聚合物驱油机理.pptx

合集下载

【采油PPT课件】聚合物驱油基础知识

【采油PPT课件】聚合物驱油基础知识

60
0
200
400
600
800
1000
1200
聚合物用量(PV.mg/L)
喇南一区中心井含水与聚合物用量关系
40
产 油
30 (104t)
年产油 比例 累积产油
33.8
26.74 24.4
31.15
33.07
34.50
40
年 产 油 比 30 例
(%)
20
10 2.38
0 0
19.3 18.33
11.67 8.42
喇南一区油层注聚前后流度变化
试验 区块
一区葡 I1-2
流动 系数
872
注聚前
吸水厚 流度 度(m) (k/μ)
14.8 58.7
流动 系数
注聚后
吸水厚 度(m)
流度 (k/μ)
k/μ下 降幅度 (%)
144
14.8
9.7
82.2
油井生产压差放大,产液指数下降
生产
10.0 8.0
6.07
6.75
7.08
压差
6.0 4.0 3
3.77 3
生产压差放大4.26MPa
2.0 0
150
300
450
600
750
产液 指数
4.0 3.5 3.37 3.0 2.5 2.0 1.5 1.0
0
3.76 2.6
150
产液指数下降幅 度62.7%
1.49
1.38
1.4
300
450
600

喇南一区生产压差、产液指数变化曲线
粘7 度
6
5
4
3 20

聚合物驱油

聚合物驱油

⑶聚丙烯酰胺的合成
•丙烯晴的合成:氨氧化法
• CH2═CH-CH3+NH3+ 3/2O2→CH2═CH-CN+ 3H20
•丙烯酰胺的合成: •CH2═CH-CN+H2O→CH2═CH -CONH2 •丙烯酸的合成: •CH2═CH-CH2+O2→CH2═CH -CHO+H2O •2CH2═CH-CHO+ O2→2CH2═CHCOOH
3.聚合物驱油机理
⑴吸附作用:
•聚合物大分子在孔隙介质的表 面由于氢键,静电力的作用和 介质表面结合在一起而丧失流 动能力的现象,称为吸附。
• ⑵捕集作用:
•机械捕集
水力学捕集
• 低渗透油层,其滞留主要以捕 集为主 • 高渗透地层,以吸附为主。
•⑶流体黏弹效应对改善流度比的贡 献。
4.聚合物驱基础研究最新进展:
• ⑸能阻止其他化学剂副反应的发生;
• ⑹注水用表面活性剂应考虑 到它与地层矿 物组分,地层水注入水成分,地层温度以 及油藏的枯竭程度等的相互关系; • ⑺具有抗地层高温,高盐浓度的能力; • ⑻具有较高的经济价值,投入产出比具备 优势。
分类
• ①阴离子表面活性剂:石油磺酸盐,烷基苯磺酸盐, 木质素磺酸盐,脂肪醇聚氧乙烯醚硫酸盐,烷基酚聚 氧乙烯聚氧丙烯多硫酸盐等。
特点
1
聚合物的相对分子质量与地 层的渗透率密切相关。 对于油层聚合物的特定要求: 好的增粘性能,热稳定性高, 化学稳定性好,耐剪切,在油 层吸附量不大等。
2
好的聚合物中,主链应为碳链(热 稳定性好),有一定量的负离子基 团(增粘效果好),和一定量的非 离子亲水基团(化学稳定性好)
天然聚合物
1
纤维素
• 聚合物溶液在多孔介质中的渗流规律和微观驱油机理研 究。 • 适合聚合物驱油田的筛选标准

聚合物采油工艺原理课件

聚合物采油工艺原理课件

EOR Lab
28
aC 1 bC
2024/3/19
EOR Lab
29
2024/3/19
EOR Lab
30
不可入孔隙体积(IPV)
• 聚合物流经多孔介质时,并不是所有聚合物都 全部能够进入多孔介质的孔隙及喉道,只有一 部分尺寸较大的孔隙,聚合物才能进入。即这 一部分孔隙相对于注入的聚合物来说是可以进 入的,而剩余部分孔隙相对于注入聚合物分子 来说是不可进入的,即“不可入”。
(5-9)
c0 C
c 0
C
(5-8)
R
s Cs
(5-10)
式中:ηs——溶剂粘度,mPa.s;
ηr——相对粘度,R
s
,无因次;
ηR——对比粘度,R
s Cs
,单位是浓度的倒数,dl/g;
η——在非常低的粘度下测定的聚合物溶液的粘度,mPa.s;
[η]——聚合物特性粘数单位是浓度的倒数,dl/g。
2024/3/19
EOR Lab
13
2024/3/19
EOR Lab
14
2024/3/19
EOR Lab
15
2024/3/19
EOR Lab
16
描述聚合物溶液的流变性的模型
模型 PowerLaw
Ellis
Carreau
表达式
K n1
0
1
1
1/
2
0
n1
1 2 2
常数 K—稠度系数(mPas sn-1), K1 为牛顿流体的粘度 n—流变指数(无因次)假塑
节上有静电斥力,在水中分子链较伸展,故增粘性好。它
在带负电的砂岩表面上吸附量较少,因此,是目前最适合

《聚驱驱油机理》PPT课件

《聚驱驱油机理》PPT课件

2003
目前最为成熟的化学驱方法是聚合物驱,在 大庆油田得到广泛应用。近年来,三元复合驱在 大庆油田发展较快,成为化学驱中最有潜力,提 高采收率幅度最大的储备技术。
化学驱采油原理
化学驱油机理
采收率由三个因素来决定:一是井网对油层的控制程度 (Ew),二是注入液的体积波及效率(Es),三是水驱油的效率 Er,总的采收率E将是这三个效率的乘积,即:
2.1 聚合物及其水溶液性质
化学驱油机理
水溶性聚合物及其分子构象 聚合物是由大量的简单分子(单体)聚合而成的高分子 量的天然或合成的物质,又称高聚物。油田注聚合物工程 中,常用的人工合成聚合物主要是部分水解聚丙烯酰胺, 为柔性长链,常简写成HPAM。若由n个丙烯酰胺分子聚合 成聚丙烯酰胺,n则称为聚合度。
目前比较普遍应用的表面活性剂是石 油磺酸盐类。
舌进是非均质油藏水驱波及体积降低的主要原因,当高 渗透层的油水前缘达到生产井后继续注水,大部分水仅仅无 效穿过高渗透层,不能扩大低渗透层的波及体积,聚合物用 于EOR主要有两个目的:改善流度比和调整平面及层内、层间 矛盾。其工作原理是在水中加入聚合物,提高注入水的粘度。
化学驱油机理
常用的增稠剂有 化学制剂 和 生物化学制剂 两大类。常用的化
学增稠剂为部分水解聚丙烯酰胺。这是一类高分子化合物,它的增 稠能力主要由其分子量来决定。常用的聚丙烯酰胺的水解度为25-30 %,平均分子量为几百万到上千万。聚丙烯酰胺不是一种单纯化合 物,它的分子量有一个分布范围,一般说来,分子量的分布范围愈 窄愈好。
化学驱油机理
聚合物是由很多基本结构单元连接起来的,根据基本结构单 元的化学结构,即分子内原子或原子团的种类以及它们的结合方 式,单个高分子化合物就有不同的结构形式:

聚合物驱

聚合物驱

三、部分聚丙烯酰胺的结构和性质
聚丙烯酰胺的分子式: 聚丙烯酰胺的油水选择性和堵水机理
四、部分聚丙烯酰胺的优点
1 .部分水解聚丙烯酰胺增粘性好 其分子量高,有很好的稠化能力。部分水解聚丙烯酰胺分子量一般为一千万
到几千万,分子链长,分子直径与内摩擦大,溶液具有较大的水动力体积,黏度 大,减小水油流度比,提高驱油波及系数,有利于驱油
处理措施:一对于易降解通过除氧(加入还原型抗氧化剂,抗自由基型抗氧 剂)和加入稳定剂(例如HPAM弱凝胶用稳定剂RL-1 )来减小降解的影响。二对 于易水解高温油藏要使用低水解度的HPAM溶液。
五、应用中的问题
3 . HPAM抗剪切降解能力差
由于HPAM的分子构造,它的抗剪切能力相对较差。HPAM易因剪切而降解, 当HPAM溶液通过闸门、流量计孔板和低渗透地层时,都会引起HPAM的降解, 使增粘效果降低。
二、驱油用聚合物的性能要求
❖ 粘弹性:聚合物驱替液通过多孔介质时,希望具有一定的粘弹性,分子链 可以拉伸 收缩带出一部分未波及到区域(如盲端)的残余油,提高驱油效率。
❖ 稳定性:由于聚合物溶液需要长期处于地层环境中,一般见效期在半年以 上。因此聚合物溶液在地层应具有长期稳定性,包括聚合物溶液与地层水、 岩石及粘土矿物的配伍性,以及剪切稳定性,化学稳定性,热稳定性和生物 稳定性。
四、部分聚丙烯酰胺的优点
5 .部分水解聚丙烯酰胺具有良好的稳定性 (1) 热稳定性:HPAM分子中氧桥,对热比较稳定,在小于93 ºC能稳定存在无明显 降解。 (2) 生物稳定性:HPAM具有较好的生物稳定性,虽然油田有使HPAM降解的细菌 存在,但对其稳定性不构成威胁。 (3) 化学稳定性:HPAM中有一定数量的非离子亲水基团—CONH2,不与钙 镁离 子反应。 6 .HPAM来源广,价格低。

聚合物驱油PPT课件

聚合物驱油PPT课件
矿物组分,地层水注入水成分,地层温 度以及油藏的枯竭程度等的相互关系; • ⑺具有抗地层高温,高盐浓度的能力; • ⑻具有较高的经济价值,投入产出比具 备优势。
第40页/共45页
分类
• ①阴离子表面活性剂:石油磺酸盐,烷基苯磺酸盐,木质素磺 酸盐,脂肪醇聚氧乙烯醚硫酸盐,烷基酚聚氧乙烯聚氧丙烯多 硫酸盐等。
2
乳液的溶解速度快,不需要溶 解设备,保持期较长
3
干粉有效物含量高,运输储存 容易,保持期长。
第20页/共45页
2.生物聚合物黄胞胶
•定义:由黄单胞菌野茹菌微生物接种到碳 水化合物中,经发酵而产生的生物聚合物。
第21页/共45页
⑴黄胞胶的化学结构:
第22页/共45页
第23页/共45页
⑵黄胞胶的生产:发酵工艺
第8页/共45页
天然聚合物
1 纤维素 2 生物聚合物黄胞胶
第9页/共45页
人工合成聚合物
1
聚丙烯酰胺(PAM)
2 部分的水解的聚丙 稀铣胺(HPAM)
第10页/共45页
目前使用的聚合物: •HPAM •黄原胶
第11页/共45页
第12页/共45页
⒈部分水解聚丙烯酰胺
• ⑴化学结构: • PAM是由丙烯酰胺引发聚合而成的水溶性链状聚
水:淡水,盐水均可 气体:氮气,二氧化碳,天 然气等 起泡剂:主要为表面活性剂如烷基磺酸盐,烷基苯磺酸盐 等
第34页/共45页
第35页/共45页
泡沫驱
第36页/共45页
提高采收率的机理
1 ⑴通过贾敏效应的叠加, 提高驱动介质的波及系数
2 ⑵气泡可依孔道的形状而 变形,能有效的将波及到 孔隙中的油驱出,提高洗 油效率。

《聚驱驱油机理》课件

《聚驱驱油机理》课件

研发新型聚合物溶液,提高驱 油效果和环保性能
聚驱驱油技术的集成和创新
集成:将多种驱油技术进行集成,提高驱油效率 创新:开发新型驱油技术,如二氧化碳驱油、微生物驱油等 提高采收率:通过集成和创新,提高油田采收率 降低成本:通过集成和创新,降低驱油成本,提高经济效益
聚驱驱油技术的经济效益和社会效益评估
经济效益:提高采收率,降低生产成本 社会效益:减少环境污染,提高能源利用效率 技术发展:推动相关技术的研发和应用 产业升级:促进石油行业的技术进步和产业升级
感谢观看
汇报人:PPT
聚合物溶液的驱油 机理:通过改变油 水界面张力,提高 油水相对渗透率, 实现驱油
聚合物溶液的驱油 效果:提高采收率, 降低采油成本,保 护环境
聚合物溶液的宏观驱油机理
聚合物溶液的 组成:聚合物、 表面活性剂、
稳定剂等
聚合物溶液的 作用:提高油 水界面张力, 降低油水粘度

聚合物溶液的 注入方式:注 入井、注入层、
注入时间:影响聚合物溶液的粘度,注入时间越长,粘度 越低
聚合物溶液的流速和压力
流速:影响聚合物溶液的注入速度,从而影响驱油效果 压力:影响聚合物溶液的注入压力,从而影响驱油效果 流速和压力的配合:需要合理控制流速和压力,以实现最佳驱油效果 流速和压力的调整:根据油藏条件,调整流速和压力,以适应不同的驱油需求
聚驱驱油技术发展历程
20世纪50年代:聚驱驱 油技术开始出现
20世纪60年代:聚驱驱 油技术在油田中得到应用
20世纪70年代:聚驱驱 油技术逐渐成熟,成为油 田开发的重要手段
20世纪80年代:聚驱驱 油技术在油田中得到广泛 应用,成为油田开发的主 流技术
20世纪90年代:聚驱驱 油技术在油田中得到进一 步发展,成为油田开发的 重要手段

提高原油采收率原理(第三章聚合物驱)

提高原油采收率原理(第三章聚合物驱)
Why? 因主链上的C-C单键产生内旋转。 分子形态千变万化,具有不同的构象,称 为无规线团,无规线团自然卷曲状态最稳定。
1.聚合物的溶解与增粘性
溶胀与溶解过程:溶剂分子(水)先渗入到大分子线团中 ,使大分子体积胀大,然后才完全溶解,需半小时以上。
实验室:在搅动的水旋涡中慢慢加入干粉,均匀分散。 现场上:从循环水上的漏斗中加入。
提高原油采收率原理 (第三章聚合物驱)
第一节 聚合物驱的概念
聚合物驱是指通过在注入水中加入少量水溶 性高相对分子质量的聚合物,增加水相粘, 同时降低水相渗透率,改善流度比,提高原 油采收率的方法。也称为改性水驱或聚合物 强化水驱、稠化水驱、增粘水驱。
注 水 井
采 油 井
4
4
2
3
2
1
1-剩余油;2-淡水;3-聚合物溶液;4-水
黄原胶的化学结构式
由黄 单胞 菌属 细菌 将碳 水化 合物 发酵 制得。
其主链为纤维素骨架,比HPAM有更多的支链结构。结构中掺 氧的环形碳键(吡喃糖环)不能充分旋转,因此黄胞胶靠分 子内相互阻绊作用,在溶液内形成较大的刚性结构,从而增 加水的粘度。
二、聚合物溶液性质
分子链较长,并且具有柔曲性(象弯曲的钢 丝一样 resembles a flexible coil)。
ONa y
(2)黄原胶(Xanthan Gum, XC) 耐盐,但易于生物降解,价格高,约5万元/
吨,应用较少。
(3)新型缔合聚合物(New associative polymers, NAPs):通过缔合作用,提高耐温耐盐性能。
注:一般所说的聚合物驱指使用部分水解聚丙烯酰胺 (HPAM) 驱油。
2Q e
AD p
式中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石表面润湿性和毛细管液阻效应的存在,水驱后还存在着大量的残余油。这些残
余油以簇状、柱状、孤岛状、膜(环)状、盲状的形态滞留在孔隙介质中。那么
, 聚合物驱能否把这些残余油驱动呢?研究表明:聚合物溶液存在着粘弹性,在
水 驱过程中,表现了三种粘度,即本体粘度、界面粘度、拉伸粘度。在这三种粘
度 的共同作用下,聚合物驱不仅可以提高波及系数,而且还可以提高水波及域内
段原油不能得到有效的开采。
在不考虑重力影响的前提下,我们可以给出高渗透率层段水突破之前任一注
水阶段时两层段间吸水量之比:
q1 1
K1Krw1 K1Kro1
w
o
o Krw1 Kro1 K1 • w
q2 2 K 2Krw2 K 2Kro2 K2 o Krw2 Kro2
w
o
w
K1>K2
2
一 寸 光 阴 不 可轻
在水驱油条件下,水突破油层后采出液中油的分流量为:
KKro
fo
λo λw λo
μo KKrw KKro
μw μo
该式经简化得出:
fo
1
1
o •
Krw
w Kro
100
经济极限含水 90
含水率,
80
70
60
50 0.4
μo/μw=15 μo/μw=1
0.5
0.6
0.7
0.8
含水饱和度,Sw
不同油、水粘度比时采出液含水率随水饱和度变化关系曲线
残余油与流过其表面的驱替液之间的粘滞力可用下式表示: τ=dv/dz·μr
式中: τ——两相流体间的粘滞力; dv/dz——两相流体的界面速度梯度; μr——两相流体间的界面粘度。 聚合物溶液与残余油之间的界面粘度远远高于注入水与残余油间的界 面粘度值。
聚合物溶液粘度的增加,是由于聚合物分子中含有许多亲水基团,这些亲水基团 在聚合物分子外形成的“水鞘”,增加了相对移动的内摩擦力。 同时,上述基团在水中解离,产生许多带电符号相同的链节,这些链节互相排斥, 使聚合物分子线团在水中更加伸展,因而有更好的增粘能力。因此,聚合物溶液 在多孔介质内的渗流过程中,其粘度值要比用粘度计测量的视粘度高许多倍。
对于这类油层,在通常水驱条件下往往发生注入水沿不同渗透率层段推进不均匀
现象。高渗透率层段注入水推进快,低渗透率层段注入水推进慢。加上注入水的
粘度往往低于原油粘度,水驱油过程中高流度流体取代低流度流体的结果,导致
注入水推进不均匀的程度加剧,甚至在很多情况下会出现高渗透率层段早巳被注
入水所突破,而低渗透率层段注入水推进距离仍然很小的情况,致使低渗透率层
0.30
Sw2
0.28
0.26
0.24 0.22
μo/μw=15 μo/μw=1
0.20
0.1
Hale Waihona Puke 0.20.30.4
0.5
0.6
水突破前低渗透率层段与高渗透率层段
Sw1
含水饱和度变化关系曲线 3、聚合物溶液微观驱油机理
传统的聚合物驱油理论认为,聚合物驱只是通过增加注入水的粘度,降低水 油流度比,扩大注入水在油层中的波及体积提高原油采收率,聚合物驱并不能增
(3) 拉伸粘度使聚合物溶液存在粘弹性,是驱替盲状残余油的主要原因。 柔性聚合物分子在应力作用下将产生形变,其弹性又会使其恢复、收缩,因 此,当具有粘弹性的柔性聚合物溶液通过多孔介质时,既存在着剪切流动, 也存在着拉伸流动。特别是聚合物分子在流经孔道尺寸变化处时,聚合物 分 子就受到拉伸而表现出弹性。这种特性使进入盲端孔隙的聚合物溶液, 具有 与流动方向垂直、指向连通孔道的法向力。正是在上述聚合物溶液粘 弹性的 作用下,才使得聚合物溶液能够进入盲端中驱油。
一寸光阴不可轻
1、聚合物溶液的流度控制作用 聚合物溶液的流度控制作用是聚合物驱油的重要机理之一,对于均质油层,在通 常水驱油条件下,由于注入水的粘度往往低于原油粘度,驱油过程中油水流度比 不合理,导致采出液中含水率上升很快,过早地达到采油经济所允许的极限含水 率的结果,使得实际获得的驱油效率远远小于极限驱油效率。向油层注入聚合物 的结果,可使驱油过程中的油水流度比大大改善,从而延缓了采出液中的含水上 升速度,使实际驱油效率更接近极限驱油效率,甚至达到极限驱油效率。
1
一寸光阴不可轻
2、聚合物溶液的调剖作用 调整吸水剖面,扩大波及体积,是聚合物提高采收率的另一项重要机理。因
为在聚合物的调剖作用下,油层水淹体积的扩大,将在油层的未见水层段中采出
无水原油。这就是说,油层水淹孔隙体积扩大多少,采出油的体积也就增加多少。
聚合物的调剖作用只有在油层剖面上存在渗透率的非均质状态时才能发生。
的 驱油效率。其提高驱油效率的机理表现在以下几个方面:
(1) 本体粘度使聚合物在油层中存在阻力系数和残余阻力系数,是驱替水驱未
波及剩余油和簇状残余油的主要原因。
聚合物溶液本体粘度的增高,加上其弹性作用,改善了水油流度比和水驱前缘,
可以驱替出水驱未波及剩余油和簇状残余油。
3
一 寸 光 阴 不 可轻
(2)界面粘度使聚合物溶液在多孔介质中的粘滞力增加,是驱替膜状、孤岛状 残余油的主要机理:
5
加油藏岩石的微观驱油效率,并认为聚合物驱后残留于孔隙介质中的油的体积与
水驱之后相同。经过几年的室内实验研究发现,聚合物驱不仅能够扩大波及体积,
而且能够提高驱油效率。
我们知道水驱开采时,由于油层的非均质性,注入水往往波及不到相对渗透
率较低的油层部位,成为未波及水驱的剩余油;在注入水波及到的油层,由于岩
4
一 寸 光 阴 不 可轻
由于聚合物的加入使油水界面粘度显著增加。 聚合物溶液在毛细管管壁附近的速度梯度远远大于水在其上的速度梯度。
Y W
P
油 VX
油 VX
VW = VP
VW 边 << VP 边
dVW dY

<<
dVP 边 dY
由于聚合物溶液是非牛顿粘弹性流体,在岩石孔道中的流场分布与水截然不 同,在相同平均流速下,聚合物溶液与油的界面速度远远大于水与油界面的 速度。
相关文档
最新文档