。由数轴标根法可得原不等式的解集为:
{x︳-1<x<1或2<x<3}.
0 问:如果不等式是
x2 3x2 x2 2x3
该如何解?
例题2:解不等式
x2 2x 24 x2 7x 12 2
解:移项通分得
3x2 16x x2 7x 12
x1 2 0 3x 2
整理得 7x 5 0 3x 2
即: (7x 5)(3x 2) 0
所以原不等式的解集为
x
x
2 3
或x
5
7
例5: 解不等式 2x 1 1 x5
解:移项通分得 3 x 4 0 x5
所以原不等式等价于
(3x 4)(x 5) 0
x
5
0
即原不等式的解集为
探究:解不等式(x-1)(x-2)(x-3)>0
分式不等式解法课件

不等式的性质
在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;在不等 式的两边同时乘或除以同一个正数,不等号的方向不变;在不等式的两边同时 乘或除以同一个负数,不等号的方向改变。
02
CATALOGUE
分式不等式的解法
转化为一元一次不等式组的方法
实例
对于不等式 $frac{x - 2}{x + 1} < 0$,分子为正数,分母为 负数,解集为 $-1 < x < 2$。
03
CATALOGUE
分式不等式的应用
在数学解题中的应用
分式不等式是数学中常见的一种不等式类型,掌握其解法对 于解决数学问题至关重要。分式不等式常常出现在代数、几 何、三角函数等数学领域中,是数学竞赛和日常学习的必备 知识点。
01
02
03数分离出来,形成一元 一次不等式组。
注意事项
在转化过程中,需要注意 不等式的符号和分母不为 零的条件。
实例
对于分式不等式 $frac{x 2}{x + 1} > 1$,可以转 化为 $x - 2 > x + 1$ 或 $x - 2 < -(x + 1)$,从而 得到一元一次不等式组。
分式不等式的练习题与解析
基础练习题
题目
01 不等式(2x - 5)/(x + 3) ≥ 0的
解集为 _______.
答案
$(- infty , - 3) cup lbrackfrac{5}{2}, + infty)$
02
解析
03 首先确定不等式的分母和分子
符号,然后根据不等式的性质 求解。
分式不等式的解法

2)一般地,分式不等式分为三类:
1)判断下列不等式组中,哪些解集相同。
2)把下列分式不等式转化为有相同解集的整式不等式(组)
3)解下列分式不等式:
1、分式不等式的概念 2、分式不等式的解法
练习册:P18 习题2.3 A组 1~3; B组 1
其他不等式的解法(1)
—分式不等式的解法
格致中学 蔡青
1、分式方程的定义: 分母中含有未知数的方程
2、分式方程的解法: 1)去分母转化为整式方程 2)解整式方程 3)验根
1、分式不等式定义:分母中含有未知数的不等式
主要研究形如
的不等式
研究: 改变:
ቤተ መጻሕፍቲ ባይዱ
2、分式不等式的解法:
1)基本思路:把未知的问题转化成我们熟悉的问题。
分式不等式的解法分式不等式怎么解分式不等式怎么去分母

分式不等式的解法步骤将分式不等式化为整式不等式,再进行求解。
一般分式不等式的解法:第一步去分母,第二步去括号,第三步移项,第四步合并同类项,第五步化未知数的系数为1。
分式不等式解法可以用同解原理去分母,解分式不等式;如f(x)/g(x)>0或f(x)/g(x)<0(其中f(x)、g(x)为整式且g(x)不为0),则f(x)g (x)>0,或f(x)g(x)<0。
然后因式分解找零点,用穿针引线法。
分式不等式与分式方程类似,像f(x)/g(x)>0或f(x)/g(x)<0(其中f(x)、g(x)为整式且g(x)不为0)这样,分母中含有未知数的不等式称为分式不等式。
分式不等式第一种解法为:令分子、分母等于0,并求出解;画数轴在数轴上找出解的位置;判断分子、分母最高次系数乘积正负;若乘积为正从右上向下依次穿过;若为负从右下向上依次穿过。
分式不等式第二种解法为:移项、通分将右面化为0,左面为分式的形式;令分子、分母等于0,并求出解;画数轴在数轴上找出解的位置;判断分子、分母最高次系数乘积正负;若乘积为正从右上向下依次穿过;若为负从右下向上依次穿过。
1分式不等式右边为0不等式左边不能再化简的的转化方法:在分母不为0的前提下,两边同乘以分母的平方。
2分式不等式右边不为0或不等式左边还能化简的转化为整式不等式的步骤。
1、移项将不等式右边化为0。
2、将不等式左边进行通分。
3、对分式不等式进化简,变换成整式不等式。
4、将不等式未知数x前的系数都化为正数。
分母恒为正时可去分母;分母不恒为正时不能去分母,应先移项使右边为0再通分并将分子分母分解因式,最后用标根法求解。
解分式不等式的主旨是化分式不等式为整式不等式,进行求解。
分式不等式的解法:分母恒为正时可去分母;分母不恒为正时不能去分母,应先移项使右边为0再通分并将分子分母分解因式,最后用标根法求解。
解分式不等式的主旨是化分式不等式为整式不等式,进行求解,即。
分式不等式求解

分式不等式求解:1.一般分式不等式求解:ax−bcx−d>0(仅针对ac≠0的情况)解法一:ax−b>0 或ax−b<0cx−d>0 cx−d<0解法二:(ax−b)(cx−d)>0等价于函数:y=(ax−b)(cx−d)图像(曲线)在x轴上方时候x的取值范围。
y=ac x2- (ad + cb )x+ bd[1]ac>0时,不等式解集为(x1,x2),x1=min{ba ,dc}; x2=max{ba,dc};[2]ac>0时, 不等式解集为(-∞, x1)U ( x2 , +∞),x1=min{ba ,dc}; x2=max{ba,dc};2.易错题型及其解法:ax−bcx−d>m(m≠0)正确解法:先移项后通分再求解。
ax−bcx−d>m步骤一:ax−bcx−d−m>0步骤二:ax−bcx−d −m cx−dcx−d>0ax−b−m(cx−d)cx−d>0解法如1所示。
错误解法:ax−b>mcx−d解:ax−b>m(cx−d)并以此求解,属于错误解法。
错误原因:无法确定(cx−d)的正负性,若(cx−d)为正数,则ax−b>m(cx−d)成立;若(cx−d)为负数,则ax−b>m(cx−d)不成立,需改为ax−b<m(cx−d)。
因为从ax−b>mcx−d转化为:ax−b>m(cx−d) ax−b<m(cx−d)或等价于方程左右两边同时乘以(cx−d),此时若(cx−d)为正数不等号无需改变,若(cx−d)为负数,需改变不等号。
>1例如:x−42x−5>1;错误解法:因为x−42x−5所以x-4>2x-5明显不大于1,故而答案错误。
可得:x<1(错误)例如x=0时,45>1正确解法:x−42x−5-1>0解:x−42x−51−x>02x−5(1−x)(2x−5)>0因为-1x2=-2<0所以解集为(-∞, 1)U ( 2.5, +∞)。
分式不等式解法公式

分式不等式解法公式例1:求解不等式 $\frac{3}{x-4} > 0$。
首先,我们可以通过上述不等式修改为等式的形式来求解。
$$\frac{3}{x-4} = 0$$因为分式的分母不能为零,所以上述方程没有解。
接下来,我们可以观察到分式的分子为正数,并且分母为$x-4$。
根据零点的概念,我们知道当$x-4>0$时,分式是正数。
因此,我们只需要求解$x-4>0$即可。
$$x>4$$所以,原始不等式 $\frac{3}{x-4} > 0$ 的解集为 $x > 4$。
例2:求解不等式 $\frac{x}{x+1} \leq 2$。
首先,我们观察到分式的分母为$x+1$不为零的情况下,表达式是相对稳定的。
因此,我们需要将分式的分母$x+1$与其他的数值值进行比较。
以$x+1$为基准,我们可以得到以下三种情况:-当$x+1<0$时,不等式成立。
-当$x+1=0$时,不等式不成立,因为分母不能为零。
-当$x+1>0$时,我们需要对分子和分母的大小关系进行求解。
对分子和分母进行比较,我们得到以下几种情况:-当$x>0$时,$x+1>0$,分式成立。
-当$x=0$时,$x+1>0$,分式成立。
-当$x<0$且$x+1>0$时,分式成立。
综上所述,我们可以得出以下解集:$x+1 < 0$ 或 ($x \geq 0$ 且 $x+1 > 0$),即 $x < -1$ 或 $x \geq 0$。
因此,原始不等式的解集为 $x < -1$ 或 $x \geq 0$。
例3:求解不等式 $\frac{2x-1}{x+3} > 1$。
我们可以通过消去分式的方式来求解上述不等式。
首先,我们可以将不等式改写为以下形式:$$\frac{2x-1}{x+3} - 1 > 0$$通过通分的方式,我们可以得到:$$\frac{2x-1-(x+3)}{x+3} > 0$$简化后:$$\frac{x-4}{x+3} > 0$$接下来,我们需要观察分子和分母的大小关系。
分式不等式的解法课件

转化为一元二次不等式组的方法
总结词
通过移项和整理,将分式不等式转化为简单的一元二次不等 式组,然后求解。
详细描述
首先观察分式不等式的形式,通过移项和整理,将其转化为 形如 ax^2 + bx + c > 0 或 ax^2 + bx + c < 0 的一元二次 不等式。然后,根据一元二次不等式的解法,求解这个不等 式组,得出解集。
VS
详细描述
综合练习题将分式不等式与其他数学知识 相结合,如代数、函数、方程等。这些题 目通常需要学生综合运用多个知识点来解 题,旨在提高学生的数学综合素质和问题 解决能力。解决这些题目需要学生具备扎 实的数学基础和灵活的思维,能够从多个 角度分析问题并找到合适的解题方法。
感谢观 看
THANKS
分子和分母同号时,解集为空集;分子和分母异号时,解集为全体实数。
02
分式不等式的解法
转化为一元一次不等式组的方法
总结词
通过消去分母,将分式不等式转化为简单的一元一次不等式组,然后求解。
详细描述
首先观察分式不等式的分母,通过乘以适当的正数消去分母。然后,将不等式 两边进行整理,使其成为一元一次不等式的形式。最后,解这个一元一次不等 式组,得出解集。
转化为一元高次不等式组的方法
总结词
通过移项和整理,将分式不等式转化为简单的一元高次不等式组,然后求解。
详细描述
首先观察分式不等式的形式,通过移项和整理,将其转化为形如 ax^n + bx^(n1) + ... + c > 0 或 ax^n + bx^(n-1) + ... + c < 0 的一元高次不等式。然后, 根据一元高次不等式的解法,求解这个不等式组,得出解集。
课题分式不等式的解法(共6张PPT)

f(x) f(x)g(x)0(0) 也就是说:分母含有未知数的不等式,称为分式不等式。 0(0) 国庆期间,全家决定从家里出发,开车去世纪公园看立体花展,若全路程为90千米,车速保持匀速,去公园时用了2个小时,回来时由于当天晚上 g(x) g(x)0 有烟火表演的缘故,交通堵塞,到达全程的三分之一处时已用去1个小时,问接下来的三分之二的路程,车速应该比原来去公园时的速度加快多少
数学知识:分式不等式的解法 ,才能比来时用的时间少?
国庆期间,全家决定从家里出发,开车去世纪公园看立体花展,若全路程为90千米,车速保持匀速,去公园时用了2个小时,回来时由于当天晚上 有烟火表演的缘故,交通堵塞,到达全程的三分之一处时已用去1个小时,问接下来的三分之二的路程,车速应该比原来去公园时的速度加快多少 ,才能比来时用的时间少? 课题:分式不去思考才能感受得到!
愿大家通过自己的努力分享 到这份成熟的美!
谢谢各位的参与!
第6页,共6页。
课题:分式不等式的解法
第1页,共6页。
引例:
国庆期间,全家决定从家里出发,开车去 世纪公园看立体花展,若全路程为90千米, 车速保持匀速,去公园时用了2个小时,回 来时由于当天晚上有烟火表演的缘故,交 通堵塞,到达全程的三分之一处时已用去1 个小时,问接下来的三分之二的路程,车 速应该比原来去公园时的速度加快多少, 才能比来时用的时间少?
,才能比来时用的时间少? 课题:分式不等式的解法 数学是种美,这种美需要大家去思考才能感受得到! 国庆期间,全家决定从家里出发,开车去世纪公园看立体花展,若全路程为90千米,车速保持匀速,去公园时用了2个小时,回来时由于当天晚上 有烟火表演的缘故,交通堵塞,到达全程的三分之一处时已用去1个小时,问接下来的三分之二的路程,车速应该比原来去公园时的速度加快多少
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
x
4 3
或x
5
小结2:对 f ( x) k 型不等式的解法
g ( x)
一 : 移项 二 : 通分 三 : 化为整式
例6: 解不等式 (x 1)( x 2) 0 (x 1)( x 3)
解:约分得
( x 2) 0 ( x 3)
x 1 0
即
(x 2)(x 3) 0 x 1 0
原不等式解集为
x x 3或1 x 2
解法总结:
解分式不等式的基本思路是将其转化 为整式不等式。在此过程中,等价性
尤为重要,因此解分式不等式一般不 去分母,而是将其转化为 f (x) 0或 f (x) 0 等形式,再实施同解变形 g(x) g(x)
作业:
练习册28页例一及变式题1,2
望奎一中:郭 宏
2007 . 6 . 20
问题: 解不等式 (x 1)(3x 2) 0
解(一):原不等式的解集为
x
x1或x
2 3
解(二): 原不等式等价于 13xx1200或23xx1 200
解(1)得: x 2 3
解(2)得: x 1
即: (7x 5)(3x 2) 0
所以原不等式的解集为
x
x
2 或x 3
5
7
2x 1
例5: 解不等式
1
x5
解:移项通分得 3x 4 0 x5
所以原不等式等价于
(3x 4)(x 5) 0 x 5 0
即原不等式的解集为
x2 x2
2x 24 7x 12
2
解:移项通分得 3x2 16 x 0 x2 7x 12
整理 x(3x 16) 0 (x 4)( x 3)
等价于 x(x 3)(x 4)(3x 16) 0
0
3
4
16/3
所以原不等式的解集
x
x
0或3
x
解:原不等式同解于
(x 1)(x 3)(3x 2) 0 3x 2 0
-1 2/3
3
所以原不等式的解集为
x
1
x
2 3
或x
3
小结1:
f (x) 0 f (x)g(x) 0
g ( x)
f (x) g (x)
0
f (x)g(x) 0
4或x
16 3
x2 2x 2
练习4 解不等式
x
3 2x x2
(x 2)(x2 x 1)
解: 整理得
0
(x 3)(x 1)
因为 x2 x 1 (x 1)2 3 0 24
原不等式等价于
(x 2)(x 3)(x 1) 0 (x 3)(x 1) 0
g
(
x)
0
f ( x) 0 f (x)g(x) 0
g (x)
f (x) g (x)
0
f g
(x)g(x) (x) 0
0
例4:解不等式
x 1 2 3x 2
解:原不等式可化为
x1 2 0 3x 2
整理得 7x 5 0 3x 2
所以原不等式解集为
x 3 x 2且x 1
解法小结3:
对于分子、分母可约分的分式不 等式,先约去公因式,(但要注 意到公因式不为零)再把它等价 转化为前面讨论过的形式。
(x 1)2 (x 2)
练习1:解不等式
0 (x 4)
(x 1)2(x 2)(x 4) 0 解: 原不等式同解变形为 x 4 0
所以原不等式的解集为
x
x1或x
2 3
例1:解不等式 (x 1) 0
(3x 2)
解(一):原不等式等价于
13xx120
或
0
23xx120 0
不等式组(1)的解为 x 2
3
不等式组(2)的解为 x 1
所以原不等式的解集为
x
x
1或x
2
3
解(二):原不等式同解为 (x 1)(3x 2) 0
所以原不等式的解集为
x
x
1或x
2 3
不 等 式 (x 1) 0解 法 比 较 (3x 2)
分类讨论
转化(化归)
需要解两个不等式 通过等价转化,变形为 组,再取这两个不 我们熟悉的不等式进行 等式组解集的并集. 求解.
繁简
例2:解不等式
(x 1) 0 (3x 2)
解:原不等式等价于
(x 1)(3x 2) 0 (1)
3x 2 0
(2)
解不等式(1)得 x 1 或 x 2
解不等式(2)得 x 2
3
3
所以原不等式的解集为
x x 1或x 2 . 3
例3:解不等式 (x 1)( x 3) 0 (3x 2)
-4
1
2
所以原不等式的解集为
x x 4或x 2或x 1
练习2:解不等式
x
2x 2
x
1
1
1
解:因x 1 x2 x 1
整理 x2 3x 2 0
所以原不等式的解集为 x1 x 2
练习3:解不等式