(机构动态仿真设计)adams

合集下载

基于ADAMS的多杆机构运动仿真分析

基于ADAMS的多杆机构运动仿真分析

基于ADAMS的多杆冲压机构运动仿真分析摘要:使用Adams软件可以对多杆机构进行建模和运动仿真分析,同时得出从动件的各类运动参数。

本文建立了一个简化的齿轮多杆冲压机构的模型,进行了运动仿真,对执行机构的重要参数并进行了测量和分析,判断该机构的运动是否满足加工特性,为以后该类机构的设计工作积累经验。

关键词:运动仿真分析;齿轮多杆机构;Adams1引言连杆机构是许多机械上都广泛使用的运动机构。

它的构件运动形式多样,如可实现转动、摆动、移动和平面或空间复杂运动,有着显著的优点如:运动副单位面积所受压力较小,且面接触便于润滑,故磨损减小;制造方便,易获得较高的精度和较大的机械效益等。

故一般的锻压加工,冲压加工,插齿加工等都采用了多杆机构的设计。

本文分析的冲压机构在冲制零件时,冲床模具必须先以较大速度冲击样坯,然后以均匀速度进行挤压成型,模具快速将成品推出型腔,最后,模具以较快速度完成返回行程。

图1为本文冲压机构简图。

图1 齿轮冲压机构简图2冲压主运动机构及其工作原理齿轮多杆机构的如图1所示,构件1、2为齿轮配合,齿轮1由电机驱动,连杆3连接大齿轮和4、5、6组成的曲柄滑块机构,当主动齿轮1转动时,从而实现滑块6(冲床模具)的直线往复运动。

3机构的建模与仿真3.1 建模参数的确定在简图1中,设原动件1匀速转动(m=2,z1=20,w=60r/min),齿轮(2m=2,z2=45),各杆件长度为l3=80mm,l4=150mm,l5=98mm。

3.2模型的建立①通过杆长条件,确立了初始位置的8个点的坐标,通过Adams中的Table Editor写入如图3.1图3.1 初始位置各构件端点坐标写入后的各端点建模如图3.2图3.2 端点位置确定②在POINT_1和POINT_7处分别建立大小齿轮的模型选择Main Toolbox中的圆柱模块,分别以分度圆直径40mm、90mm,厚度10mm建立齿轮模型,选择工具,对其翻转,使其在Front面显示为图3.4。

用ADAMS进行凸轮机构模拟仿真示例

用ADAMS进行凸轮机构模拟仿真示例

用ADAMS进行凸轮机构模拟仿真示例引言在机械工程领域,凸轮机构是一种常见的机构组成部分,广泛应用于工业生产和制造。

凸轮机构的设计需要考虑到凸轮曲线的形状和运动参数对传动性能的影响。

为了评估和优化凸轮机构的性能,我们可以使用计算机仿真软件进行凸轮机构的模拟仿真。

ADAMS是一款被广泛应用于机械系统仿真的软件工具,本文将通过一个示例来介绍如何使用ADAMS进行凸轮机构的模拟仿真。

凸轮机构概述凸轮机构是一种将轮廓复杂的凸轮运动传递给连杆的机构。

它通常由凸轮、从动件和驱动件构成。

凸轮是核心部分,它的轮廓决定了从动件的运动轨迹。

通过凸轮的运动,从动件可以实现往复、旋转或其他特定的运动方式。

凸轮机构在内燃机、机床、汽车等领域得到广泛应用。

ADAMS概述ADAMS(Automatic Dynamic Analysis of Mechanical Systems)是一款用于机械系统动力学仿真的软件工具。

它提供了丰富的建模元素,可以快速和准确地建立机械系统的模型,并通过求解动力学方程来模拟机械系统的运动。

ADAMS具有友好的用户界面和强大的计算功能,被广泛应用于机械工程领域的仿真和优化。

凸轮机构模拟仿真示例为了演示如何使用ADAMS进行凸轮机构的模拟仿真,我们将以一个简单的例子来说明。

假设我们要设计一个四连杆机构,其中一根连杆由凸轮驱动。

该凸轮的轮廓为心形曲线,从动件为简单的滑块。

首先,我们需要建立凸轮机构的模型。

在ADAMS中,可以通过创建凸轮、连杆、滑块等元素来建立凸轮机构的模型。

通过定义凸轮的曲线形状和连杆的运动参数,我们可以构建出凸轮机构的模型。

接下来,我们需要定义凸轮机构的运动条件。

在ADAMS中,可以通过设置凸轮的运动方式和频率来定义凸轮机构的运动条件。

根据凸轮的运动,ADAMS可以自动计算连杆的运动轨迹。

然后,我们可以进行凸轮机构的模拟仿真。

在ADAMS中,可以通过启动仿真来模拟凸轮机构的运动。

ADAMS会计算连杆的运动轨迹、速度、加速度等参数,并显示在仿真结果中。

基于ADAMS的机械四连杆机构运动仿真分析

基于ADAMS的机械四连杆机构运动仿真分析

基于ADAMS的机械四连杆机构运动仿真分析1. 引言1.1 背景介绍机械四连杆机构是一种常见的机械系统,由四个连杆组成,通过铰链连接在一起。

该机构具有简单结构、运动灵活等特点,广泛应用于工程领域中的机械传动系统、转动机械装置等。

随着现代工程技术的发展,人们对机械四连杆机构的运动性能和工作特性提出了更高的要求。

利用ADAMS软件进行机械四连杆机构的运动仿真分析已成为一种常用的研究方法。

通过仿真分析,可以全面地了解机构在不同工况下的运动规律和性能特点,为设计优化和故障分析提供重要依据。

1.2 研究目的本文旨在利用ADAMS软件对机械四连杆机构进行运动仿真分析,探讨其运动规律及特性。

通过建立机构的数学模型,模拟机构在不同工况下的运动状态,分析机构的运动学性能和动力学特性,为设计优化提供理论支持。

借助ADAMS软件的功能,对机构进行参数优化,使机构的性能达到最佳状态。

本文研究的目的包括:1. 分析机械四连杆机构的运动规律,揭示其运动特性;2. 探讨机构在不同工况下的运动状态和特点,评估机构的性能;3. 基于仿真结果,进行参数优化,提高机构的工作效率和稳定性;4. 对机构可能出现的故障进行分析,为机构的维护和保养提供参考。

通过对机械四连杆机构的运动仿真分析,旨在为机械工程师提供设计和优化机构的参考,促进机械系统的创新和发展。

1.3 研究方法研究方法是本文的关键部分,主要包括以下几个步骤:(1)了解ADAMS软件的基本原理和使用方法,包括建模、设置参数、运动仿真等操作。

(2)建立四连杆机构的三维模型,并根据实际情况设置各个连杆的长度、质量、摩擦系数等参数。

(3)设定机构的初始条件和约束条件,如应用驱动力、初始速度、固定关节等,以模拟机构的运动过程。

(4)进行仿真分析,观察四连杆机构在不同驱动力、摩擦系数下的运动情况,包括角速度、位移、加速度等参数的变化。

(5)分析和比较仿真结果,探讨四连杆机构运动特性的影响因素,如摩擦力、驱动力大小、连杆长度等,并对结果进行合理解释。

基于ADAMS的机械四连杆机构运动仿真分析

基于ADAMS的机械四连杆机构运动仿真分析

基于ADAMS的机械四连杆机构运动仿真分析机械四连杆机构是一种常用的机构形式,它广泛应用于各种机械设备中,如汽车发动机、机床、机器人和机械手等。

本文基于ADAMS软件,对机械四连杆机构进行运动仿真分析,并对仿真结果进行分析和讨论。

一、ADAMS软件介绍ADAMS是一款专门用于多体动力学仿真分析的商业软件,它可以用来仿真各种机械系统的动力学特性,包括车辆、飞机、机器人以及各种机械机构等,还可以分析机构的运动轨迹、速度、加速度、力矩等参数。

在本文中,我们将利用ADAMS软件对机械四连杆机构进行仿真分析,探究机构的运动规律和特性。

二、机械四连杆机构的结构和运动特性机械四连杆机构由四个连杆组成,其中两个连杆为机构的输入和输出轴,另外两个连杆则起到连接作用。

机构的结构如图1所示。

图1 机械四连杆机构结构示意图机械四连杆机构的运动特性与其连杆长度、角度以及连接方式等因素密切相关,下面我们将对机构的运动特性进行详细的分析。

1. 运动自由度机械四连杆机构的运动自由度为1,即只有一维平动或旋转方向。

2. 平衡性机械四连杆机构具有良好的平衡性,可以在很大程度上减小机构的惯性力,提高机构的稳定性。

3. 运动规律机械四连杆机构的运动规律比较复杂,难以用解析方法进行求解。

通常采用动力学仿真和实验方法,对机构的运动规律进行研究和分析。

为了探究机械四连杆机构的运动规律和特性,我们利用ADAMS软件对机构进行仿真分析。

仿真模型如图2所示。

在仿真过程中,我们可以通过改变机构的输入参数,如连杆长度、连杆角度等,来观察机构的运动规律和特性。

下面我们将举例说明。

1. 连杆长度变化时机构的运动规律改变机构的输入连杆长度,可以观察到机构的运动规律发生了显著的变化。

当输入连杆长度L1=100mm、L2=200mm时,机构的运动规律如图3所示。

图3 机构运动规律图(L1=100mm、L2=200mm)从图3中可以看出,当输入连杆开始旋转时,机构的输出连杆也随之旋转,但是旋转速度比输入连杆慢,这是由于机构的连杆长度不同,导致机构的角度运动不同所致。

用ADAMS进行凸轮机构模拟仿真示例

用ADAMS进行凸轮机构模拟仿真示例

结果分析注意事项
确保模拟仿真的初始条件和参数设 置正确
注意模拟仿真的收敛性和稳定性
添加标题
添加标题
添加标题
添加标题
对比实际测试数据与模拟仿真结果, 确保一致性
考虑模拟仿真的误差和不确定性
THANK YOU
汇报人:XX
参数敏感性分析:研究模型参数对模拟仿真结果的影响,确定关键参数并分析其敏感性。
重复性验证:多次运行模拟仿真并分析结果的重复性,以评估模拟仿真的可靠性和稳定性。
模拟仿真结果优化分析
优化目标:提高凸轮机构的性能和效率
优化方法:采用多目标优化算法,对凸轮机构的关键参数进行优化 优化过程:通过ADAMS软件进行仿真实验,分析不同参数组合下的性能表 现 优化结果:得到最优参数组合,使凸轮机构性能达到最优状态
功能特点:ADAMS提供了丰富的建模工具和求解器,支持各种机械系统,包括刚体、柔性体和 刚柔耦合系统。
应用领域:广泛应用于汽车、航空航天、船舶、机械制造、能源等领域,用于产品设计和性能优 化。
优势:ADAMS提供了直观的图形界面和强大的后处理功能,使得用户可以方便地进行模型建立、 参数设置和结果分析。
对比分析不同 参数下的模拟 仿真结果,如 转速、压力角

输出凸轮机构 模拟仿真的最
优设计方案
总结输出凸轮 机构模拟仿真 结果对实际应 用的指导意义
用ADAMS进行凸轮机构模拟 仿真结果分析
模拟仿真结果准确性分析
对比实验:将模拟仿真结果与实际实验数据进行对比,验证模拟仿真的准确性。 误差分析:分析模拟仿真结果与实际实验数据之间的误差,判断误差是否在可接受范围内。
定义运动学参数和约束条件
设置凸轮机构运动参数
确定凸轮机构类型和尺寸 定义凸轮机构运动规律 设置凸轮机构接触参数 验证凸轮机构运动参数的正确性

ADAMS简介

ADAMS简介

ADAMS,即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。

目前,ADAMS已经被全世界各行各业的数百家主要制造商采用。

根据199 9年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额,现已经并入美国MSC公司。

软件应用ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。

ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。

ADAMS一方面是虚拟样机分析的应用软件,用户可以运用该软件非常方便地对虚拟机械系统进行静力学、运动学和动力学分析。

另一方面,又是虚拟样机分析开发工具,其开放性的程序结构和多种接口,可以成为特殊行业用户进行特殊类型虚拟样机分析的二次开发工具平台。

ADAMS软件有两种操作系统的版本:UNIX版和Wind ows NT/2000版。

在这里将以Windows 2000版的ADAMS l2.0为蓝本进行介绍。

ADAMS软件模块ADAMS软件由基本模块、扩展模块、接口模块、专业领域模块及工具箱5类模块组成,如表3-1所示。

用户不仅可以采用通用模块对一般的机械系统进行仿真,而且可以采用专用模块针对特定工业应用领域的问题进行快速有效的建模与仿真分析。

基本模块用户界面模块ADAMS/View求解器模块ADAMS/Solver后处理模块ADAMS/PostProcessor扩展模块液压系统模块ADAMS/Hydraulics振动分析模块ADAMS/Vibration线性化分析模块ADAMS/Linear高速动画模块ADAMS/Animation试验设计与分析模块ADAMS/Insight耐久性分析模块ADAMS/Durability数字化装配回放模块ADAMS/DMU Replay接口模块柔性分析模块ADAMS/Flex控制模块ADAMS/Controls图形接口模块ADAMS/ExchangeCATIA专业接口模块CAT/ADAMSPro/E接口模块Mechanical/Pro专业领域模块轿车模块ADAMS/Car悬架设计软件包Suspension Design概念化悬架模块CSM驾驶员模块ADAMS/Driver动力传动系统模块ADAMS/Driveline轮胎模块ADAMS/Tire柔性环轮胎模块FTire Module柔性体生成器模块ADAMS/FBG经验动力学模型EDM发动机设计模块ADAMS/Engine配气机构模块ADAMS/Engine Valvetrain正时链模块ADAMS/Engine Chain附件驱动模块Accessory Drive Module铁路车辆模块ADAMS/RailFORD汽车公司专用汽车模块ADAMS/Pre(现改名为Chassis)工具箱软件开发工具包ADAMS/SDK虚拟试验工具箱Virtual Test Lab虚拟试验模态分析工具箱Virtual Experiment Modal Analysis钢板弹簧工具箱Leafspring Toolkit飞机起落架工具箱ADAMS/Landing Gear履带/轮胎式车辆工具箱Tracked/Wheeled Vehicle齿轮传动工具箱ADAMS/Gear ToolAdamsAdams是全球运用最为广泛的机械系统仿真软件,用户可以利用Adams在计算机上建立和测试虚拟样机,实现事实再现仿真,了解复杂机械系统设计的运动性能。

基于ADAMS的机械四连杆机构运动仿真分析

基于ADAMS的机械四连杆机构运动仿真分析

基于ADAMS的机械四连杆机构运动仿真分析1.引言机械四连杆机构是一种常见的机械结构,它由四个连杆组成,通过转动连接在一起,能够实现复杂的运动。

对于这种机构的运动行为进行仿真分析,可以帮助工程师们更好地理解其工作原理和性能特点,为设计优化和控制提供可靠的理论基础。

本文将介绍基于ADAMS的机械四连杆机构运动仿真分析的方法和结果,以期为相关领域的研究和应用提供参考。

2.问题描述机械四连杆机构的运动仿真分析主要涉及以下几个问题:首先是机构的运动学特性,包括连杆的运动轨迹、角度、速度和加速度等;其次是机构的力学特性,包括连杆的受力情况、驱动力和阻力等;最后是机构的动力学特性,包括连杆的动力学模型、运动过程中的能量转换和损耗等。

通过分析这些问题,可以全面了解机械四连杆机构的运动规律和工作性能,为相关工程设计和控制优化提供重要参考。

3.基于ADAMS的机械四连杆机构运动仿真分析方法ADAMS(Adams Dynamics)是一款专业的多体动力学仿真软件,可以对多体机械系统的运动行为进行模拟和分析。

基于ADAMS的机械四连杆机构运动仿真分析主要包括以下几个步骤:建立模型、设定运动和约束条件、进行仿真计算、分析结果并优化设计。

3.1 建立模型首先需要在ADAMS软件中建立机械四连杆机构的三维模型,包括连杆、连接点、驱动装置等。

通过软件提供的建模工具,可以简单快速地绘制出机构的几何结构,并添加材料、质量、惯性等物理属性,为后续的仿真计算做好准备。

3.2 设定运动和约束条件在建立好模型后,需要设定机械四连杆机构的运动和约束条件。

通过ADAMS软件提供的运动学分析工具,可以简单地定义连杆的转动角度、线速度和角速度等运动参数,同时添加约束条件,限制机构的运动范围和姿态,以保证仿真计算的准确性和可靠性。

3.3 进行仿真计算设定好运动和约束条件后,即可进行仿真计算。

ADAMS软件提供了理想化模拟和实验数据验证两种仿真方式,可以根据需求选择合适的方法进行计算。

基于Adams的走行机构动态性能仿真分析

基于Adams的走行机构动态性能仿真分析

作 者 简 介 :张 守 云 ( 1 9 7 6 一) , 男, 河 南 滑 县人 , 工程 师 , 硕 士 研 究生 , 研 究 方 向 为 工 程 结 构 及 机 构 仿 真 分析 与优 化 ,
本文通 过应 用 A d a ms …, 对 走 行 机 构进 行 模 拟 仿真 , 对 整机 在弯 曲轨 道 上走 行 过 程 中 的动 态性 能 进 行分 析 与研究 , 最 终 得 出的结 果 为 机 构 的 整体 和
收 稿 日期 : 2 0 1 3 — 0 4 - 1 2
在 驱动 轮 的旋转 副 上施 加 分 段 的速 度 驱 动 , 开始 由 0加速 到一 定 的速度 , 然后 以此 速度 定 速 运行 . 需 要 注 意 的是 , 由于整 机走 行机 构要 通过 弯道 , 大鞍 座 与
Abs t r a c t:T h e d y n a mi c p r o p e r t i e s o f t h e r u n n i n g g e a r i s a n a l y z e d f o r a ma c h i n e r y e q u i p me n t b y Ad a ms . T he v e l o c i t i e s,r o t a t i o n a ng l e a n d g u i d i ng f o r c e a r e a n a l y z e d e x a c t l y . Th e r e s ul t s c a n p r o v i d e r e l i a b l e
0 引 言
走 行机 构是 安装 在轨 道上 的大 型机械 设备 的主 要 工作 装置 之一 , 用 于驱 动整机 的前 进或 后退 , 从而 实 现机 械装备 作 业位 置 的变 动 . 其 主 要 原 理 是通 过
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工业大学课程设计资料袋机械工程学院(系、部)2013~2014 学年第一学期课程名称虚拟样机技术与ADAMS应用实例教程指导教师职称讲师学生姓名专业班级机工1003班学号题目简易车床自动送料机构成绩起止日期2013 年12 月23日~2013年12月27 日目录清单虚拟样机技术与ADAMS应用课程设计设计说明书简易车床自动送料机构起止日期: 2013 年 12 月 23 日至 2013 年 12 月 27 日成员班级成绩指导教师(签字)机械工程学院(部)2013 年 12月27 日目录第一章简易车床自动送料机构的建模----------------------------------------------------------- - 1 -1.1简易车床自动送料机构的原始尺寸与设计要求 -------------------------------------------- - 1 -1.2简易车床自动送料机构的建模 ------------------------------------------------------------------ - 2 -1.2.1启动ADAMS并设置工作环境 --------------------------------------------------------- - 2 -1.2.2创建减速机构虚拟样机模型------------------------------------------------------------- - 3 -1.2.3创建送料机构虚拟样机模型------------------------------------------------------------- - 5 -第二章简易车床自动送料机构模型的仿真与测试--------------------------------------- - 13 -2.1仿真模型 -------------------------------------------------------------------------------------------- - 13 -2.2测试模型 -------------------------------------------------------------------------------------------- - 14 -2.2.1 测量尖顶移动从动件的位移及速度------------------------------------------------- - 14 -2.2.2测量载物杆的位移、速度及加速度 ------------------------------------------------- - 15 -2.2.3模型仿真过程的动画输出-------------------------------------------------------------- - 16 -第三章参数化模型及研究连杆长度对载物杆加速度的影响 ------------------------ - 17 -3.1参数化模型 ----------------------------------------------------------------------------------------- - 17 -3.1.1创建设计变量 ----------------------------------------------------------------------------- - 17 -3.1.2查看设计变量 ----------------------------------------------------------------------------- - 18 -3.2连杆长度对载物杆加速度的影响 ------------------------------------------------------------- - 18 -3.2.1显示测量曲线 ----------------------------------------------------------------------------- - 18 -3.2.2分析设计变量对载物杆加速度的影响 ---------------------------------------------- - 19 -设计总结 ----------------------------------------------------------------------------------------------------- - 22 -参考文献 ----------------------------------------------------------------------------------------------------- - 22 -工业大学课程设计任务书2013 —2014 学年第1 学期机械工程学院(系、部)机械工程及其自动化专业1003 班级课程名称:虚拟样机技术与ADAMS应用课程设计设计题目:简易车床自动送料机构完成期限:自2013 年12 月23 日至2013 年12 月27 日共1 周指导教师:李兵华2013 年12 月27 日系(教研室)主任:邱显炎2013 年12 月27 日第一章 简易车床自动送料机构的建模1.1简易车床自动送料机构的原始尺寸与设计要求简易车床自动送料机构如图1-1所示。

该系统由一级减速机构和凸轮连杆机构组成。

其中减速机构的两齿轮齿数分别为221=z ,902=z ,模数5.1=m ;凸轮连杆机构中凸轮的基圆半径为mm r 50=,从动件位移运动规律如图1-2所示。

图1-1 简易车床自动送料机构s图1-2从动件运动规律从动件运动方程为:按摆线运动规律时推程为 1250(sin())1502150s ϕπϕπ=⨯-⨯ (0150ϕ︒≤≤︒) 按匀速运动规律时回程为1505050210s ϕ-=-⨯ (150360ϕ︒≤≤︒)1.2简易车床自动送料机构的建模1.2.1启动ADAMS并设置工作环境1.启动ADAMS双击桌面上的ADAMS/View的快捷图标,启动ADAMS/View。

2.创建模型名称如图1-3所示,按以下步骤创建模型名称:a.在欢迎对话框中选中Create a New model;b.在Model name 文本框中输入jycczdsljg;c.单击OK按钮,模型名称被创建。

图1-3 模型名称的创建3.设置工作环境单位设置保持系统默认值;工作网格设置如图1-4所示;图标设置如图1-5所示。

图1-4 工作网格的设置图1-5 图标的设置1.2.2创建减速机构虚拟样机模型1.创建齿轮1(1)创建齿轮1这里采用圆柱体来代替齿轮。

齿轮的创建过程如图1-6。

a.单击Cylinder工具按钮,展开选项区;b.选中Length并输入10,选中Radius并输入16.5;c.单击工作区中的(84,0,0)位置;d.水平右移一段距离后,单击工作区域,则齿轮1被创建。

将圆柱体的名称更名为gear_1。

(2)调整齿轮1的位姿按照图1-7调整齿轮1的位姿:单击位姿变换工具按钮,展开选项区→单击拾取旋转中心工具按钮,拾取(84,0,0)为旋转中心→单击齿轮1 →在Angle文本框中输入90 →单击转动工具按钮,使gear_1绕y轴旋转90度。

图1-6 齿轮1的创建图1-7 调整齿轮1的位姿(3)齿轮1的几何特征修改按照图修改齿轮1的几何特征:右击gear_1弹出快捷菜单,选择Cylinder:CYLINDER_1|Modify菜单项,弹出Geometry Modify Shape Cylinder对话框→在对话框中,将Side Count For Body和Segment Count For Ends都改为50 →单击OK按钮即完成齿轮1的几何特征修改。

2.创建齿轮2齿轮2的创建过程和齿轮1的创建过程完全一样。

在此,就不再用语言描述,其齿轮创建、位姿调整和几何特征修改的过程分别如图、图和图所示。

最后将圆柱体名称更名为gear_2。

另外,为了判别齿轮的运动,在齿轮1上打一个直径为5mm的孔,在齿轮2上打一个直径为10mm的孔,如图1-8所示。

图1-8 创建好的齿轮对3.创建转动副在gear_1和ground之间创建转动副JOINT_A;在gear_2和ground之间创建转动副JOINT_B,如图1-9所示。

注:在创建转动副时,首先选中gear_1(或gear_2),然后选中ground。

图1-9 转动副的创建4.创建齿轮副(1)创建Marker单击Marker工具按钮→在Marker下拉列表框中选择Add to Part →在Orientation下拉表框中选择Global XY →单击gear_2的中心,Marker被创建→将该Marker重名为Marker_CV(2)调整Marker_CV的位姿将Marker_CV移到齿轮的节圆处,具体移动方法如图1-10所示。

另外,标记点Marker_CV的z轴方向必须与齿轮在节点处的速度方向相同或相反。

所以,要对Marker_CV进行旋转变换,变化步骤为:拾取Marker_CV为旋转中心→单击Marker_CV →在Angle文本框中输入90 →单击转动工具按钮,使Marker_CV绕x轴旋转90度,如图1-11所示。

图1-10 Marker_CV的位姿平移图1-11 Marker_CV的位姿旋转(3)创建齿轮副创建齿轮副的步骤是:单击Gear工具按钮,弹出Constraint Create Joint Gear对话框→在对话框中,在Joint Name文本框章输入JOINT_A, JOINT_B,在Common Velocity Marker文本框中输入Marker_CV →单击OK齿轮副即可创建。

过程如图1-12所示。

图1-12 齿轮副的创建1.2.3创建送料机构虚拟样机模型1.创建凸轮机构采用ADAMS/View提供的应用相对轨迹曲线生成实体及“反转法”来设计凸轮。

(1)创建尖端移动从动件按图1-13所示创建从动件,并重名为follower 按图1-14所示在从动件尖端添加一个marker图1-13 创建从动件图1-14 创建Marker(2)创建凸轮板按图1-15所示操作创建一个200mm×200mm×10mm的长方体,重名为cam。

(3)创建运动副在cam和ground之间创建转动副JOINT_R;在follower和ground之间创建移动副JOINT_T。

相关文档
最新文档